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We have simulated the piezoresistivity in n-type single-crystal bulk silicon based on the first-principles
electronic band structure of model structures. Our simple procedure to calculate the piezoresistance coefficients
is valid qualitatively and quantitatively for carrier electron transport in the multivalley conduction-band struc-
ture of n-type bulk silicon; the primitive longitudinal and transverse piezoresistance coefficients originate from
the energy gap between the valleys, whereas the shear piezoresistance coefficient �44 arises from a distortion
of the band energy surface in the valleys and can be presented clearly as a negative constant. The distinction
between the origins of longitudinal, transverse, and shear piezoresistivity can be followed as a dependence on
a carrier concentration or temperature.
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I. INTRODUCTION

Since Smith discovered the piezoresistive effect of
semiconductors,1 stress response to electric properties in
single-crystal silicon has been extensively investigated by
experimental2–14 and theoretical2–4,15–35 analyses. Progress in
integrated circuit processes has been advanced with improve-
ment of the piezoresistive sensors fabricated by silicon, and a
more qualitative and quantitative estimate of the piezoresis-
tive effect of silicon materials will be indispensable for fu-
ture development of new micro-electro-mechanical system
�MEMS� or nano-electro-mechanical system �NEMS� sen-
sors.

In the conventional semiconductor theory, deformation of
the electronic energy band due to stress/strain has been quali-
tatively given for bulk silicon, and then formulas of the lon-
gitudinal and transverse piezoresistance coefficients have
been presented by using the deformation potentials of the
electronic energy band.2–4,15–22,36 However, it is widely
known that the shear piezoresistance coefficient �44 for
n-type bulk silicon vanishes to zero by using the conven-
tional many-valley model of conduction band,15–17,23,24

where isoenergy surfaces of band energy in the vicinity of
each valley in the reciprocal space are simple ellipsoids re-
gardless of strain condition. Namely, Smith’s experimental
result for n-type silicon, �44=−13.8�10−11 Pa−1,1 cannot be
explained in terms of many-valley model with simple isoen-
ergy ellipsoids, and one of the main causes of piezoresistive
effect due to shear stresses is considered as a disorder of
band-energy surface from the ellipsoids.25,26 The detail of
band-energy surface can be simulated by first-principles cal-
culations of bulk silicon models with some strains, so that

the estimate of the piezoresistive effect in terms of the first-
principles electronic band structure is expected to be valid
and useful.

In our previous work, we have presented an easy proce-
dure to calculate the longitudinal and transverse piezoresis-
tance coefficients in one-dimensional �1D� transport on the
basis of first-principles electronic band structure of single-
crystal doped silicon nanowire �SiNW� models.27,28 Unfortu-
nately, the valence-band top of p-type bulk silicon cannot be
represented by usual first-principles calculations because the
spin-orbit interaction leading to the band split of the valence-
band top is ignored, but our procedure used for SiNW mod-
els can be extended to three-dimensional �3D� transport in
n-type bulk silicon for application to the shear piezoresis-
tance coefficient as well as the longitudinal and transverse
ones. In this paper, we simulated piezoresistance coefficients
for n-type bulk silicon on the basis of first-principles elec-
tronic band structure in order to discuss the qualitative and
quantitative precision of our procedure and to investigate
physical origins of longitudinal, transverse, and shear pi-
ezoresistivity.

II. METHOD OF CALCULATION

We have carried out first-principles calculations of the
periodic boundary models for single-crystal bulk silicon by
FHI98MD program package,37 based on the density-functional
theory �DFT�.38 For the DFT exchange-correlation interac-
tion, the generalized-gradient approximation �GGA� method
was used with the Perdew-Burke-Ernzerhof �PBE�
functional.39 We adopted three-dimensional supercell ap-
proximation technique with norm-conserving pseudopoten-
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tials prepared according to the Hamann method.40 The cutoff
energy for wave functions of electrons with plane-wave ex-
pansion was set at 40 Ry �544 eV�.

Conventionally, the first-principles calculations of n-type
silicon semiconductors have been carried out with a doping
atom such as phosphorus and arsenic, or an excess electron
per unit cell, but these calculations should lead to an enor-
mous overestimation of carrier concentration N. In this pa-
per, we have calculated the first-principles band structures in
the intrinsic semiconductor state. Treatment of the n-type
semiconductor state will be discussed in Sec. III B.

The bulk silicon model was set as a general diamond-type
primitive unit cell containing two silicon atoms, and we have
optimized the cell parameters. We obtained the optimized
cubic lattice constant of the diamond-type silicon crystal as
a0=5.463 Å at the level of our calculation. In addition, we
have devised the �001�, �110�, and �111� uniaxial tensile
models, and the �001� shear model. The effect of uniaxial
tensile strain on structure with a Poisson’s ratio was repre-
sented by partial optimization with a fixed lattice constant
along the tensile direction with 0.1% tensile strain ��
=0.001�. The effect of shear strain was applied as a 0.1%
in-plane simple shear strain on �001� plane without volume
change. Components of strain tensor �J and calculated Pois-
son’s ratio � for each model were determined as listed in
Table I. Naturally, volume changes in tensile models due to
0.1% tensile strain are less than 0.1%, and the number of fast
Fourier transformation grids in first-principle calculation was
fixed at 30�30�30 for all bulk silicon models. Therefore,
the influence of the volume dependence on band energies can
be almost disregarded.

The procedure to calculate piezoresistance coefficients
follows our previous paper27 for one-dimensional transport

in SiNW models. The essential points of the procedure are
simple and adequate expression of the electronic state in the
doped semiconductor state with a small amount of carrier
occupation and treatment of effective masses in the one-
dimensional style. We have extended the procedure to three-
dimensional transport for applying the bulk silicon models.
Detailed techniques shall be presented in following chapter.

III. RESULTS AND DISCUSSION

A. Deformation potentials for conduction band

First-principles calculated values of conduction-band bot-
tom and valence-band top for each model are tabulated in
Table II. In the conventional deformation-potential theory,
the energy shift �Ec

� of valley � for an arbitrary homoge-
neous deformation has been represented with the strain ten-
sor �J and the deformation-potential constants �d and �u as
follows:2,15,18,19

�Ec
� = ��d1J + �u�a�a���:�J, �1�

where 1J is the unit tensor, a� is a unit vector parallel to the
reciprocal position vector of valley �, and braces � � denote a
dyadic product. �u represents the shift due to a shear defor-
mation along the symmetry axis of the valley, while �d rep-
resents the shift due to a dilatation. The shift in the mean
energy of the conduction-band extrema �Ec

0 is therefore writ-
ten by

�Ec
0 = ��d +

1

3
�u�1J:�J. �2�

The quantity �d+ �1 /3��u is difficult to determine because
the left side of Eq. �2� is derived from absolute band ener-
gies, but the shift in the mean energy gap,

TABLE I. Strain tensors and calculated Poisson’s ratios for bulk silicon models.

Model Strain tensor Poisson’s ratio

�001� tensile

�J= 	− �001�001 0 0

0 − �001�001 0

0 0 �001



�001=0.25

�110� tensile

�J= 	�1 − �110� ��110/2 �1 + �110� ��110/2 0

�1 + �110� ��110/2 �1 − �110� ��110/2 0

0 0 − �110�110



�110=0.29,a �110� =0.02b

�111� tensile

�J= 	�1 − 2�111��111/3 �1 + �111��111/3 �1 + �111��111/3
�1 + �111��111/3 �1 − 2�111��111/3 �1 + �111��111/3
�1 + �111��111/3 �1 + �111��111/3 �1 − 2�111��111/3



�111=0.14

�001� shear

�J= 	 0 �shear/2 0

�shear/2 0 0

0 0 0



a�001� direction.
b�11̄0� direction.
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�Eg
0 = ��d +

1

3
�u − a�1J:�J, �3�

can be easily introduced as a change in relative energies,
where a is the deformation-potential constant for the shift in
the mean energy of the valence-band extrema �Ev

0 as fol-
lows:

�Ev
0 = a1J:�J. �4�

The treatment of the strain Hamiltonian with the valence-
band wave functions from the spin-orbit Hamiltonian shows
that the value of �Ev

0 for three valence-band-top subbands is
independent of the amount of the band split due to spin-orbit
interaction,41,42 so that we have tried to evaluate the quantity
�d+ �1 /3��u−a by use of band energies from regular first-
principles calculations listed in Table II; �d+ �1 /3��u−a
=1.72, 2.18, and 2.07 eV under the �001�, �110�, and �111�
tensile strains, respectively.

Furthermore, �u can be determined from the deviations of
�Ec

� from �Ec
0 due to strain. Under uniaxial strain along

�001� or �110� �i.e., �xx=�yy ��zz�, the deviations are given
from Eqs. �1� and �2� by

�Ec
� − �Ec

0 =
2

3
�u��zz − �xx� =

2

3
�u��zz − �yy� �5�

for the valleys on kz axis and

�Ec
� − �Ec

0 = −
1

3
�u��zz − �xx� = −

1

3
�u��zz − �yy� �6�

for those on kx and ky axes. Uniaxial strain along �111� keeps
band energies of six valleys degenerate. We have calculated
�u from band energies as 8.82 eV for the �001� tensile model
and 8.85 eV for the �110� tensile model, respectively.

Experimental values of �d+ �1 /3��u−a and �u have
been, respectively, reported to be 1.50�0.30 and
8.6�0.4 eV.3 For the quantity �d+ �1 /3��u−a, the calcu-
lated value under the �001� tensile strain is consistent with
the experimental one, but those under the �110� and �111�
tensile strains seem to be overestimated. The reason for over-
estimate is considered that coupling effects between strain
and spin-orbit interaction in the valence-band top have been
perfectly ignored by regular first-principles calculations. On
the contrary, our results of �u give good agreement with the

experimental values. Therefore, it is expected that deforma-
tion of the first-principles conduction band due to strain
should lead to qualitative and quantitative estimates of pi-
ezoresistive properties for n-type bulk silicon.

B. Theory of carrier distribution and transport

In three-dimensional transport model for n-type semicon-
ductor, the electrical resistivity can be generally represented
as a 3�3 tensor in terms of carrier concentration and effec-
tive mass of the conduction band.43 We have introduced the
band carrier densities and their corresponding effective-mass
tensors for each subband in the conduction band, and the

electrical conductivity tensor GJ or the reciprocal matrix of
the resistivity tensor 	J has been added up over all subbands
as follows:

GJ = 	J−1 = e2 �
j�CB

njmJ j
�−1 · 
Jj , �7�

where nj is the jth conduction-band �CB� carrier electron
density, mJ j

� is the effective-mass tensor, 
Jj is the relaxation-
time tensor, and e2 is the square of the absolute value of the
elementary electric charge. The band carrier densities are
controlled by the Fermi energy EF and temperature T,

nj =
2

V
�
k

wk�exp�Ej,k − EF

kBT
� + 1−1

, �8�

where Ej,k is the band energy of the jth subband at the k
point, wk is the k-point weight for k, V is the volume of the
unit cell, and kB is the Boltzmann constant. Due to an appro-
priate EF, a total of conduction-band carrier electron densi-
ties should be equal to a total of valence-band hole densities
in the intrinsic semiconductor state. Actual n-type semicon-
ductors have a small quantity of carrier electrons, which
must be much more than a quantity of holes, and we have
defined the total number of carrier electrons per unit cell as
�,27,28 which is a product of the carrier concentration N mul-
tiplied by the volume V and must be less by a few orders
than 1. Under the condition that a small amount of the carrier
occupation in n-type semiconductor state does not cause sig-
nificant changes in the band structure, � can be given by an
appropriate upward shift in the Fermi energy updated to EF
as follows:

TABLE II. Band energies of conduction-band bottom and valence-band top �in eV�.

Band energies

Bulk silicon models

Strain-free �001� tensile �110� tensile �111� tensile �001� shear

Valleys on kx axis 4.15251 4.14578 4.15106 4.14856 4.15296

Valleys on ky axis 4.15251 4.14578 4.15106 4.14856 4.15296

Valleys on kz axis 4.15251 4.15681 4.14416 4.14856 4.15306

Valence-band top at � pointa 3.54025 �t� 3.53927 �d� 3.54021 3.53750 3.54402

3.53047 3.53268 3.53334 �d� 3.53922

3.53209 3.53776

a�d� and �t�, respectively, denote double and triple degeneracies.
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� = NV = 2 �
j�CB

�
k

wk�exp�Ej,k − EF�

kBT
� + 1−1

, �9�

where the set of �Ej,k� is identical to that in the intrinsic
semiconductor state. We have set � to an appropriate con-
stant less than 10−2, and then EF� in n-type carrier occupations
have been solved according to Eq. �9�.

For the many-valley conduction band of bulk silicon, the
first Brillouin zone �BZ� can be divided into six valley re-
gions �v�� that contain a valley bottom, respectively, as
shown in Fig. 1. Properties on the right hand of Eq. �7� are
replaced by the regional ones as follows:

GJ = 	J−1 = e2 �
j�CB

�
v�

nj,�mJ j,�
�−1 · 
Jj,�, �10�

where the regional carrier electron density in v� can be de-
fined as

nj,� =
2

V
�

k�v�

wk�exp�Ej,k − EF�

kBT
� + 1−1

, �11�

with the updated EF� determined by � in Eq. �9�. Practically,
the summation over all subbands in the conduction band can
be replaced by the summation of only two subbands; the
lowest subband of multivalley �j=MV� and the second low-
est subband minimized at X points, on the boundary of the
first BZ, due to the noncrossing rule �j=NC�.44 As long as

we are aware, there is no previous article with considering
the NC subband for piezoresistive effect of n-type bulk sili-
con. The carrier occupations on the third lowest and higher
subbands can be regarded as zero because they are quite
fewer than that of the NC subband.

The effective mass is generally also given by a 3�3 ten-
sor. The reciprocal effective-mass tensor of the subband j in
v� is defined as45

mJ j,�
�−1 =

1

2R	
�2Ej

�kx
2

�2Ej

�kx � ky

�2Ej

�kx � kz

�2Ej

�ky � kx

�2Ej

�ky
2

�2Ej

�ky � kz

�2Ej

�kz � kx

�2Ej

�kz � ky

�2Ej

�kz
2


RT, �12�

at the k point of band energy minimum in v�, where  is
equal to Planck’s constant divided by 2�, and R is the three-
dimensional rotation matrix from the principal axes of cubic
lattice. For the relaxation times tensor in silicon systems,
strict or complicated formulas have recently been presented
by some research groups.4,20,46–48 In this paper, we have pre-
sented the approximation that all of the band relaxation times
are isotropic and, furthermore, are equal and constant regard-
less of stress. This step seems to be rough to some extent, but
the variation rate of carrier conductivity can be easily and
adequately represented in consideration of the canceling of
almost part of band relaxation times.

For calculations of the Fermi energy shift in Eq. �9� and
the regional electron carrier densities in Eq. �11�, we have
performed a sampling within the first BZ according to the
three-dimensional Gauss-Legendre quadrature. Concretely,
we have carried out the triple-loop adaptation of the Gauss-
Legendre quadrature49 of n=29 in �0,b0� �b0=2� /a0� for an
eighth of the first BZ where kx, ky, and kz are all positive, and
sampling points of the quadrature in the exterior of the first
BZ, i.e., kx+ky +kz� �3 /2�b0, have been omitted. The reason
why we have selected n=29 is that the set of sampling k
points contains very close points to the conduction-band ex-
trema. For other seven eighths of the first BZ, the same
scheme has been applied with a corresponding integral
space. The regional integral of Eq. �11� has been calculated
by use of same sampling points for Eq. �9� in the interior and
boundaries of the valley region. Values of sampling points on
boundary faces or lines have been shared equally with re-
lated regions.

Numerical results of the regional electron carrier densities
nj,� on some conditions for carrier concentration and tem-
perature are displayed in Fig. 2. In the strain-free and �111�
tensile models, carrier electrons are always distributed
equivalently to six regions, so that �nMV,�+nNC,�� /N is equal
to 1/6 for each � regardless of concentration and tempera-
ture. On the contrary, the distributions of carrier electrons in
the �001� and �110� tensile models are uneven, originated
from the band deformation due to strain in Eqs. �5� and �6�.
Occupation ratio nNC,� /N can be regarded as zero in low
temperature, and the summation of occupation ratios on the
NC subband is less than 0.3% even at T=373 K. However,
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FIG. 1. �Color online� Images of the reciprocal space for the
bulk silicon model: �a� the first Brillouin zone and the valley re-
gions �b� v1 for the valley on +kx axis, �c� v3 for the valley on +ky

axis, and �d� v5 for the valley on +kz axis.
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we have judged that a consideration of the NC subband for
analysis of the piezoresistivity is indispensable because the
change in the effective masses for the NC subband due to
strain is incredibly large.

The diagonal elements of the reciprocal effective-mass
tensor in Eq. �12� have been obtained at k j,�

min, the k point of

band-energy minimum, from the second derivative of the
band-energy curve function with respect to the reciprocal
space axes after operation of the rotation matrix R, where the
band-energy curve function was a quartic function derived
by least-squares fitting of band energies with the interval of
0.0005b0 in �kj,�

min−0.025b0 ,kj,�
min+0.025b0�. For j=NC, the
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FIG. 2. Variation of carrier occupation ratios with temperature: �a� nMV,� /N in the strain-free model, �b� nNC,� /N in the strain-free model,
�c� nMV,� /N in the �001� tensile model, �d� nMV,� /N in the �110� tensile model, �e� nMV,� /N in the �111� tensile model, and �f� nMV,� /N in
the �001� shear model. nNC,� /N in the strain and shear models are similar values as that in the strain-free model. �=x means v1 and v2, �=y
means v3 and v4, and �=z means v5 and v6.

SIMULATION OF PIEZORESISTIVITY IN n-TYPE… PHYSICAL REVIEW B 80, 045205 �2009�

045205-5



least-squares fitting has been performed in �kj,�
min

−0.025b0 ,kj,�
min� if the band-energy curve function contains a

singular effect due to the noncrossing rule at k j,�
min.44 These

diagonal elements of the reciprocal effective-mass tensor for
each orientation of coordinate axes are shown in Table III.
The off-diagonal elements can be derived from the diagonal
elements for another orientation with operating a proper ro-
tation matrix. Details will be discussed in Sec. III D.

To summarize, our treatment of carrier distribution and
transport includes some distinguishing characteristics not
seen in earlier methods: arbitrary control of total carrier con-
centration owing to an appropriate shift in the Fermi energy,
finite integral procedure based on the region partitioning of
the first BZ corresponding to the multivalley model, and con-
sideration of the change in the effective masses for the NC

subband. They have supported the quality and quantity of our
simulation.

C. Longitudinal and transverse piezoresistance coefficients

Under the uniaxial tensile stress � along one of the or-
thogonal coordinate axes due to the matrix R, the longitudi-
nal piezoresistance coefficient �l and transverse one �t are,
respectively, defined as

�l =
�	l

	0�
; �t =

�	t

	0�
, �13�

where 	0 is the average value of resistivities along the three
orthogonal coordinate axes, that is, a third of the trace of the

TABLE III. Diagonal elements of reciprocal effective-mass tensors �2Ej /�ki
2 for subband j=MV and NC

for each orientation of coordinate axes �in m0
−1, inverse of electron rest mass�.

j=MV Regions v1 and v2 Regions v3 and v4 Regions v5 and v6

ki Strain-free �001� tensile Strain-free �001� tensile Strain-free �001� tensile

�100� 1.0292 1.0451 5.1140 5.1213 5.1140 5.1132

�010� 5.1140 5.1213 1.0292 1.0451 5.1140 5.1132

�001� 5.1140 5.1192 5.1140 5.1192 1.0292 1.0403

ki Strain-free �110� tensile Strain-free �110� tensile Strain-free �110� tensile

�110� 3.0721 3.0758 3.0721 3.0758 5.1170 5.1630

�001� 5.1140 5.2755 5.1140 5.2755 1.0292 1.0416

�11̄0� 3.0721 3.0798 3.0721 3.0798 5.1170 5.0755

ki Strain-free �111� tensile Strain-free �111� tensile Strain-free �111� tensile

�111� 3.7537 3.7738 3.7537 3.7738 3.7537 3.7738

�11̄0� 3.0721 3.0814 3.0721 3.0814 5.1170 5.0914

�112̄� 4.4326 4.4197 4.4326 4.4197 2.3957 2.4125

j=NC Regions v1 and v2 Regions v3 and v4 Regions v5 and v6

ki Strain-free �001� tensile Strain-free �001� tensile Strain-free �001� tensile

�100� 1.4796 1.4840 4.7415 4.7398 4.7415 4.7451

�010� 4.7415 4.7398 1.4796 1.4840 4.7415 4.7451

�001� 4.7415 4.7350 4.7415 4.7350 1.4796 1.4785

ki Strain-free �110� tensile Strain-free �110� tensile Strain-free �110� tensile

�110� 3.2692 10.3457 3.2692 10.3457 8.6939 0.7815

�001� 4.7415 4.6999 4.7415 4.6999 1.4796 25.5680

�11̄0� 3.2692 10.3689 3.2692 10.3689 8.6939 8.6979

ki Strain-free �111� tensile Strain-free �111� tensile Strain-free �111� tensile

�111� 3.8756 18.9844 3.8756 18.9844 3.8756 18.9844

�11̄0� 3.2692 19.8432 3.2692 19.8432 8.6939 8.7015

�112̄� 4.5395 16.8602 4.5395 16.8602 2.6824 20.0238
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resistivity tensor 	J without stress, and �	l,t are, respectively,
variations in resistivity for parallel and vertical directions to
the uniaxial tensile stress as follows:

�	l,t = 	l,t − 	0 =
1

Gl,t
tensile − 	0, �14�

where Gl,t
tensile are diagonal elements of the conductivity ten-

sor for the tensile model GJ tensile. The uniaxial tensile stress
has been represented by a linear-response approximation ac-
cording to the classical Hooke’s law, �=Y�, with Young’s
modulus Y and tensile strain �. From the viewpoint of strain,
�l and �t are also, respectively, given by

�l =
Kl

Y
; �t =

Kt

Y
, �15�

where Kl,t are the longitudinal and transverse strain gauge
factors defined as

Kl,t =
�	l,t

	0�
. �16�

In this paper, the value of � is 0.001 for all uniaxial tensile
models as mentioned above, and the temperature dependence
of Kl,t has been computed without any empirical parameter
by means of the procedure presented in Sec. III B. On the
contrary, since Young’s modulus originates in properties of
Si-Si bonds, the temperature dependence of Y should be hard
to evaluate exactly unless dynamical analysis such as first-
principles molecular-dynamics calculation has been per-
formed. The temperature dependence of elastic moduli has
already been clarified by use of enormous experimental data,
and we have referred to temperature dependence of the elas-
tic stiffness constants cij�T� of bulk silicon by Varshni’s
formula,50

cij�T� = cij
0 − s/�exp�t/T� − 1� , �17�

where cij
0 =167.5018 GPa, s=5.32972 GPa, and t

=407.0 K for c11�T�; cij
0 =65.0079 GPa, s=2.31036 GPa,

and t=334.8 K for c12�T�; cij
0 =80.0735 GPa, s

=2.24966 GPa, and t=497.4 K for c44�T�, and Young’s
moduli for each orientation can be written by

Y001�T� =
�c11 − c12��c11 + 2c12�

c11 + c12
; �18�

Y110�T� = 2� c11

�c11 − c12��c11 + 2c12�
+

1

2c44
−1

; �19�

Y111�T� = 3� 1

c11 + 2c12
+

1

c44
�−1

. �20�

�l and �t are represented by three primitive piezoresistance
coefficients �11, �12, and �44 in terms of the Euler rotation
as follows:23,24

�l = �11 − 2��11 − �12 − �44��l1
2m1

2 + m1
2n1

2 + n1
2l1

2�; �21�

�t = �12 + ��11 − �12 − �44��l1
2l2

2 + m1
2m2

2 + n1
2n2

2� , �22�

where �l1 ,m1 ,n1� and �l2 ,m2 ,n2� are direction cosines ac-
cording to uniaxial stress and vertical directions, respec-
tively.

We can define the theoretical values of �11 and �12 sim-
ply as the computational values of �l and �t for the �001�
tensile strain, respectively, through Eqs. �21� and �22�. Figure
3 shows �11 and �12 calculated from Eq. �15� with respect to
temperature and carrier concentration, and they give qualita-
tively good agreement with the experimental values.1,5,6 In
particular, our results of �11 are in beautiful agreement with
experimental value by Tufte and Stelzer5 on the order of
1019 cm−3 carrier concentration. The behaviors of �11 and
�12 are clearly reflected by that of the regional electron car-
rier densities in Fig. 2�c�, because the mobilities or the
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FIG. 3. Variation of �11 �closed symbols� and �12 �open sym-
bols� with temperature in n-type silicon derived from the �001�
tensile stress. Additional logarithmic graph shows −�11 with experi-
mental values �double symbols� reported by Tufte and Stelzer. �Ref.
5�
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effective-mass tensors for six valleys hardly change with re-
spect to the �001� uniaxial stress as shown in Table III. To
summarize, �11 and �12 originate from the energy gap be-
tween the valleys of the MV subband, and therefore, they are
vividly dependent on temperature and carrier concentration.

For the �110� tensile model, the computational values of
�l and �t on the �001� plane are displayed in Fig. 4. Both of
�l and �t are obtained as negative values as known experi-
mentally. The computational values of �l and �t on the �112̄�
plane for the �111� tensile model are shown in Fig. 5. The
carrier occupation ratio is independent of the �111� tensile
stress, so that the change in conductivity is perfectly due to
the variations of mobilities for valleys. As a result, both of �l
and �t for the �111� tensile strain are very small, but the
variations of mobilities for the NC subband affect �l and �t
sensitively in high temperature.

D. Shear piezoresistance coefficient

In terms of Eqs. �21� and �22�, the primitive shear pi-
ezoresistance coefficient �44 should be equal to �l−�t for
both the �001� plane of the �110� tensile model and any plane
of the �111� tensile model. Values of �44 calculated from the
�110� and �111� tensile models, respectively, are shown in
Fig. 6. We can reproduce the important experimental result
that �44 should be a negative value.

Furthermore, in this paper, we have tried to calculate the
primitive shear piezoresistance coefficient �44 directly by the
work of shear stress 
. For the �001� shear model along the
principal axes, the shear piezoresistance coefficient �66� ,
which is equal to �44, is defined as

�66� =
�	6

	0

, �23�

where �	6 is a variation in 	xy, the off-diagonal element of
the resistivity tensor 	J corresponding to the plane affected by


. Similarly as �l and �t, the gauge factor expression has
been introduced for �44 by

�44 =
Kshear

c44
�24�

with the classical Hooke’s law 
=c44�, where the shear
gauge factor
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Kshear =
�	6

	0�
�25�

has been computed without any empirical parameter with
shear strain �=0.001. �	6 can be represented with compo-
nents of the conductivity tensor for the �001� shear model

GJ shear as follows:

�	6 = −
Gxy

shear

Gxx
shearGyy

shear − �Gxy
shear�2 . �26�

According to Eqs. �10� and �12�, Gxy
shear is derived from the

nondiagonal element of the reciprocal effective-mass tensor,
where the second derivative of the band-energy �2Ej /�kx�ky
can be written by

�2Ej

�kx � ky
=

1

2
� �2Ej

�ku
2 −

�2Ej

�kv
2 � �27�

with ku=2−1/2�kx+ky� and ku=2−1/2�kx−ky�. The second de-
rivatives with respect to ku and kv were, respectively, calcu-
lated from quartic functions by least-squares fitting men-
tioned above. The values of elements of the reciprocal
effective-mass tensor in the �001� shear model are tabulated
in Table IV.

The temperature dependence of c44 has been adopted from
Eq. �17�, and then, �44 in Eq. �24� with respect to tempera-
ture and carrier concentration are shown in Fig. 7. At the
room temperature T=300 K, we have obtained �44 in the
range of −4.3�10−11 Pa−1 �N=1�1020 cm−3� to −4.5
�10−11 Pa−1 �N=1�1018 cm−3�. The primitive shear pi-
ezoresistance coefficient �44 due to the direct �66� calculation
hardly dependent on temperature and concentration, and al-
most accords with �44s from the �110� and �111� tensile
models shown in Fig. 6. The effect of the NC subband in
high temperature observed in Fig. 5 is almost vanished.

As listed in Table IV, we have found that the effect of
�001� shear strain on the band-energy surface of the MV and
NC subbands is localized at the valleys on kz axis in v5 and
v6 regions. The distortion of isoenergy ellipsoids in the vi-
cinity of the valleys of the conduction band due to the shear
strain has been discussed before.25,26 We shall clarify the
behavior of band-energy surface around the valleys on kz
axis due to the �001� shear strain. We cannot apparently rec-
ognize the distortion of band-energy surface of EMV�k� due
to the shear strain as shown in Fig. 8�a�, but the difference of
the band energy between the strain-free and �001� shear
models shown in Fig. 8�b� gives contours like simple hyper-
bolas, kx�ky�=const, where kx�=kx−kx

min and ky�=ky −ky
min. This

contour plot is in accord with the suggestion by Kanda and
Suzuki that the band energy in the vicinity of kmin��kMV,5

min �
can be written with strain �xy as25,26

EMV�k� =
2�kx�

2 + ky�
2�

2m�

+ A2�xykx�ky� +
2�kz − kz

min�2

2m�

�28�

where m� and m� are diagonal elements of effective-mass
tensor, and A is a proper constant. The local curvature
�1 /2��2EMV /�kr

2 of the MV band-energy surface at
k�kr ,��= �kx� ,ky� ,kz

min�= �kr cos � ,kr sin � ,kz
min� in v5 is sim-

ply given by 1 /m�+A2�xy sin 2� for EMV�k� written by Eq.
�28�, that is, it is a constant when �xy =0.

However, isoenergy surfaces for the MV subband in the
vicinity of each valley are not simple ellipsoids even in the
strain-free model. Figures 8�c� and 8�d�, respectively, show
the local curvature for the strain-free model and the �001�
shear model. The local curvature is almost constant along the
parallel direction to kx and ky axes, but it is reduced along the

TABLE IV. Diagonal and nondiagonal elements of reciprocal
effective-mass tensors for subband j=MV and NC in the �001�
shear model �in m0

−1, inverse of electron rest mass�.

j=MV v1 and v2 v3 and v4 v5 and v6

�2EMV /�kx
2 1.0398 5.1158 5.1180

�2EMV /�ky
2 5.1158 1.0398 5.1180

�2EMV /�ku
2 3.0775 3.0775 5.1598

�2EMV /�kv
2 3.0771 3.0771 5.0777

�2EMV /�kxky 0.0002 0.0002 0.0411

j=NC v1 and v2 v3 and v4 v5 and v6

�2ENC /�kx
2 8.5294 4.7437 4.7493

�2ENC /�ky
2 4.7437 8.5294 4.7493

�2ENC /�ku
2 10.9455 10.9455 0.7817

�2ENC /�kv
2 11.0094 11.0094 8.7074

�2ENC /�kxky −0.0319 −0.0319 3.9628
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n-type silicon derived from the �001� shear stress.
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oblique direction as being off kmin. In the �001� shear model,
it seems that the degree of this deviation from a simple el-
lipsoid along the oblique direction is affected by the shear
strain, and as a result, contours like kx�ky�=const are observed
in the difference of the band energy between the strain-free
and �001� shear models as shown in Fig. 8�b�.

IV. CONCLUSION

We have simulated the piezoresistance coefficients in
n-type single-crystal bulk silicon on the basis of first-
principles electronic band structure. The conduction-band

diagram by our calculations of the primitive unit cell with
two silicon atoms for bulk silicon gives appropriate deforma-
tion potentials for tensile strains, leading to qualitative and
quantitative estimates of piezoresistive properties for n-type
bulk silicon. The n-type semiconductor state has been repre-
sented by an appropriate upward shift in the Fermi energy in
the intrinsic semiconductor state, and the carrier conductivity
has been calculated using band carrier densities and their
corresponding effective-mass tensors derived from the first-
principles band diagram. Our simple procedure to calculate
the piezoresistance coefficients for a small carrier concentra-
tion is valid qualitatively and quantitatively for electron
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�0.05b0 square and the map center of each map is �kx
min,ky

min�.

NAKAMURA et al. PHYSICAL REVIEW B 80, 045205 �2009�

045205-10



transport in the multivalley conduction-band structure of
n-type bulk silicon; �11 and �12 originate from the energy
gap between the valleys, whereas �44 arises from a distortion
of the deviation from isoenergy ellipsoids in the valleys of
the conduction band, and can be presented clearly as a nega-
tive constant. The distinction between the origins of longitu-
dinal, transverse, and shear piezoresistivity can be followed
as a dependence on a carrier concentration or temperature. It
is expected that the procedure to calculate the piezoresistance

coefficients in this paper can be applied to other semiconduc-
tor systems.
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