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Sample-to-sample fluctuations of the time-dependent conductance of a system with static disorder have
been studied by means of diagrammatic theory and microwave-pulsed transmission measurements. The fluc-
tuations of time-dependent conductance are not universal, i.e., depend on sample parameters, in contrast to
the universal conductance fluctuations in the steady-state regime. The variance of normalized conductance,
determined by the infinite-range intensity correlation C3�t�, is found to increase as a third power of delay time
from an exciting pulse, t. C3�t� grows larger than the long-range intensity correlation C2�t� after a time
tq���g�tD �tD being the diffusion time and �g� being the average dimensionless conductance�.
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I. INTRODUCTION

The ability of a conductor to carry electric current is char-
acterized by its conductance G equal to the ratio of the cur-
rent carried through to the voltage across the conductor. G is
finite because of scattering on impurities and lattice defects,
which prevents the electrons from propagating ballistically,
along straight lines, transforming their trajectories into ran-
dom walks with a step size �. The conductance G depends on
the exact configuration of impurities inside the conductor.
The ensemble average of the conductance, �G�, can be ex-
pressed as �G�= �e2 /h��g�, where � . . . � represents the average
over an ensemble of random impurity configurations, g is the
dimensionless conductance, e is the electron charge, and h is
the Planck constant. Deviations of conductance from its av-
erage value, �G=G− �G�, arise from the interference of elec-
tronic wave functions and, for this reason, are only important
in the mesoscopic regime, i.e., when the electronic wave
function is phase coherent. A prominent feature of electronic
transport in mesoscopic systems is the universal conductance
fluctuations �UCF�, ��G2���e2 /h�2, for any metal, indepen-
dent of sample size or disorder strength.1–3 The UCF can be
expressed in terms of g as ��g2��1.

There is a remarkable analogy between electronic trans-
port in mesoscopic systems and wave propagation in random
media.4–6 The dimensionless conductance g can be defined
for classical waves as the transmittance T, that is, the sum
over transmission coefficients Tab from an incident mode a
to an outgoing mode b, at a given frequency �, g�T
=�abTab. Here the modes a and b correspond to transverse
eigenmodes of the empty waveguide and form a complete set
of basis functions, sufficient to represent any wave field en-
tering or leaving the waveguide. A given mode a is charac-
terized by a transverse wave vector qa. The statement of
UCF is then equivalent to �aba�b���Tab�Ta�b���1. The origin
of UCF can be traced to correlations of transmission coeffi-
cients Tab of a random sample. Feng et al.3 have expressed
the intensity correlation function, Caba�b�= ��Tab�Ta�b��, as a
series using 1 / �g� as the expansion parameter, Caba�b�=C1
+C2+C3. C1��Tab�2 is the largest contribution to Caba�b�
but it is different from zero only when �qa=�qb, where

�qa=qa−qa� and similarly for �qb. It is therefore “short
range” in both �qa �at a given �qb� and �qb �at a given
�qa�. Its contribution to �aba�b���Tab�Ta�b�� is negligible.
C2��Tab�2 / �g� is �g� times smaller but it decays only alge-
braically with �qa and �qb. For this reason, C2 is often
referred to as a “long-range” correlation function. Its contri-
bution to ��T2� is still much less than unity. It is C3
��Tab�2 / �g�2—the smallest of the three correlation functions
and independent of a, a�, b, and b�—that explains UCF,
var�T���aba�b�C3�1. Because C3 does not decay neither
with �qa nor with �qb, it is referred to as an “infinite-range”
correlation function.

UCF have been extensively studied in mesoscopic sys-
tems both experimentally2 and theoretically3 �see Refs. 1 and
5 for reviews�. They have also been demonstrated in random
media, with light7 and microwaves,8 through the observation
of the infinite-range �C3� intensity correlation. However, all
studies of UCF yet conducted have only concerned the
steady-state conductance. In this paper, we study fluctuations
of the time-dependent conductance of a disordered system by
means of diagrammatic theory and microwave-pulsed trans-
mission measurements. We show that the universality of con-
ductance fluctuations is lost in the dynamic experiment; the
fluctuations depend on the length of the sample and the
mean-free path �. The variance of normalized transmittance
is observed to increase as a third power of delay time from
an exciting pulse. A comparative analysis of the underlying
mesoscopic correlations allows us to identify a characteristic
time scale tq=��g�tD, tD being the diffusion time, at which
C3�t� grows larger than C2�t�.

II. THEORY

In order to study the dynamic conductance fluctuations,
we consider a pulsed wave propagating through a quasi-one-
dimensional waveguide with static disorder, of cross section
A and length L��, parallel to the z axis. This geometry also
corresponds to the theoretical model of a disordered mesos-
copic conductor. A pulsed excitation �0�t� at a point �0 on
the input surface Ain of the waveguide �z=0� results in a
complex intensity distribution I�� , t ;�0� at the output surface
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Aout of the waveguide �z=L�. To avoid confusion, we ac-
knowledge the source position �0 as an explicit argument of
I. With a proper normalization of �0�t�, the transmittance
T�t� is given by

T�t� = �
Aout

d2��
Ain

d2�0I��,t;�0� , �1�

and its variance is

��T�t�2� = �
Aout

d2��
Ain

d2�0�
Aout

d2��

��
Ain

d2�0�C��,�0;��,�0�;t� , �2�

where C�� ,�0 ;�� ,�0� ; t�= ��I�� , t ;�0��I��� , t ;�0��� is the
time-dependent spatial correlation function of the intensity
fluctuations, �I�� , t ;�0�= I�� , t ;�0�− �I�� , t ;�0��.

In order to calculate C, we express the transmitted field
��t� at a point r= 	� ,L
 in terms of the exciting field �0�t�� at
r0= 	�0 ,0
 with the help of the Green’s function G of Helm-
holtz equation,

��r,t;r0� = �
−	

t

dt�G�r,t;r0,t���0�t�� . �3�

Using the definition of intensity, I�� , t ;�0�����r , t ;r0��2, we
obtain

C��,�0;��,�0�;t� = �
−	

t

�
i=1

4

dtiK�r,r0,r�,r0�;t,	ti
�

��0�t1��0
��t2��0�t3��0

��t4� , �4�

where the kernel K is given by the connected part of a prod-
uct of four Green’s functions, averaged over disorder,

K = �G�r,t;r0,t1�G��r,t;r0,t2�G�r�,t;r0�,t3�G��r�,t;r0�,t4��

− �G�r,t;r0,t1�G��r,t;r0,t2��

� �G�r�,t;r0�,t3�G��r�,t;r0�,t4�� . �5�

It is important to note that K can be written in the Fourier
space as a correlation function of G’s at four different fre-
quencies. As a consequence, our calculation does not reduce
to that of Ref. 6 where the correlation function of steady-
state conductances at two different frequencies was studied.
Among many diagrams contributing to K we are interested in
those which do not vanish when both ��−��� and ��0−�0��

exceed 
0, the wavelength in the medium at the carrier fre-
quency �0. For a waveguide with a large number of trans-
verse channels, N�1, such diagrams give the leading-order
contribution to ��T�t�2�. Similar to the steady-state case,1,3,5

the diagrams of interest contain two pairs of Green’s func-
tions forming two ladders and exchanging partners twice on
the way from r0 and r0� to r and r�. We have identified four
such diagrams, two of them are shown in Fig. 1. They are
similar to those encountered in the steady-state case1,3,5 but
include time-dependent Green’s functions.

When the diagrams for K are calculated, they are substi-
tuted into Eq. �4�, which is used to calculate ��T�t�2�. At this
point it is necessary to assume a specific shape of the pulsed
excitation. Here we consider a Gaussian pulse, ��0�t��2
�exp�−t2 / tp

2� and study the variance of the normalized trans-
mittance s�t��T�t� / �T�t��,

var
s�t�� =
��T�t�2�
�T�t��2 , �6�

for various pulse durations tp �Ref. 11�.
For pulse duration tp significantly greater than the diffu-

sion time, tp� tD= �L+2z0�2 /�2D, where D is the diffusion
coefficient, z0�� is the extrapolation length, and for short-
time delays from the center of the exciting pulse, t� tp, we
recover the steady-state result, var
s�t��=2 /15�g�2. A particu-
larly simple result is obtained for short pulses, tp� tD, and
long-time delays, t� tD, when the average transmittance
takes the form �T�t��
exp�−t / tD�. Only the diagrams of Fig.
1 contribute to var
s�t�� in the leading order in tp / tD. Keep-
ing only terms that do not decay exponentially with t / tD, we
obtain

var
s�t�� =
2

15�g�2 �
5�2

�3��

tp

tD
� t

tD
�3

. �7�

This result is independent of absorption if the pulse duration
tp is much less than the absorption time ta, tp� ta. This con-
dition can be readily met in practice, opening interesting per-
spectives for probing scattering parameters of random media
without necessarily knowing absorption inside the medium.
For long pulses, tp� tD, all the four above-mentioned dia-
grams contribute to ��T�t�2�. At long times t� tp, var
s�t��
then takes the form of a cubic polynomial with the same
coefficient in front of t3 as in Eq. �7� and coefficients in front
of lower powers of t that have to be calculated numerically
and will be presented elsewhere.

FIG. 1. Two of the four diagrams contributing to the kernel K of Eq. �5�. The solid and dashed lines represent the Green’s function G and
its complex conjugate G�, respectively. Dotted lines denote scattering events. H is the Hikami box �Refs. 9 and 10�, which describes an
exchange of partners between four Green’s functions.
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To derive Eq. �7�, we explicitly made use of the exponen-
tial decay of the average transmittance with time, �T�t��

exp�−t / tD� for t� tD. Meanwhile, it is known that �T�t��
exhibits deviations from a simple exponential at long times
t� tq=��g�tD �weak localization corrections, see Refs.
12–14�. However, these deviations are of order 1 / �g� for
�g��1 and, therefore, taking them into account would yield
corrections only of order 1 / �g�3 or higher in Eq. �7�. In the
present paper, we restrict ourselves to the calculation of
var
s�t�� in the leading order in 1 / �g��1 and hence drop all
higher-order terms. In addition, var
s�t��= ��T�t�2� / �T�t��2

and corrections of similar type exist for the numerator
��T�t�2� as well as for the denominator �T�t��2 of this ratio,
leading to a nonexponential decay of both of them with time.
As a result, a partial cancellation of these corrections might
be expected in the final result.

As is evident from Eq. �7�, the fluctuations of the time-
dependent conductance are not universal, in contrast to the
steady-state case. They explicitly depend on the mean-free
path, sample length, and other parameters of the disordered
sample. According to Eq. �7�, at long times var
s�t�� can
reach values well in excess of the steady-state result var�s�
=2 /15�g�2. Other consequences of Eq. �7� are the cubic
growth of conductance fluctuations with time and their direct
proportionality to the pulse duration tp, implying that T�t� is
a self-averaging quantity in the limit of tp→0.

III. EXPERIMENTAL SETUP AND SAMPLE
CHARACTERIZATION

Because the measurement of transmittance T requires the
summation of Tab over all incoming and outgoing modes �or,
equivalently, integration over input and output surfaces of
the waveguide�, it represents a real challenge. In our micro-
wave experiment, we make use of the relation between fluc-
tuations of T and the intensity correlation function C3 dis-
cussed in Sec. I. Because for vector waves, the notion of
“mode” includes the polarization state as well, it is easy to
show that if ea�ea� and eb�eb�, the only contribution to the
correlation function ��Tab�Ta�b�� comes from C3 term,8

��Tab�t��Ta�b��t��=C3�t�. Here ea is the unit vector describ-
ing the linear polarization state of the mode a. A link be-
tween var
s�t�� and C3�t� is then readily found, var
s�t��
=C3�t� / �Tab�t��2. Vector nature of electromagnetic waves
leads to doubling of the number of transverse channels N as
compared to the scalar case and hence to doubling of �g� in
Eq. �7�.

Measurements of the correlation function of transmission
coefficients ��Tab�t��Ta�b��t�� for ea�ea� and eb�eb� have
been made for microwave radiation transmitted through ran-
dom mixtures of alumina spheres. Alumina spheres with di-
ameter 0.64 cm and index of refraction 3.14 are embedded
within Styrofoam shells to produce a sample with alumina
volume fraction 0.03. The sample is contained within a cop-
per tube with diameter of 4.4 cm and plastic end pieces.
Linearly polarized microwave radiation is launched and de-
tected by conical horns placed 20 cm in front of and behind
the sample, as shown in Fig. 2. Microwave field spectra are
taken for cross-polarization orientations of both the source

and the detector for 15 000 configurations produced by
briefly rotating the tube, in samples of length 61, 76.2, and
91.4 cm. Measurements are made over the frequency range
18.7–19.7 GHz, away from sphere resonances and far from
the localization threshold. At 19.2 GHz, the number of trans-
verse channels is N=54, with the effective refractive index of
the sample, neff=1.175. The transport mean-free path esti-
mated from Mie theory is �=3.76 cm, giving �g�
=4N� /3�L+2z0��4.10, 3.33, and 2.81 for L=61, 76.2, and
91.4 cm, respectively �we set z0=2� /3�. The temporal re-
sponse to a Gaussian pulse of width tp peaked at t=0 is
obtained by taking the Fourier transform of the field spec-
trum multiplied by a Gaussian envelope of width �2�tp�−1

centered at �0=19.2 GHz. The field of the time response is
squared to give the transmitted intensity I�t�.

It is worthwhile to note that our experimental setup is
similar to that of Ref. 15, except that the cross-polarized
source and detector horns select the C3 correlation function
whereas the measurements of Ref. 15 were dominated by C1
and C2. Indeed, one can define three distinct transmission
quantities: intensity transmission coefficient Tab, total trans-
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FIG. 3. �Color online�. Time-dependent average transmission
coefficient �in arbitrary units� of disordered microwave waveguides
of three different lengths L=61, 76.2, and 91.4 cm �solid lines�.
Polarizations of incident and detected modes a and b do not have
any importance for this measurement because multiply scattered
waves are completely depolarized. Dashed lines are theoretical fits
to the data at short times �up to twice the peak arrival time� using
diffusion approximation �Ref. 17�. Diffusion times tD extracted
from the fits are tD=17.5, 27.3, and 39.6 ns, respectively.

FIG. 2. �Color online�. Drawing of the experimental setup. Two
microwave horns, S �source� and D �detector�, are positioned in
front of and behind the random sample. The polarizations of the
incident and detected waves can be changed by rotating the horns
about their axes �z axis�.
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mission Ta=�bTab, and transmittance T=�abTab. Fluctua-
tions of Tab are described by C1 correlation function whereas
C2 and C3 govern fluctuations of Ta and T, respectively.1,5

Fluctuations of Tab and Ta were studied in Ref. 15 whereas
the focus of the present paper is on fluctuations of T. It is
important to understand that because Ta is obtained from Tab
by summing only over outgoing modes b whereas T includes
the summation over incoming modes a as well, fluctuations
of Ta and T are dominated by different scattering processes.

To characterize our samples, we first estimate the absorp-
tion time ta. To this end, we measure the decay rate of trans-
mission in a sample of length L=25.4 cm with copper end
caps, weakly coupled to the measurement port �see Ref. 16
for details of this measurement�. We obtain ta=39.7 ns. We
then study the average transmission coefficient �Tab�t��. A fit
of diffusion theory17 to �Tab�t�� at short times �up to twice
the peak arrival time of the pulse� yields diffusion times tD

=17.5, 27.3, and 39.6 ns for samples of lengths 61, 76.2, and
91.4 cm, respectively �see Fig. 3�. The fits in Fig. 3 exhibit
notable deviations from the data at long times. This is ex-
pected from the previous work12–14 and is due to weak local-
ization effects in our strongly disordered samples �see dis-
cussion in Sec. II�.

IV. RESULTS AND DISCUSSION

The variance of normalized transmittance, var
s�t��, for
the pulse durations tp=0.9, 1.2, and 1.8 ns for each of the
samples studied is shown in Fig. 4. The experimental data
are fit with Eq. �7� using �g� as the only fitting parameter and
imposing that �g� is the same for the three pulse durations for
given L. The values of �g� found from the fit are 4.17, 3.21,
and 1.85 for samples of lengths 61, 76.2, and 91.4 cm, re-
spectively. These values differ slightly from the estimates,
except for the longest sample. Going beyond the “two
H-box” diagrams of Fig. 1 
and hence, including higher-
order terms in 1 / �g� in Eq. �7�� is necessary for a better
quantitative agreement with the data for samples with small
values of �g�.

To demonstrate that Eq. �7� correctly captures the key
scaling properties of var
s�t�� for t� tD, we introduce the
dimensionless time �= t / tD and the normalized pulse dura-
tion �p= tp / tD, and plot var
s�t�� /�p versus � for L=61 cm in
Fig. 5. The three curves corresponding to the three different
pulse durations fall on a single curve, demonstrating
var
s�t��
�p. The same data plotted on a log-log scale �inset
of Fig. 5� show that var
s�t��
�3. Thus, var
s�t��
�p�3, as
predicted by Eq. �7�.

The power-law growth of var
s�t�� with time can be quali-
tatively understood from the following reasoning. In the path
picture of wave propagation and according to the diagrams
of Fig. 1, the value of var
s�t�� is proportional to the prob-
ability for two wave paths of length ct to cross twice inside
the sample. The probability of a single crossing is p�t�
�ct /NL.1,18 The probability that the two paths cross first
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FIG. 4. �Color online�. Variance of normalized transmittance,
var
s�t��, in samples of three different lengths L for three different
pulse durations tp �curves in the same order for the three panels�.
The diffusion time tD extracted from the fit of diffusion theory to
the average transmission coefficient �Tab�t�� �see Fig. 3� is provided
for each sample. Smooth lines plotted through the data points are
the fitting curves of Eq. �7� with �a� �g�=4.17, �b� 3.21, and �c�
1.85. Only the data for t�3tD were used for the fitting.
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FIG. 5. �Color online�. Scaling properties of var
s�t��
�p�3,
with �p= tp / tD and �= t / tD, at long times, t� tD, are demonstrated
with the data for L=61 cm and tp’s as in Fig. 4�a�. The theoretical
�smooth� curve is for �g�=4.17. The inset shows the same plot on a
log-log scale.
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during the time interval �0, t�� and then a second time during
the time interval �t� , t� is p�t��p�t− t��. Var
s�t��
 t3 / �g�2 is
obtained by integrating over t� from 0 to t.

Keeping in mind the relation between var
s�t�� and C3�t�,
we can use Eq. �7� to compare C3�t� with the long-range
intensity correlation function C2�t�
 �1 / �g���tp / tD��t / tD�,
previously studied in Ref. 18. Such a comparison suggests an
important time scale, tq=��g�tD, intermediate between the
Thouless time tTh� tD and the Heisenberg time tH��g�tD.
This time scale appeared previously in the context of weak
localization in classically chaotic19 and disordered13,20 sys-
tems but its role in the analysis of fluctuations of transport
properties has never been identified. Because for short pulses
in the long-time limit we can write C2�t���tp / tq��t / tq� and
C3�t���tp / tq��t / tq�3, the formally next-order contribution �in
1 / �g� expansion� to the intensity correlation function, C3�t�
becomes larger than C2�t� when t� tq. Even though this
might indicate that some new physics come into play at such
long times, var
s�t�� of Eq. �7� agrees well with the experi-
mental data for t� tq, and even for t� tH, when the discrete
mode structure of the disordered sample is expected to play a
role.20

V. CONCLUSION

In conclusion, we presented a theoretical and experimen-
tal study of fluctuations of the dynamic conductance, de-
scribing the response of a system with static disorder to a
pulsed excitation. The variance of normalized conductance is
not universal and increases with delay time from an exciting
pulse, t, reaching values well in excess of the steady-state
variance. A comparative analysis of the underlying mesos-
copic correlations C3�t� and C2�t� allowed us to identify a
characteristic time scale tq, being intermediate between the
Thouless and Heisenberg times, and to explain its role in
dynamic statistics of transport. Our results apply to both
electronic transport in mesoscopic systems and wave propa-
gation in random media.
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