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We develop a theory of tunneling spectroscopy of interacting electrons in a nonequilibrium quantum wire
coupled to reservoirs. The problem is modeled as an out-of-equilibrium Luttinger liquid with spatially depen-
dent interaction. The interaction leads to the renormalization of the tunneling density of states, as well as to the
redistribution of electrons over energies. Energy relaxation is controlled by plasmon scattering at the bound-
aries between regions with different interaction strengths and affects the distribution function of electrons in
the wire as well as that of electrons emitted from the interacting regions into noninteracting electrodes.
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I. INTRODUCTION

One-dimensional �1D� interacting fermionic systems
show remarkable physical properties and are promising ele-
ments for future nanoelectronics. The electron-electron inter-
action manifests itself in a particularly dramatic way in 1D
systems, inducing a strongly correlated electronic state—
Luttinger liquid �LL�.1–4 A paradigmatic experimental real-
ization of quantum wires is carbon nanotubes;5 for a recent
review see Ref. 6. Further realizations encompass semicon-
ductor,7 metallic,8 and polymer nanowires,9 as well as quan-
tum-Hall edges.10

There is currently a growing interest in nonequilibrium
phenomena on nanoscales. A tunneling spectroscopy �TS�
technique for nonequilibrium nanostructures was developed
in Ref. 11. Employing a superconducting tunneling electrode
allows one to explore not only the tunneling density of states
�TDOS� but also the energy distribution function. The energy
relaxation found in this way provides information about in-
elastic scattering in the system. In a very recent experiment12

this TS method was applied to a carbon nanotube under
strongly nonequilibrium conditions.

In this paper, we develop a theory of TS of a LL out of
equilibrium. Specifically, we consider a LL conductor con-
nected, via noninteracting leads, to reservoirs with different
electrochemical potentials, �L−�R=eV, and different tem-
peratures, TL, TR �where the indices L, R stand for left and
right movers�. It is assumed that the coupling to the leads is
adiabatic on the scale of the Fermi wavelength so that no
backscattering of electrons takes place. We model the leads
as noninteracting 1D wires,13–15 so that the electron-electron
interaction is turned on at the vicinity of the points x
= �L /2 �see Fig. 1�. This model is quite generic to properly
describe the problem at hand, independent of the actual ge-
ometry of the leads. Note also that the 1D setup with
strongly nonuniform interaction may be experimentally real-
ized by using external screening gates.

It is known that energy relaxation is absent in a uniform
clean LL. Within the golden-rule framework, the lack of en-
ergy relaxation for forward scattering processes results from

1D kinematic constraints that do not allow to satisfy the
energy and momentum conservation laws simultaneously.16

On a more formal level, the conservation of energies of in-
dividual particles in a spatially uniform LL is protected by
the integrability of the system, which implies an infinite
number of conservation laws.17 Inclusion of spatial depen-
dence into the model violates these laws and leads to energy
relaxation that takes place at the regions where the interac-
tion varies in space.18

The fact that inhomogeneous interaction induces energy
relaxation of electrons has been pointed out for the first time
in Ref. 19 in the context of interacting quantum-Hall edges
but a detailed analysis of this effect has been missing until
now. On the other hand, one may expect this to be a domi-
nant effect on the electron distribution function in experi-
ments done on modern high-quality quantum wires �such as
ultraclean carbon nanotubes20� under nonequilibrium condi-
tions. There is thus a clear need in the theory of TS in non-
equilibrium LL.

It is worth noting that we assume the absence of back-
scattering due to impurities in the wire. When present, such
impurities strongly affect the electronic properties of a LL
wire: they induce diffusive dynamics at sufficiently high
temperature T and localization phenomena proliferating with
lowering T �Refs. 21–23�, as well as inelastic processes.24,25

We also neglect the nonlinearity of the electron dispersion

eV/2

TR LT

K=1 K(x)

−L/2 L/2
X

II IIII

LL
eV/2µ+ µ−

FIG. 1. �Color online� Schematic view of a LL conductor with
various positions of tunnel probes. The solid curve in the lower part
of the figure shows a spatially dependent LL interaction parameter
K�x�. The dashed line corresponds to the limit of a sharp variation
in K�x� at the boundaries.
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whose influence on spectral and kinetic properties of 1D
electrons was recently studied in Refs. 16 and 26.

II. FORMALISM

Within the LL model, the electron field is decoupled in a
sum of right- and left-moving terms, ��x , t�=�R�x , t�eipFx

+�L�x , t�e−ipFx, where pF is the Fermi momentum. The
Hamiltonian of the system reads

H = H0 + Hint, �1�

H0 = − iv� dx��R
†�x�R − �L

†�x�L� , �2�

Hint =
1

2
� dxg�x���R

†�R + �L
†�L�2, �3�

where v is the electron velocity and g�x� is the spatially
dependent electron-electron interaction constant.

We will proceed by following the lines of the functional
bosonization approach27 in the nonequilibrium �Keldysh�
formulation.24,28,29 Performing the Hubbard-Stratonovich
transformation, one decouples the interaction term via a
bosonic field � and gets the action

S��,�� = i �
�=R,L

��
†��� − ���� −

1

2
�g−1� , �4�

where �R,L=�t�v�x and the fields are defined on the Keldysh
time contour. The information about physical observables is
contained in Keldysh Green’s functions30 G� and G�; see, in
particular, Appendix A where we express tunneling current
in terms of functions G	 and discuss how its measurement
allows one to determine G	 experimentally. The Green’s
functions G	 can be presented in the form

G�
	�x,t;x�,t�� =� D�Z���e−�i/2��g−1�


 G�
	����x,t;x�,t�� , �5�

where we introduced the Green’s function in a given field
configuration, G�

	���, and the sum of vacuum loops, Z���.
In 1D geometry the coupling between the fermionic and

bosonic fields can be eliminated by a gauge transformation
���x , t�→���x , t�ei���x,t� if we require

i���� = � . �6�

As a result, G�
	��� can be cast in the form

G�
	����x,t;x�,t�� = G�,0

	 �x − x�;t − t��e−i�eV�t−t��/2


 e��
	�x,t;x�,t��. �7�

Here

��
	�x,t;x�,t�� = i��,��x,t� − i�
,��x�,t�� , �8�

G�,0
	 is the Green’s function of free fermions,

G�,0
	 ��� =

T�

2v

1

sinh �T����� � i0�
, �9�

the coordinate �R/L=x /v
 t labels the trajectory of a particle,
and we use the convention that in formulas � should be
understood as �= �1 for right- and left-moving electrons.

It is convenient to perform a rotation in Keldysh space,
thus decomposing fields into classical and quantum compo-
nents, �1 ,�2= ��+��−� /�2, where the indices + and − refer
to the fields on two branches of the Keldysh contour. Further,
we introduce vector notations by combining �1 and �2 in a
two-vector �. To proceed further, we resolve Eq. �6� and
express �� through � as

�� = G�0�1� , �10�

where G�0 is the Green’s function of free bosons,

G�0 = �G�0
K G�0

r

G�0
a 0

	 . �11�

Its retarded and advanced components are given by

G�0
r,a =

1

� − �vq � i0
. �12�

The Keldysh component of G�0 is given by G�0
K = �G�0

r

−G�0
a �B�

�0����, where B�
�0���� is determined by the tempera-

ture T� of the reservoir from which the electrons moving in
direction � emerge,

B�
�0���� = coth �/2T�. �13�

Using Eqs. �8� and �10� and performing a transformation to
the coordinate space, we express the exponent
��

	����x , t ,x� , t�� through the bosonic field ��y�,

��
	����x,t,x�,t�� =� d�

2�
dy�−�

T �y�J�,�
	 �y ;x,t,x�,t�� .

�14�

The components of J are found as

J1,�,�
	 �y� =

ei���/v�y

�2v

����x − y��e−i��� − ����x� − y��e−i����� ,

J2,�,�
	 �y� = −

ei���/v�y

�2v
�ei��� − ei�����B�

�0����



ei���/v�y

�2v

����y − x��e−i��� + ����y − x���e−i����� ,

�15�

where ��x� is the Heaviside � function. The vacuum loop
factor in Eq. �5� is given by

Z��� = exp�−
i

2
�T��	 , �16�

where � is the polarization operator,
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� = � 0 �a

�r �K 	 .

It can be decomposed into left- and right-moving parts, �
=�R+�L, with

�R,L
r =

1

2�

q

vFq 
 �+
, �R,L

a =
1

2�

q

vFq 
 �−
,

��
K = ���

r − ��
a�B�

�0���� , �17�

where ��=�� i0. Performing the averaging over the auxil-
iary field �, we get

G�
	�x,t;x�,t�� = G�,0

	 ��� − ����e−i�eV�t−t��/2eF�
	

, �18�

where the effect of the interaction is represented by the

“Debye-Waller factor” eF�
	

with

F�
	�x,t;x�,t�� = −

i

2
� d�

2�
dy1dy2


 J−�,�
	,T �y1�V��y1,y2�J�,�

	 �y2� . �19�

Here

V = �� + g−1�1�−1 �20�

is the screened electron-electron interaction potential. Its re-
tarded component is given by

V�
r �y,y�� = g�y����y − y�� +

vg�y��
�

�y�y�G�
r �y,y��
 ,

�21�

where the function G�
r is determined by the following differ-

ential equation:

��2 + �yu
2�y��y�G�

r �y,y�� = ��y − y�� , �22�

which describes the plasmon propagation in a medium with
spatially dependent sound velocity u�x�=v�1+g�x� /�v�1/2.
The Keldysh component of the interaction propagator is ob-
tained as

V�
K�y1,y2� = −

i�

2�v2 �
�=�

B����I�
��y1�I−�

� �y2� , �23�

where

I�
��y� =� dy�ei���/v�y�V�

r �y,y�� . �24�

At equilibrium, BR���=BL����B���, this reduces to

V�
K = �V�

r − V�
a �B��� , �25�

in agreement with the fluctuation-dissipation theorem.

III. SHARP BOUNDARIES

So far we made no restriction on the way the interaction
changes in space. Let us consider first the case when the
interaction turns on and off sharply on the scale set by the

temperatures, lT�v /max
TL ,TR�. This limit can be modeled
via a stepwise interaction as represented by the dashed line in
Fig. 1. Equation �22� for G�

r can be then straightforwardly
solved by using the fact that the velocity u is constant in each
of three regions and employing the proper boundary condi-
tions �continuity of G�

r �y ,y�� and of u2�y��yG�
r �y ,y��� at y

= �L /2.
In the TS context, we are interested in the Green’s func-

tions G	 with coinciding spatial arguments, x=x�. Assuming
x to be in the interacting part of the wire �and not too close to
the boundaries� and setting t�=0, we find

FR
	 = − ��

0

� d�

�
� �1 − K�2BR

�0���� + �1 + K�2BL
�0����

2�1 + K2�


�1 − cos �t� � i sin �t
 , �26�

where

K = v/u � �1 + g/�v�−1/2 �27�

is the conventional dimensionless parameter characterizing
the interaction strength in a LL and

� =
�K − 1�2

2K
. �28�

The integral in Eq. �26� and in analogous formulas below is
logarithmically divergent at large frequencies and requires an
ultraviolet regularization. Specifically, these integrals are un-
derstood as regularized by a factor e−�/�, where � is an
ultraviolet cutoff. Deriving Eq. �26�, we have neglected
terms of the form ein�L/u �with nonzero integer n� that arise
due to the Fabry-Pérot-type interference of plasmon modes
reflected at the boundaries. Keeping these terms would lead
to an additional oscillatory structure in energy31 with the
scale �u /L. Since we are interested in TS of long wires, we
assume that this scale is much less than max
TR ,TL�, so that
oscillations are suppressed.

Substituting Eq. �26� into Eq. �18�, we finally get the
Green’s functions,

GR
	�t� = �2�iv���GR,0

	 �t��1+��GL,0
	 �t���e−i�eVt/2, �29�

where

� =
�K − 1�4

4K�1 + K2�
, � =

�K2 − 1�2

4K�1 + K2�
. �30�

The Green’s functions �Eq. �29�� can be determined experi-
mentally from TS measurements12 �see Appendix A�. Their
difference determines the TDOS ����,

G�
���,x,x� − G�

���,x,x� = − 2�i����� , �31�

while each of them separately �or their sum� also contains
information about the distribution function, as discussed be-
low. The results for the TDOS have been found in Ref. 29.

Next we consider the noninteracting parts of the wire and
discuss, e.g., the right-moving electrons. In region I �see Fig.
1�, x ,x��−L /2, we find from Eqs. �19� and �15� that FR

	

=0, so that the Green’s functions of the right movers are not
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modified by interaction. Physically this is quite transparent:
the right-moving electrons in this part of the system are just
coming from the reservoir and are not yet “aware” of the
interaction with the left movers.

The situation is distinctly different in region III, x ,x�
�L /2. Assuming x=x�, we find

FR
	 = �

0

� d�

�

�1 − K�2

1 + K2 �1 − cos �t��BR
�0���� − BL

�0����� .

�32�

Substituting Eq. �32� into Eq. �18�, one gets

GR
	�t� = �GR,0

	 �t��T�GL,0
	 �t��Re−i�eVt/2, �33�

where

T =
2K

1 + K2 , R =
�1 − K�2

1 + K2 . �34�

Since FR
	 in Eq. �32� is real, the TDOS is not affected by the

interaction, �R���=�0�1 /2�v, as expected. The modifica-
tion of the functions GR

	 as compared to that of incoming
electrons, GR,0

	 , implies therefore the change in the distribu-
tion function nR��� of right movers. Indeed, for noninteract-
ing particles GR

�=2�i�0nR��� and GR
�=−2�i�0�1−nR����.

We thus see that the electrons ejected from the interacting
part of the wire into the lead are affected by the interaction:
their distribution function has changed.

The left-moving electrons can be analyzed in the same
way; the corresponding results are obtained by replacing
R↔L ,V↔−V in Eqs. �29� and �33�. Clearly, the roles of
regions I and III are interchanged in this case. It is also worth
mentioning that in the noninteracting parts of the wire the
Green’s functions are both Galilean and translationally in-
variant, depending on coordinates and times via ��−��� only.

IV. ARBITRARY BOUNDARIES

We turn now to generalization of these results for the case
of an arbitrary shape of g�x� in the contact region between
the interacting part of the wire and the noninteracting leads.
The contact regions are in general characterized by some
reflection coefficients ri��� for the plasmon amplitude, yield-
ing reflection coefficients Ri= �ri�2 for the plasmon intensity
�i=1,2 for the left and right contacts, respectively�. The cor-
responding transmission coefficients are Ti=1−Ri. It is in-
structive in this context to compare our present approach
with that developed in Ref. 29, where we analyzed the tun-
neling density of states and focused on the case of smooth
variation in g�x� in the contact regions. As we are going to
show, the method in Ref. 29 can be generalized to the case of
arbitrary contacts �this was briefly discussed at the end in
Ref. 29� and is also useful for the analysis of the electron
distribution function. Within that approach, the propagator of
bosons is calculated in momentum space �rather than in real
space as in the above calculation�. The Keldysh component
of the propagator is then characterized by distribution func-
tions B�

�0���� and B���� associated with poles at q=�� /v
and q=�� /u and describing “ghosts” �free electron-hole

pairs� and plasmons, respectively.32 While the distribution
function of ghosts is simply determined by that of incoming
electrons, the plasmons experience in general reflection at
the boundaries. We have for the left boundary �see Fig. 2�

BR
w = T1BR

�0� + R1BL
w, BL

out = R1BR
�0� + T1BL

w �35�

and similarly at the right boundary. Here we have introduced
the notation B�

w for plasmon distributions in the interacting
region of the wire and B�

out for outgoing channels. Solving
these equations, we find the plasmon distribution functions
of right movers in the interacting part of the wire, as well as
in the outgoing channel �in the right lead�,

BR
w =

T1

1 − R1R2
BR

�0� +
T2R1

1 − R1R2
BL

�0�, �36�

BR
out =

T1T2

1 − R1R2
BR

�0� +
T1 + T2 − 2T1T2

1 − R1R2
BL

�0�. �37�

The corresponding results for left movers are obtained by
exchanging the indices R↔L and 1↔2.

The method in Ref. 29 allows us to express the exponents
F�

	 in terms of these distribution functions. For the interact-
ing part of the wire, we get

FR
	 = − �

0

� d�

�

�BR

w − BR
�0���1 − cos �t�

+ ���BR
w + BL

w��1 − cos �t� � i sin �t�� . �38�

The result for the tunneling into the noninteracting region III
of Fig. 1 can be obtained from Eq. �38� by using the distri-
bution functions B�

out corresponding to this region and replac-
ing the interaction constant � by zero,

FR
	 � FR = − �

0

� d�

�
�BR

out − BR
�0���1 − cos �t�

= �
0

� d�

�
R�1 − cos �t��BR

�0���� − BL
�0����� , �39�

where R is the total reflection coefficient on a double-step
structure, R=1−T1T2 / �1−R1R2�.

For the case of sharp boundaries the reflection and
transmission coefficients are given by the Fresnel law,
R1,2= �1−K�2 / �1+K�2 and T1,2=4K / �1+K�2, so that Eqs.
�38� and �39� reduce to earlier results �26� and �32�. The total
reflection and transmission coefficients R and T take in this
case value �34� �which explains the notations introduced
there�. Clearly, general formulas �38� and �39� can also be
obtained in the framework of a real-space calculation that
was presented above for sharp boundaries. To do this, one

B
out

B
R L

w w

B L
in

2 2

BR
in

BR
out

L R T
B

R T
1 1

FIG. 2. �Color online� Distribution functions of plasmons B� in
different parts of the wire. The distributions of incoming plasmons
are determined by respective leads, B�

in=B�
�0�.
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has to modify the boundary conditions for the Green’s func-
tion in G�

r in Eq. �22� by including the appropriate reflection
and transmission amplitudes ri��� and ti��� at two bound-
aries and then proceeding in the same way as in course of the
derivation of Eqs. �26� and �32�. The two methods �real
space and k space� are thus in full agreement with each other.

The formal results obtained thus far can be implemented
to obtain physical observables. Consider first the noninteract-
ing part of the setup, region III of Fig. 1. The effect of the
interaction there amounts to modification of the distribution
function of outgoing particles �right movers�, which has �in
time domain� the form

nR�t� = nR,0�t�eFR�t�, �40�

where FR is given by Eq. �39�. This yields

nR�t� =
i

2
e−ieVt/2� TR

sinh �TRt + i0
	T� TL

sinh �TLt + i0
	R

.

�41�

The way in which the electron distribution function is modi-
fied depends on the kinetics of the plasmons inside the inter-
acting region. For adiabatic switching of interaction, there is
essentially no plasmon scattering. Therefore, the total reflec-
tion coefficient R and, consequently, the exponent FR in
region III vanish. In this case the fermions retain their distri-
bution function: the right movers going out into the right
lead have the same distribution as the right movers injected
into the interacting region from the left lead. �The same ap-
plies to the left movers, of course.� Let us now discuss the
opposite limit of strong reflection, R→1. For a structure
with a sharp boundary, this is the case provided the interac-
tion is strong, K→0. Alternatively, this limit may be realized
if the boundary regions are sufficiently extended and charac-
terized by random K�x� such that plasmons with relevant
frequencies are localized. Regardless of the cause, in the
limit R→1 the left- and right-moving electrons exchange
their distribution functions except for keeping their total flux
�i.e., the chemical potential�.

Next, we consider the interacting part of the wire. Ana-
lyzing result �38�, we see that two terms in square brackets
have distinctly different physical origins. The second term,
which is proportional to the local strength of the interaction
� at the measurement point, is responsible for creation of the
zero-bias anomaly �ZBA� as well as for its dephasing smear-
ing, with the nonequilibrium dephasing rate29

��
−1 = ��� �1 − R1��1 + R2�

1 − R1R2
TR +

�1 + R1��1 − R2�
1 − R1R2

TL
 .

�42�

On the other hand, the first term in the integrand of Eq. �38�,
which is governed by the difference between the incoming
and local distribution of plasmons, is fully analogous to the
expression for F	 in the noninteracting region �Eq. �39�� and
describes the modification of the distribution function inside
the wire,

n��t� = n�,0�t�exp�− �
0

� d�

�
�B�

w��� − B�
�0������1 − cos �t��

=
i

2�

1

t + i0
exp�− �

0

� d�

�
�B�

w��� − 1��1 − cos �t�� .

�43�

As is clear from Eq. �43�, the ghost term with B�
�0� essentially

serves to cancel the bare distribution function n�,0, so that the
distribution function n�t� is determined only by the plas-
monic distribution B�

w��� in the wire. This is, in fact, a mani-
festation of a general relation between the functional and full
bosonization approaches, as will be discussed in detail
elsewhere.33

Fourier transformation of our results into the energy rep-
resentation can be done numerically �for analytic calculation
at equilibrium, see Appendix B�; representative results are
shown in Figs. 3 and 4. In Fig. 3 we present distribution
functions for noninteracting parts of the wire. Temperatures
are set to TL=0.2 and TR=0.001 �in arbitrary units�, the ap-
plied voltage is eV=0.25, and a sharp variation in the inter-
action at the boundaries �as in Sec. III� is assumed. The
distribution function of free fermions �K=1�, plotted by a
dashed line, is the same on both ends of the wire. For inter-
acting electrons �we choose the interaction parameter to be
K=0.2, which is in the range of characteristic values reported
for carbon nanotubes �see, e.g., Ref. 5�� the distribution func-
tions in two leads are different. In particular, the distribution
function in the left lead �region I in Fig. 1� has a sharp edge
at the energy �=�+eV /2, which corresponds to cold right-
moving electrons. In the right lead �region III�, this edge is
broadened due to interaction with hot left-moving electrons.

FIG. 3. �Color online� Total distribution functions of electrons in
the left and right leads for the LL interaction parameters K=1 �no
interaction� and K=0.2 �with sharp boundaries�. Temperatures of
the leads are TL=0.2 and TR=0.001; the bias voltage is eV=0.25.
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The situation is opposite for left-moving particles. The dis-
tribution in the right lead has a broad edge at �=�−eV /2
that corresponds to hot left-moving electrons. Due to inter-
action inside the wire this edge in region I sharpens.

In Fig. 4 we present the results for the distribution func-
tions of left- and right-moving quasiparticles in the central
�interacting� part of the wire �Eq. �43��. For K=0.2 the plas-
mon reflection at the boundaries is strong. In a symmetric
structure this leads to almost equal distribution functions of
both types of carriers inside the wire.

In the upper panel of Fig. 5 we show the results for TDOS
for K=0.8. The minima of TDOS are reached at energies �

=��eV /2. The broadening of the ZBA dips has two origins:
smearing of the distribution function and dephasing. While
the dephasing broadening �cf. second term in Eq. �38�� is the
same for both chiral branches, the distribution functions �cf.
first term in Eq. �38�� are in general different. A deeper mini-
mum at �=�+eV /2 reflects the fact that right-moving elec-
trons in the wire have a much narrower distribution function.
This is because at K=0.8 the energy relaxation at the bound-
aries is quite weak, so that the distribution functions of cold
right movers and hot left movers are only slightly modified.
The situation is different for K=0.2 when distribution func-
tions nR and nL are nearly identical �up to a shift by eV� �see
Fig. 4�. As a result, the structure of the TDOS also becomes
symmetric. In fact, for the chosen value of the voltage, two
broad ZBA dips merge together.

V. THERMAL CONDUCTIVITY AND ELECTRONIC
DISTRIBUTION FUNCTION

We discuss now a relation between our results for the
electron distribution function and previous findings on the
electric and thermal conductance of a LL wire. In the ab-
sence of backscattering the number of left- and right-moving
particles is separately preserved. As a result, the electric cur-
rent is linear in the voltage V,

I = ev�NR − NL� =
e2

h
V �44�

with unrenormalized Landauer conductance G=e2 /h.13–15,34

In our formalism, this relation immediately follows from Eq.
�40� and the condition F��t→0�→0. This ensures that the
modification of the distribution function of right �or left�
movers by a spatially varying interaction does not affect the
integral of the distribution function over energy, i.e., the total
number of carriers of each type.

We turn now to the thermal conductance. The energy cur-
rent is easily found from the Green’s functions of electrons
in noninteracting parts of the wire,

IE = v�t�GR
��t,t�� − GL

��t,t����t=t�, �45�

which can be rewritten in terms of the electron distribution
functions,

IE = �
−�

� d�

2�
��nL��� − nR���� . �46�

Substituting results �40� and �39� for the distribution func-
tions, we get the expression of the thermal current in terms
of distribution functions of incoming electron-hole pairs,

IE =
1

4�
�

0

�

d��T����BL
�0���� − BR

�0����� . �47�

According to Eq. �47�, the thermal conductance is affected
by the interaction �through the reflection coefficient T����, as
was first found in Ref. 35. Note that due to the particle-hole
symmetry of LL model, the applied voltage drops out of Eq.
�47�. For the case of sufficiently sharp boundaries, when
T��� can be considered as � independent for relevant fre-
quencies, Eq. �46� reduces to

FIG. 4. �Color online� Distribution functions of left and right
movers �Eq. �43�� in the interacting part of the wire. All parameters
are the same as in Fig. 3.

FIG. 5. �Color online� TDOS ���� �normalized to its noninter-
acting value 2�0� in the interacting region for K=0.8, 0.4, and 0.2.
The temperatures of leads and the voltage are the same as in Fig. 3.
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IE =
�

12
T�TR

2 − TL
2� . �48�

Deviation of the transmission coefficient T��� from unity
leads to the violation of the Wiedemann-Franz law.35 As is
seen from our analysis, this deviation is a manifestation of a
microscopic phenomenon: energy relaxation of electrons due
to nonuniform interaction.

Heat current �47� can be equivalently represented in terms
of plasmonic distributions in the wire,

IE =
1

4�
�

0

�

d���BL
w��� − BR

w���� . �49�

This implies that the presentation of the heat current in form
�46� is also valid in the interacting part of the wire, with the
electronic distribution functions n���� given by Eq. �43�.
Thus, also in the interacting part of the wire, the energy
current can be understood as carried by properly defined qua-
siparticle excitation. This is a remarkable result, which dem-
onstrates that the concept of fermionic quasiparticles remains
meaningful in a strongly interacting 1D system �LL� despite
its non-Fermi-liquid features.

VI. SUMMARY AND OUTLOOK

To summarize, we have developed a theory of tunneling
spectroscopy of LL conductor connected to reservoirs away
from equilibrium. In the specific setup considered here, each
branch originates from a source which is at equilibrium.
However, the right and the left sources have different tem-
peratures and different chemical potentials. We have mod-
eled the system as a LL with spatially nonuniform interaction
and calculated the single-electron Green’s functions G	 that
carry information about the TDOS and the fermionic distri-
bution functions in different parts of the wire. The interaction
affects the tunneling characteristics in three distinct ways.
First, it induces a power-law ZBA in the TDOS ���� �with
two dips split by the voltage� in the interacting part of the
wire. Second, it leads to broadening of ZBA singularities due
to dephasing, with the dephasing rate governed by the inter-
action strength and the plasmon distribution inside the wire.
Both the ZBA and the dephasing effects are encoded in the
second term of Eq. �38�.

The third effect of the interaction—which is specifically
at the focus of the present work—is the inelastic scattering of
electrons, leading to their redistribution over energies. This
effect takes place in those regions where the interaction
strength varies in space �near the wire boundaries in our
model�, inducing backscattering of plasmons �but not of
electrons�. This leads to relaxation of the electron distribu-
tion functions: left- and right-moving fermions “partly ex-
change” their distributions �see Eqs. �41� and �43� and Figs.
3–5�. For slowly varying interaction, when the plasmons
with relevant frequencies go through essentially without re-
flection, the energy relaxation of electrons is negligible. In
the opposite limit, when the plasmons are almost entirely
reflected �due to strong and sharply switched interaction or,
else, due to disordered boundary regions inducing the plas-

mon localization�, the left and right movers essentially ex-
change their distribution functions �but not their total den-
sity�. We have also discussed a connection between these
results and earlier findings on the thermal conductivity of LL
structures.

Our results are important for the analysis of TS experi-
ments on strongly correlated 1D structures �in particular, car-
bon nanotubes12� out of equilibrium. In this connection, let
us emphasize the following important point. What can actu-
ally be measured in experiment are Green functions, G� and
G�. The TDOS ���� in the interacting part of the wire, as
well as the distribution function n��� in the noninteracting
regions, is related to G� and G� in a simple way. On the
other hand, in order to extract the distributions nR��� and
nL��� from G	 in the interacting part of the wire, a nontrivial
deconvolution procedure is necessary. The broadening of
�split� Fermi-edge structures in G	 in the interacting part of
the wire is governed by both the distribution function and the
dephasing. The dephasing contributes to the smearing of
Fermi-edge singularities also in higher-dimensional �diffu-
sive� systems36 and should be taken into account for the ac-
curate interpretation of corresponding experiments.11,37 In
the 1D case the role of dephasing becomes particularly dra-
matic �if the interaction is sufficiently strong�. This is very
well illustrated by Fig. 5: two Fermi-edge singularities al-
most �middle panel� or even completely �lower panel� merge
despite the fact that the Fermi edges in the distribution func-
tions remain well separated �Fig. 4�.

A comment of a more general nature is in order here. Our
results illustrate the fact that there is no unique answer to the
following question: “How much is a LL different from a
Fermi liquid?” On one hand, the strong power-law ZBA in
TDOS of a LL clearly distinguishes it from the Fermi liquid.
In more formal terms, the single-particle residue Z, which is
finite in the Fermi liquid, vanishes in a power-law fashion at
the Fermi level of the LL. Also the dephasing rate determin-
ing the broadening of ZBA �Eq. �42�� is linear in tempera-
ture, contrary to the Fermi-liquid T2 behavior. One could
think that it makes little sense to speak about fermionic ex-
citations in this situation, but this is not the case. First, the
power-law vanishing of TDOS has little importance �like the
value of Z in the Fermi liquid� for kinetic properties of the
system. Second, dephasing rate �42� is governed by pro-
cesses with zero energy transfer and do not lead to any en-
ergy relaxation. As a result, the distribution function of fer-
mionic excitations, n����, is a fully meaningful concept even
in the case of a strong interaction. It stays preserved as long
as the interaction is spatially constant �or varies adiabatically
slow with x�. Furthermore, both the charge and the energy
current in the interacting part of the wire can be understood
as carried by these fermionic quasiparticles. From this point
of view, the LL is a perfect Fermi liquid.

We conclude the paper by reviewing some future research
prospects; the work in those directions is currently underway.
First, one may consider a more general nonequilibrium situ-
ation where the distribution functions “injected” into the in-
teracting part of the wire are of nonequilibrium �e.g., double-
step� form by themselves29,38 �see setups �b� and �c� in Fig. 1
in Ref. 29�; the first of these setups is close to the experi-
mental situation in Ref. 12. This requires a generalization of
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the bosonization technique that will be presented else-
where.33 Second, it is interesting to study correlations be-
tween outgoing left and right movers. In a general situation,
one finds that their density matrices are not decoupled, i.e.,
they are entangled, which manifests itself, in particular, in
current cross correlations. Third, one may study the effect of
a random variation in the interaction strength K�x� in the
wire. If the wire is sufficiently long, plasmons with not too
low frequencies get localized. Using our general results, one
concludes that in the left �right� half of the wire both distri-
butions nR, nL are determined by that of the left �respectively,
right� reservoir, with a transition region which extends over
the localization length of the middle section. To refine this
picture, one has to include into consideration also plasmons
with low frequencies �that remain delocalized�. Also, includ-
ing the spectral curvature will induce plasmon decay pro-
cesses. �In the context of thermal conductivity, this physics
was discussed in Ref. 35.� Finally, our results can be gener-
alized to the case of chiral LL, where both branches move in
the same direction, which is the situation characteristic for
quantum-Hall edge-state devices.10,39
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APPENDIX A: MEASUREMENT OF THE GREEN’S
FUNCTIONS GÒ

The tunneling current between a probe and a quantum
wire can be expressed in terms of the functions G	 as

I�U� =� dydy��Ty,y��
2� d�

�
�Gtp

��� − eU,y,y��Gw
���,y�,y�

− Gtp
��� − eU,y,y��Gw

���,y�,y�� , �A1�

where the subscripts “tp” and “w” refer to the tunnel probe
and the wire, respectively, U is a voltage between the tun-
neling probe and the wire, and T�y ,y�� is a tunneling matrix
element in the coordinate representation. If electron tunnel-
ing is local in space, we have T�y ,y��=T��y−y����y−x�,
where x is a position of tunneling probe. Since the tunneling
probe is at equilibrium, one can use a standard relation be-
tween the Green’s functions and distribution function ntp���
of electrons in the probe,

Gtp
���,x,x� = 2�i�tp���ntp��� ,

Gtp
���,x,x� = − 2�i�tp����1 − ntp���� . �A2�

Differentiating the tunneling current with respect to volt-
age and substituting Eq. �A2� into Eq. �A1�, one finds

�I

�U
= − 2i�T�2� d�� ��tp�� − eU�

��

ntp�� − eU�Gw

���,x,x�

+ �1 − ntp�� − eU��Gw
���,x,x��

− 2�i�tp�� − eU��w���
�ntp�� − eU�

��
� . �A3�

For a LL wire the Green’s functions Gw and the TDOS �w
represent a sum of contributions of both chiral branches. If
the density of states in the tunneling probe ��tb� is a constant
�as in a normal metal�, the first term in Eq. �A3� drops out. In
this case the result is proportional to the TDOS in the wire.
Assuming that the tunneling probe is at zero temperature,
one then finds

�I

�U
= 4��T�2�tp�w�eU� . �A4�

On the other hand, if the density of states in the tunneling
probe is strongly energy dependent �as for superconducting
electrodes�, the first term in Eq. �A3� survives. Unlike TDOS
�which is determined by the difference Gw

�−Gw
��, this term

contains also the information about Gw
�+Gw

�. Therefore,
measurement of the tunneling current with two different
types of tunneling probes �normal and superconducting� al-
lows one to find functions Gw

� and Gw
� separately. The idea to

use superconducting electrodes for the tunneling spectros-
copy was introduced in Ref. 11 and more recently employed
in Ref. 12.

APPENDIX B: THE GREEN’S FUNCTIONS GÒ AT
THERMAL EQUILIBRIUM

At thermal equilibrium the Green’s functions in the en-
ergy domain can be calculated explicitly. Using Eq. �38� and
BR

w=BL
w=BR

0 =BL
0 =coth �

2T , we find the exponent F��t� for the
Green’s functions in interacting part of the wire,

F�t� = � ln
�T

i� sinh �T�t − i/��
, �B1�

where we drop the chirality index �, as it is immaterial for
x=x� in equilibrium. Using Eq. �18� and performing a Fou-
rier transform from the time into the energy domain, one
finds

G���� = −
��T�1+�

2�v�i����
−�

�

dtei�t 1

sinh1+� �T�t − i/��
.

�B2�

After calculating an auxiliary integral, one obtains

�
−�

�

dt
eizt

sinh1+��t − i0�
=

i1+�2�

��1 + ��
e�z/2����1 + � + iz�/2��2,
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G���� = −
i

2�v

2�

��1 + ����T

�
	�

e��z/2�����1 + � + iz�/2��2,

�B3�

where z=� /�T. Similarly, one finds the function G�,

G���� =
i

2�v

2�

��1 + ����T

�
	�

e−��z/2�����1 + � + iz�/2��2.

�B4�

This yields the following asymptotic behavior of the Green’s
function at low temperatures �����T�,

G���� = −
i

v��1 + ��
e��z−�z��/2� ���

�
	�

, �B5�

and high temperatures �����T�,

G���� = −
i

2�v

2�

��1 + ��
�2��1 + ��/2���T

�
	�

. �B6�

Using Eqs. �31�, �B3�, and �B4�, one obtains TDOS at equi-
librium,

���,T� =
2�−1

�2v��1 + ��
��T

�
	�

����1 + � + iz�/2��2 cosh
�z

2
.

�B7�

Equation �B7� describes the well-known ZBA in TDOS,
����� ����, smeared at the scale ��2�T�1+��. This smear-
ing results from a combined effect of �i� the thermal broad-
ening of the distribution function and �ii� the dephasing
rate29 1 /��=2��T.

It is straightforward to check that the Fermi-Dirac distri-
bution function is recovered from the ratio

G���� + G����
G���� − G����

= tanh
�

2T
= 1 − 2n0��� , �B8�

in agreement with the fluctuation-dissipation theorem.
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