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The spin-dependent elastic reflection of quasi-two-dimensional electrons from a lateral impenetrable barrier
in the presence of band-structure spin-orbit coupling results in a spin angular impulse exerted on the electrons
which is proportional to the nontrivial difference between the electrons’ momentum and velocity. Even for an
unpolarized incoming beam we find that the spin angular impulse is nonzero when averaged over all compo-
nents of the reflected beam. We present a detailed analysis of the kinematics of this process.
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Spin-dependent scattering in confined systems with spin-
orbit coupling �SOC� offers fascinating possibilities to ma-
nipulate the electrons’ spin degree of freedom if the electrons
move through an appropriate orbital environment. In the
presence of band-structure SOC the elastic reflection of
quasi-two-dimensional �2D� electrons from a lateral impen-
etrable barrier depends on their spin orientation so that such
a setup can act like a spin filter.1 Also, one can obtain spin
accumulation near the barrier.2 Scattering off circular barriers
was investigated in Refs. 3 and 4. Several groups studied the
propagation of electrons in systems where the magnitude of
SOC is modulated in space.5–9 A related configuration uses a
magnetic field perpendicular to the plane of a quasi-2D sys-
tem, which results in spin-dependent magnetic focusing.10,11

The studies of these systems focused on the spatial separa-
tion of the trajectories of electrons with different spin orien-
tations, on the generation of a spin polarization, and on in-
terference effects related to the different paths that scattered
electrons can take. These phenomena complement the spin
precession that characterizes the propagation of electrons
moving freely in the effective magnetic field characterizing
SOC.12,13

Here we show that scattering off barriers also allows one
to manipulate the spin degree of freedom in a conceptually
different way as SOC results in an effective spin torque that
can change the orientation of the spin vector nonadiabati-
cally during the scattering process. Recently, spin torques
have been a subject of significant interest as a tool for reori-
enting the magnetization direction of magnetic layers.14

Spin-dependent scattering off barriers give rise to spin
torques in a well-defined setting. The effect is proportional to
the nontrivial difference between the electrons’ momentum
and velocity. When integrated over the duration of the scat-
tering process, the spin torque corresponds to a spin angular
impulse. Like the mechanical torque discussed by
Mal’shukov et al.,15 the spin angular impulse is a manifesta-
tion of the fundamental conservation laws characterizing the
electron dynamics in the presence of SOC. We show that
even for an unpolarized incoming beam the spin angular im-
pulse is nonzero when averaged over all components of the
reflected beam. The effect is the largest in magnitude if the
angle of the incoming beam relative to the reflecting barrier
approaches a critical value. Our findings are relevant for a
large variety of transport experiments in confined
geometries.16

For this study, we consider the Hamiltonian

H =
1

2
�k2 + ��ky�x − kx�y� + V�x� , �1�

where k= �kx ,ky ,0� is the 2D in-plane wave vector and �
��2 /m� with the effective mass m�. The second term in Eq.
�1� is the Rashba SOC �Ref. 17� with Rashba coefficient �
�0, and �i are the Pauli-spin matrices. Finally, V�x� is the
potential due to the impenetrable barrier. We assume that
V�x�=0 for x�0 and V�x�=� for x�0. Previous studies
showed that smoother gradients preserve the important
physics.5,18 While we restrict ourselves for conceptual clarity
to Rashba SOC, it is straightforward to include other contri-
butions to SOC such as Dresselhaus SOC.19 The spin-split
dispersion is

E��k� =
1

2
�k2 � �k . �2�

For a given density N dispersion �2� results in Fermi wave
vectors13

k� =�2	�N 

�

	�2
�2	�2N − �2� =

1

�
��2�EF + �2 
 �� ,

�3�

where EF=E+�k+�=E−�k−� is the Fermi energy. We note that
k−−k+=2� /��0 independent of N �Ref. 12� provided that
k−�2� /�; i.e., N�Nq��2 / �	�2��. As N is typically much
larger than the “quantum density” Nq, the case N�Nq is
ignored in the following.20 Yet we note that all formulas
developed below give the largest observable effects for small
densities, consistent with the fact that the SOC term in Eq.
�1� is most important for small densities.

We consider a ballistic electron beam with wave vector
k0

� that is reflected elastically from the barrier at x=0 �see
Fig. 1�. The wave functions are13

PHYSICAL REVIEW B 80, 041311�R� �2009�

RAPID COMMUNICATIONS

1098-0121/2009/80�4�/041311�4� ©2009 The American Physical Society041311-1

http://dx.doi.org/10.1103/PhysRevB.80.041311


�k�
�r� =

A0eik0
�·r

�2
� 1


iei�0
� +
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�2
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iei�1
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eik2
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�2
� 1

�iei�2

� , �4�

where �i is the polar angle of ki
�. Throughout, the index 0

refers to the incoming beams, 1 �2� denotes the ordinarily
�extraordinarily� reflected beam preserving �not preserving�
the magnitude of k, and the indices � are defined via Eq. �3�.
Translational invariance parallel to the barrier x=0 implies
the conservation of the y component of crystal momentum,
i.e.,

ky
� = k� sin �0 = k� sin �1 = k
 sin �2


, �5�

which yields the ordinary reflection law

�1 = 	 − �0, �6�

and the extraordinary reflection law

�2

 = 	 − arcsin� k�

k


sin �0� . �7�

As k−�k+, the equation for �2
− has a real solution for any

0
�0
	 /2. However, a real solution for �2
+ exists only for

0
�0
�c, where

�c � arcsin�k+/k−� . �8�

For �0��c, Eq. �7� becomes equivalent to

�2
+ =

	

2
+ i ln� sin �0

sin�c
+�� sin �0

sin �c
�2

− 1� . �9�

It will become evident below that the critical angle �c plays
an important role for many geometrical aspects of this prob-
lem. Note that �c→0 for N→Nq. The difference between
the angles of the two reflected beams is

�
 � �2

 − �1 = �0 − arcsin� k�

k


sin �0� . �10�

The splitting angle �− is positive and its largest value is ob-
tained for �0→	 /2 �grazing incidence� giving

	�max	 = 	/2 − �c. �11�

The angle �+ is negative and its largest value in magnitude is
obtained for �0=�c. Yet the corresponding value 	�max	 is
again given by Eq. �11� 
see Fig. 2�a��.

Conservation of the wave-vector component ky
� implies

that kx1
� and kx2


 become functions of �1 and �2

,

kx1
� = k� cos �1, kx2


 = k
 cos �2

. �12�

For a complex angle �2
+ the wave vector kx2

+ becomes
imaginary,2 i.e., �2

+� ikx2
+ �0 describes an exponentially de-

caying solution �for x
0�.
Continuity of the wave function �k�

�r� at the interface x
=0 yields the conditions

A1
�

A0
=

e2i�0 − ei�


1 + ei�

,

A2



A0
= −

1 + e2i�0

1 + ei�

. �13�

Here the expression for A2
+ refers to the corresponding two-

component spinor in Eq. �4� that is not normalized for �0
��c. Unlike the probability current discussed below, the
probability density 	�	2 is not conserved upon reflection. In-
deed �note cos �0=−cos �1�,

	A0	2cos �0 + 	A1
�	2cos �1 + 	A2


	2cos�R�2

� = 0, �14�

which illustrates the importance of �
 for our problem.
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FIG. 1. Sketch illustrating the spin-dependent reflection from a
barrier at x=0 in the �a� undercritical and �b� overcritical regimes.
The circles show the Fermi contours E� in the �kx ,ky� plane. The
gray arrows indicate the spin orientation of the eigenstates along the
Fermi contours. k0, k1, and k2


 are the wave vectors of the incom-
ing, the ordinarily reflected, and the extraordinarily reflected beams.
�We omit the subscripts � of k0 and k1.�

FIG. 2. �a� Splitting angles �
 and out-of-plane spin orientation
�, �b� reflection coefficients R��, and �c� average spin angular
impulse ���
 �assuming an unpolarized incoming beam� as a func-
tion of the angle �0 of the incoming beam for an InSb 2D electron
system with density N=2�1011 cm−2, effective mass m�

=0.014m0, and Rashba coefficient �=0.1 eV Å. The critical angle
�c=75.4° is marked by a dotted vertical line. The arrows in �c�
indicate the orientation of ���
 for the coordinate system in Fig. 1.
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Hamiltonian �1� yields the following expression for the
velocity operator:

v =
i

�

H,r� =

1

�
��k + �êz � �� , �15�

where êz denotes a unit vector perpendicular to the 2D plane.
We see here that SOC gives rise to a nontrivial spin-
dependent difference between the electrons’ momentum and
velocity that plays a crucial role in our analysis below of the
spin angular impulse. Outside the region where the beams
interfere and for real angles � we get for the magnitude v of
the velocity

v � �v
 =
1

�
��k+ + �� =

1

�
��k− − �� , �16�

i.e., all beams have the same velocity v �parallel to the cor-
responding wave vector�.21 For complex angles �2

+ the veloc-
ity is slightly larger than Eq. �16�, and it is oriented perfectly
parallel to the barrier,

v2
+ =

êy

�
��ky

− + �
sin �c

sin �0
� . �17�

Similar to Eq. �15�, we get for the probability current

j � �j
 =
1

�

�R���	k	�
� + ���	êz � �	�
� . �18�

We emphasize that unlike v= �v
 and ��
, the expectation
value j= �j
 is not normalized with respect to the correspond-
ing wave function. Obviously, this is necessary to obtain the
continuity equation

�t� + � · j = 0, �19�

where �= 	�	2 is the probability density. Of course, in our
case �t�=0. For the region where both the incoming and the
reflected beams are present we get jx=0 �as expected for an
impenetrable barrier�. On the other hand, the current compo-
nent jy in this region depends in an oscillatory fashion on the
distance 	x	 to the barrier due to the interference of the three
terms in Eq. �4�. We do not give here the lengthy expres-
sions.

Outside the region where both the incoming and the re-
flected beams are present, we get in the undercritical regime

using Eqs. �13� and �16��,

j0
� = 	A0	2v0, �20a�

j1
� = 	A0	2

sin2��0 − �
/2�
cos2��
/2�

v1, �20b�

j2

 = 	A0	2

cos2�0

cos2��
/2�
v2


, �20c�

where vi=v. In the overcritical regime we have

j0
− = 	A0	2v0, j1

− = 	A0	2v1 �21�

with v0=v1=v. For the extraordinarily reflected beam we get

j2
+�x� = 	A0	2

2 cos2�0

1 + sin �c
e2�2

+xv2
+, �22�

i.e., the current j2
+ dies off exponentially with increasing dis-

tance 	x	 from the barrier.
We evaluate the currents reflected from a unit segment of

the barrier to get the reflection coefficients

R�� =
sin2��0 − �
/2�

cos2��
/2�
, R�
 =

cos��0 − �
�cos�0

cos2��
/2�
,

�23�

where the first �second� sign of R�� corresponds to the in-
coming �reflected� beam 
Fig. 2�b��. Current conservation
implies R+++R+−=R−−+R−+=1, which is equivalent to Eq.
�14� because vi=v. We note that in the overcritical regime
we have R−+=0. At a first glance this appears counterintui-
tive because the reflected current j2

+ is nonzero. However, this
current is oriented parallel to the barrier so that it does not
enter the reflection coefficient.

It is known for Rashba model �1� that propagating beams
are characterized by a spin orientation in the 2D plane and
perpendicular to the corresponding wave vector,13,22 i.e., for
a wave vector k� with polar angle � the orientation of the
unit vector ��
� is characterized by the angle �
	 /2. In
the overcritical regime �0��c, we obtain the out-of-plane
spin orientation2

��
2
+ = �cos �

0

sin �
� , �24�

where �=arccos�sin �c /sin �0�. The largest value of � is
obtained in the limit of grazing incidence ��0→	 /2� giving
�max= 	�max	 
Fig. 2�a�� with �max→	 /2 for low densities
N→Nq.

It is well known that during the elastic reflection of elec-
trons off an impenetrable barrier, the barrier exerts a force F
on the electrons. Yet for such a scattering process only the
linear impulse, i.e., F integrated over the time �t of the
collision process, is physically meaningful. Obviously, this
linear impulse per electron equals the change ��k in crystal
momentum. This result gets modified by the presence of
SOC. Using Eq. �15� we get

F�t = m����v
 −
�

�
êz � ���
� = ��k . �25�

Furthermore, SOC gives rise to multiple reflected beams as
discussed above. When taking into account the conservation
of the electron number during the scattering process, one
finds using a continuous media approach that ��k for the
components of the reflected beam must be weighted by the
corresponding reflection coefficients 
Eq. �23��.

Equation �25� implies that the barrier also exerts an or-
bital torque that changes the orbital angular momentum of
the electrons. In a similar way �while there is no direct effect
of the barrier on the electron’s spin�, SOC and the barrier
exert an effective spin torque on the electrons that changes
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the spin orientation when the electrons are reflected at the
barrier. Using Eq. �25� we can write the dimensionless spin
angular impulse as

���
 =
�

�
êz � ���k

m�
− ��v
� , �26�

which shows that the change in the spin orientation is a
combined effect of SOC and the change in orbital motion
characterized by a nontrivial difference between the changes
in the electron’s momentum and velocity. When averaging
over the components of the reflected beam we get

���
� = R�����
1
� − ��
0

�� + R�
���
2

 − ��
0

�� .

�27�

���
� approaches magnitude �1 around �0�	 /4 when on
average the spin orientation of the electrons becomes zero
upon reflection. In other words, the spin angular momentum
carried by a + or − polarized current is fully absorbed by the
barrier around �0�	 /4. Clearly, this has important conse-
quences for spin-dependent transport in confined
geometries.16 Also, it offers interesting perspectives for
current-driven domain-wall motion and magnetization
reversal.14 Even for the electrons in an unpolarized incoming
beam the average spin angular impulse,

���
 = 1
2 ����
+ + ���
−� , �28�

is nonzero. Figure 2�c� shows that ���
 can be quite signifi-
cant and that it is the largest in magnitude at the critical angle
�c. For the parameters of Fig. 2, the maximum of ���

amounts to 0.09. We note that while ��
2

+ in the overcritical
regime is out of plane,2 Eq. �24� does not give rise to an
out-of-plane component of ���
 because in this regime we
have R−+=0.

Finally, we comment on how our findings depend on the
sample geometry. The SOC in Eq. �1� can be interpreted as a
Zeeman term with an effective magnetic field ��k�
= �2� /���ky ,−kx� giving rise to a precessional motion with
frequency �= 	��k�	. Quite generally, the deflection of elec-
tron trajectories in confined geometries implies that the ori-
entation of ��k� changes along these trajectories. If we ap-
proximate the deflection by a circular orbit with radius R, we
can distinguish two regimes.13,23 If �����k / �m�R�, the
electron spins follow adiabatically ��k�. Here, ���
 is sim-
ply given by the change in ��k�. Thus ���
=0 for an un-
polarized incoming beam. If, on the other hand, ���, i.e.,
R�R0��2 / �2m���, we are in the nonadiabatic regime,
where spin eigenstates are scattered into a superposition of
oppositely oriented eigenstates. �The above discussion corre-
sponds to the limiting case R=0.� For the parameters used in
Fig. 2, we have R0=270 nm. In systems with weaker SOC
than InSb, R0 is yet larger. Therefore, taking typical sample
dimensions into account, the spin angular impulse discussed
here is important for a large variety of spin-dependent trans-
port experiments in confined geometries.16 We note that spin-
relaxation lengths are usually significantly larger than R0.

In conclusion, our analysis demonstrates that the spin-
dependent reflection provides a new mechanism that changes
the spin orientation via the spin angular impulse exerted on
the electrons when they are reflected off a barrier in the
presence of SOC. While the present work has focused for
conceptual clarity on a straight and infinitely high barrier, the
underlying physics is relevant for a large variety of transport
experiments in confined geometries including soft barriers or
sample boundaries with different shapes. The mechanism
provides interesting possibilities for current-driven magneti-
zation dynamics.
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