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The full counting statistics of a molecular level weakly interacting with a local phonon mode is derived. We
find an analytic formula that gives the behavior of arbitrary irreducible moments of the distribution upon
phonon excitation. The underlying competition between quasielastic and inelastic processes results in the
formation of domains in parameter space characterized by a given sign in the jump of the irreducible moments.
In the limit of perfect transmission, the corresponding distribution is distorted from Gaussian statistics for
electrons to Poissonian transfer of holes above the inelastic threshold.
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It is now well established that the current noise generated
by electronic nanodevices contains valuable information on
microscopic transport processes not available from measure-
ments of the current-voltage characteristics.1 A full charac-
terization of the transport properties of a device requires not
only the knowledge of current-current correlations but rather
the full counting statistics �FCS� has to be determined.2 This
amounts to determine the whole probability distribution
Pt0

�q� that a given charge q is transmitted through the device
during a certain measurement time t0.

Studies of FCS have been mainly restricted to noninter-
acting systems. Notable examples of such studies are single
channel conductors3 or double quantum dot systems.4 The
case of FCS in the presence of electron-electron interactions
in the coherent transport regime has been much less
analyzed.5 In particular, the Kondo regime in quantum dots
has been addressed in Ref. 6.

On the other hand, molecular electronics is becoming a
field of intense research activity.7 In this case the coupling to
vibrational modes plays an important role and provides an
additional source for electronic correlations, which may af-
fect the counting statistics.8 The case of atomic chains sus-
pended between metallic electrodes provides another test
system to analyze the effects of electron-phonon �e-ph� cou-
pling in transport properties.9 At low temperatures �quantum
regime� the onset of phonon emission processes is signaled
by abrupt jumps in the system differential conductance.10,11

When certain conditions are met, the behavior of the conduc-
tance jumps is entirely controlled by the transmission prob-
ability, evolving from a drop in conductance at high trans-
mission to an increase at low transmission. These predictions
were quantitatively confirmed in recent experiments.12 A
natural question, which arises, concerns the behavior of
noise and, more generally, the FCS for energies correspond-
ing to the excitation of vibrational modes. Although some
works have been devoted to the analysis of noise in the pres-
ence of e-ph coupling,13 none of them tackled the problem of
the determination of the FCS in the presence of e-ph inter-
action.

The aim of this work is to study how the FCS of a mo-
lecular junction is modified by the coupling to a vibrational
mode. On the basis of a simple model, we derive a compact
analytical expression encoding the FCS for the experimen-

tally relevant regime of weak e-ph interactions and strong
coupling to the leads, which corresponds to the conditions of
Ref. 12. This expression allows analysis of the change of
arbitrary irreducible moments of the distribution Pt0

�q� upon
phonon excitation, as well as giving a picture of the under-
lying interplay between quasielastic and inelastic processes.

The starting point of our derivation is the following model
Hamiltonian:

H = �
�

H� + �d�
�

d�
†d� + �0a†a + V + Ve-ph,

V = �
�,k,�

t�d��k�
† d� + H.c.; Ve-ph = ��a + a†��

�

d�
†d� �1�

where a single molecular level of energy �d is coupled to the
left �right� electrode by a hopping element tLd�tRd� and inter-
acts with a local phonon mode of energy �0 with e-ph cou-
pling constant �. The indexes �� ,k ,�� label the state of the
�=L ,R uncoupled electrode, characterized by wave vector k
and spin �. We further define the cumulant generating func-
tion �CGF� S���=−�n=1

+	 �i��n

n! �qn�c as the functional generating
the irreducible moments of the distribution �qn�c. The con-
nection of this definition to the former Hamiltonian is given
by3

e−S��� =�Tc exp�− i�
c

V��t��t�dt	
 , �2�

where V��t� denotes V with the substitution in the left hop-
ping element tLd by tLde−i��t�/2 and Tc means time ordering on
the Keldysh contour going forward from time 0 to time t0
and backward from time t0 to time 0. The counting field ��t�
equals to 
� on the forward �backward� branch of the
Keldysh contour and accounts for a virtual measurement of
the charge being transmitted.2 As shown in Ref. 14, it is
convenient to work with the generalized current I���
=s i

t0

�
��S��� that can be expressed in terms of the Keldysh

Green functions of the interacting molecular level
Gdd

���t , t��=−i�Tcd�t��d†�t���� and of the uncoupled lead gLL
��

�with indexes � ,�=
�,
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I��� =
s

2

W�L� d��ei�Gdd

−+���gLL
+−��� − e−i�Gdd

+−���gLL
−+���� .

�3�

In the former expression, s=2 stands for spin degeneracy and
�L= tLd

2 /W is the coupling to the left contact expressed in
units of the inverse of density of states W=1 /
�L �supposed
to be constant�.

At second order in perturbation due to e-ph interaction,

the dot Green’s function can be written Ĝdd
 Ĝdd
�0�

+ Ĝdd
�0��̂dd

e-phĜdd
�0�, and the problem of finding the CGF is thus

equivalent to the one of computing e-ph self-energy in

Keldysh space �̂dd
e-ph in the presence of the counting field. We

retain two diagrams for the former. The first one is a Hartree-
like diagram �Fig. 1�a��, which is diagonal in Keldysh space,
frequency independent, of order �2 /�0, and does not exhibit
any jump at the inelastic threshold �V=�0�. The second dia-
gram is the exchange diagram �Fig. 1�b�� that is responsible
for the behavior of transport properties at the inelastic thresh-
old. The corresponding bubble expansion of S��� is shown
on Fig. 1�c� for the unperturbed CGF, Fig. 1�d� for the Har-
tree term and Fig. 1�e� for the exchange term. Taking into
account the Keldysh indexes, one obtains a natural decom-
position of I��� as I0���+ Iin���+ Iel���, where Iin��� is an
inelastic contribution, which arises from the nondiagonal el-
ements of the e-ph self-energy ��dd

+− and �dd
−+� and Iel��� from

the diagonal ones ��dd
++ and �dd

−−�.15 This decomposition is
equivalent to the one in Ref. 16.

The unperturbed current I0��� corresponds to resonant
tunneling across the molecular junction in absence of e-ph
interaction and is given by

I0��� =
s

2

� d�

��

�ei�fL�1 − fR� − e−i�fR�1 − fL�� ,

����� =
1

T
+ �ei� − 1�fL�1 − fR� + �e−i� − 1�fR�1 − fL� , �4�

where fL�R� is the Fermi distribution of the left �right� lead,
T���=4�L�R / ��2+ ��−�d�2� the zero bias transmission coef-
ficient and �=�L+�R the total coupling to the leads. The
corresponding CGF coincides with the one derived by Levi-
tov et al.3 Effects of e-ph interaction are included in the two
remaining terms. The inelastic contribution Iin��� can be
written as

Iin��� = −
s

2


2i

�2T��d�� d�

��
��L�ei�fL�dd

−+ + e−i��1 − fL��dd
+−�

+
i

��

���

��
��ei��LfL + �RfR��dd

−+

− �e−i��L�1 − fL� + �R�1 − fR���dd
+−�	 . �5�

This corresponds to tunneling processes with absorption
�emission� of a phonon. During such a process, the final en-
ergy of the scattered electrons increases �decreases� by an
amount �0 and the mean number of phonons decreases �in-

creases� by one unit. The last term Iel��� accounts for elastic
processes during which the energy of the scattered electrons
is conserved and is given by

Iel��� = −
s

2


i

�2T��d�� d�

��
2

���

��
��� − �d���dd

++ − �dd
−−�

+ i��L�2fL − 1� + �R�2fR − 1����dd
++ + �dd

−−�� . �6�

The term involving �dd
++−�dd

−− corresponds to a renormaliza-
tion of the transmission factor that gives logarithmic correc-
tions, whereas the term involving �dd

+++�dd
−− corresponds to

quasielastic tunneling with emission reabsorption of a pho-
non �hence the phonon population is unchanged� together
with a virtual leaking of the propagating electrons into the
leads.

The former compact formulas can be used to implement a
numerical computation of the FCS.15 Of particular interest is
the behavior of I��� at inelastic threshold, which is encoded
in the jump of the generalized conductance �G���
= �

�VI��� ��0
+ − �

�VI��� ��0
−. At zero temperature �assuming pho-

non population fB=0�, we find an analytical formula for
�G���,

�G��� = �Gin��� + �Gel��� ,

�Gin��� =
s

2

�e-ph

2 ei�

T��d�� 1

��;+��;−
− ei�L1	 ,

�Gel��� =
s

2

�e-ph

2 ei�

T��d�
� ��0

2 �2
− �d

2

4�L�R
�L2 + L3 − L1�

−
� − 1

4�
��� − 1�L1 + �� + 1��L3 − L2��	 , �7�

where we have introduced the dimensionless e-ph coupling
�e-ph

2 =�2 /�2 and the parameter �=�L /�R measuring the
asymmetry in the coupling to the leads. The following
notation is adopted ��;
����


�0

2 �, T
�T�

�0

2 �, L1

FIG. 1. Upper figure: second-order electron-phonon self energy
in Keldysh space �� ,�=
�. �a� Hartree term. �b� Exchange term.
lower figure: corresponding bubble expansion of the CGF S���. �c�
Unperturbed term. �d� Hartree term. �e� Exchange term.
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=1 /��;+��;−�1 /��;++1 /��;−�, and L2�3�=T� /��;

2 .

This formula is the main result of the Rapid Communica-
tion. We emphasize that it encodes the full energy depen-
dence of the model, i.e., it is not restricted to wide band
approximation, and allows to explore the behavior of the
derivative with respect to voltage of the order n cumulant
Fn= 1

t0T�0��e-ph
2

�
�V �qn�c, which exhibits a jump at phonon energy

given by

�Fn = � 1

in−1�e-ph
2

�n−1

��n−1

�G���
T�0� ��=0

. �8�

We show in Fig. 2 the phase diagrams derived for the first
three Fn factors, when exploring parameter space �� ,T�0��
by modulating �=�L /�R and shifting the molecular level �d.
The first F1 factor exhibits a jump at phonon energy �F1
�jump in the conductance�, easily expressed as

�F1;in =
s

2


T+T−

T�0�T��d�
�1 − �T+ + T−�� , �9�

�F1;el = −
s

2


T+T−

T�0�T��d�
� − 1

2�
��T− − T+� . �10�

The sign of �F1 �represented on upper panel of Fig. 2� has
been studied in Refs. 10–12. We find two regions of the
parameter space corresponding to a negative jump �in blue�
and a positive one �in red�. If �0�� �which is the case for
Fig. 2 where �0=10−2��, the contribution due to inelastic
processes �F1;in is positive when T�0��1 /2, due to the
opening of an inelastic channel and negative when T�0�
�1 /2, due to enhanced inelastic backscattering �the correc-
tion to this strong coupling behavior is of second order in
�0 /��. On the other hand, the contribution of quasielastic
processes to the jump �F1;el �of first order in �0 /�� is always
negative due to elastic backscattering. Interestingly, �F1;el is
proportional to �−1 and exactly zero when the contact is
symmetric ��=1�. We emphasize that quasielastic processes
contribute to the jump because of virtual propagation into the
electrodes during the emission-reabsorption process that is
Pauli blocked when V��0 �no available final scattering
states�. In the limit �→0, both quasielastic and inelastic pro-
cesses are of the same order of magnitude and fully compete.
The case of the second factor F2 �middle panel of Fig. 2�
corresponds to the jump in the noise at phonon energy �F2,

�F2;in =
s

2


T+T−

T�0�T��d�
�1 – 3�T+ + T−� + 2�T+

2 + T−
2 + T+T−�� ,

�11�

�F2;el =
s

2


T+T−

T�0�T��d�� T+T−

2�L�R
���0

2
�2

− �d
2�

−
� − 1

2�
��T−�1 − 2T− − T+� − T+�1 − 2T+ − T−��	 .

�12�

We find three regions of parameter space. For �0��, and in
the limiting case of a symmetric junction ��=1�, the result-
ing total jump in the noise �F2=�F2;in+�F2;el is positive
when T�0��1 /2−1 /2�2 or T�0��1 /2+1 /2�2 and negative
otherwise. This change in sign can be understood by the
following qualitative arguments. In the regime where T�0�
goes to 0 or 1, shot noise goes to zero due to Pauli principle,
and activated e-ph interactions open an inelastic channel
�positive contribution to noise�. In the intermediate regime
where T�0�
 1

2 , shot noise is maximal and activated e-ph
interactions result in a negative contribution to noise. The
same type of diagram is shown for the jump in the third
moment �F3 �jump in the skewness� on lower panel of Fig.
2, where the competition between quasielastic and inelastic
processes results in the partition of parameter space in four
regions.

The behavior of an arbitrary �Fn and the whole FCS can
be determined in the limit T→1, where we obtain the fol-
lowing analytic approximation of the CGF �Ref. 17�:

S��� 
 − iq̄0� − q̄1�e−i� − 1� , �13�

FIG. 2. �Color online� Sign of the jump in the derivative with
respect to voltage of the order n cumulant at phonon energy �Fn.
Parameter space is �� ,T�0��, and phonon energy is �0=10−2�.
From up to down: �F1 �jump in the conductance�, �F2 �jump in the
noise�, and �F3 �jump in the third moment�. The blue �red� color
encodes a negative �positive� jump.
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where q̄0= t0V /2
 and q̄1= t0 /2
�e-ph
2 /T��d��V−�0���V

−�0�. Below the inelastic threshold �V��0�, the distribution
Pt0

�q� is Gaussian �a delta peak at zero temperature� due to
perfect transfer of mean charge q̄0, whereas above that
threshold �V��0�, Pt0

�q� is distorted to a Poisson distribu-
tion for holes due to the activation of spontaneous phonon
emission �rare event for weak e-ph coupling�.

In conclusion, we have derived a compact formula for
computing the FCS of a molecular level weakly interacting
with a local phonon mode. The competition between quasi-
elastic and inelastic processes results in the partition of the
parameter space �� ,T�0�� into n+1 domains characterized
by a given sign in the jump of the generalized cumulant of
order n at phonon energy �Fn. In the limit of perfect trans-
mission, Pt0

�q� evolves from a Gaussian distribution for

electrons to Poissonian distribution for holes, under activa-
tion of e-ph interaction. Of immediate experimental interest
is the change of sign in the jump of noise. For temperatures
in the range of T=4–17 K, and typical energy of the phonon
mode �0
50 meV, the ratio T /�0
10−2–4.10−2 is very
small, and the jump is not smeared by thermal effects. The
amplitude of the jump being of order a few percent, we ex-
pect that the change in sign could be tested experimentally
along the lines of Ref. 12. At this point we would also like to
mention that we recently became aware of two closely re-
lated papers.18
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