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We study the transport properties of a quantum dot embedded in an Aharonov-Bohm ring in the presence of
spin-orbit interactions. Using a numerical renormalization-group analysis of the system in the Kondo regime,
we find that the competition of Aharonov-Bohm and spin-orbit dynamical phases induces a strong suppression
of the Kondo state singlet, somewhat akin to an effective intrinsic magnetic field in the system. This effective
field breaks the spin degeneracy of the localized state and produces a finite magnetic moment in the dot. By
introducing an in-plane Zeeman field we show that the Kondo resonance can be fully restored, re-establishing
the spin singlet and a desired spin-filtering behavior in the Kondo regime, which may result in full spin
polarization of the current through the ring.
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Semiconductor quantum dot �QD� structures represent a
promising platform on which to achieve charge and spin con-
trol, due to their discrete energy levels, sizable Coulomb in-
teraction due to strong electron confinement, as well as pre-
cise level and size manipulation via gate voltages.1 This
flexibility allows probing fundamental aspects of spin sys-
tems and opens possibilities for devices with newly tailored
properties.2 Interestingly, coherent electron propagation at
low temperatures and quantum interference may play a piv-
otal role in attaining the desired goal in these structures.3

Control of electronic transport is now systematically
achieved by exploiting interference in multiple-path geom-
etries, such as those produced with one or multiple QDs
embedded in a ring.4 In these structures, a weak magnetic
field through a ring ��few mT for a submicron ring� pro-
duces significant changes in transport properties due to the
Aharonov-Bohm �AB� effect.5 The presence of Rashba spin-
orbit �SO� interaction,6 which can be further modulated by
applied gate voltages, provides additional dynamical control
of charge and spin transport. The strong Coulomb interaction
in these systems may also result in a Kondo state appearing
below a characteristic Kondo temperature TK,7 giving rise to
strong antiferromagnetic correlations between localized and
itinerant electrons in the leads. The Kondo state singlet pro-
duces an additional transport channel through the system at
the Fermi level when the dot is in an otherwise Coulomb
blockaded configuration. Interestingly, the presence of SO
was conjectured long ago to suppress the Kondo effect of
magnetic impurities in bulk metals,8 although theoretical ar-
guments disproved that conclusion,9 revisited recently for
Rashba SO in two-dimensional systems.10

Several ring geometries have been proposed as spin po-
larizers and their behavior has been analyzed in different
regimes and levels of approximation in models that include
SO interactions.11–13 The basic physics involved in the spin-
filtering effect is the modification of the conductance for dif-
ferent spin species as a result of the AB flux and SO effects
that introduce spin-dependent dynamical phases for the elec-
trons in the multiply connected geometry. The correct and
complete inclusion of the Kondo physics is crucial in order
to provide a proper description of the system, as we describe

in this work, especially with respect to its spin transport be-
havior. One important element of this analysis is the full
consideration of particle-hole �p-h� asymmetry, which has
been ignored or included only approximately in previous
works, and it is found to have dramatic effects in the corre-
lations of the Kondo state for even the simplest geometry of
a QD embedded in the ring. We present here a numerical
renormalization-group �NRG� study of this system. This ap-
proach is capable of addressing the full spin-dependent char-
acter of the coupling to the leads and the p-h asymmetry in a
nonperturbative fashion.14 Our analysis demonstrates that the
combination of AB and SO effects may strongly suppress the
Kondo state and in fact eliminate the desired spin-filtering
effect described previously in the literature.12 Moreover, we
demonstrate that this suppression can be fully compensated
by the application of an in-plane Zeeman field. Under those
conditions, the Kondo screening is restored and the spin-
filtering effect re-established.

We consider a single QD in contact with two leads L and
R. The leads are coupled to each other via the upper arm of
the ring �see Fig. 1�, while the lower arm contains the QD.
The Hamiltonian of the system is H=HQD+Hleads+HT,
where HQD=���dnd�+Und↑nd↓ describes interacting elec-
trons confined in the QD with level energy �d regulated by a
local gate and U is the local Coulomb repulsion in the dot;
Hleads=��k��k�c�k�

† c�k�, with �=R ,L, describes the leads,

and HT=��k�V1�cd�
† c�k�+H.c.�+���Ṽ2

�cLk�
† cRk�+H.c.� de-

scribes the connection between the leads through both arms
of the ring, where cd�

† creates an electron in the dot and c�k�
†

creates it in the �th lead with spin �. The real coupling V1
allows the QD electron to tunnel to/from the leads. The AB
field is mapped, as usual, into a phase �AB �=2�� /�0,
where � is the magnetic flux through the plane of the ring,
�0=hc /e� accumulated when the electron undergoes a

closed trajectory in the ring so that Ṽ2→V2ei�AB is a complex
number. In addition, a local SO interaction on a single-level
QD can be mapped onto a spin-dependent phase ��SO,
which is proportional to the strength of the SO interaction
and accumulates along the ring �spin quantization axis of �
is in the plane of the ring�.11 The combined AB and SO
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effects can then be included by a spin-dependent phase of the

tunneling coupling Ṽ2
�=V2ei��, where V2= �Ṽ2

�� and
��=�AB+��SO. The appearance of �SO in the upper arm of
the ring can also be thought to arise from a variable relative
gate potential applied on that arm.3

Noninteracting case. We consider first the noninteracting
limit �U=0�. The exact Green’s functions �GFs� of the sys-
tem can be calculated; in particular the local GF at the QD is
Gdd

�0�����= ��−�d+	�����−1, where the self-energy is

	���� =
− 2V1

2

1 − V2
2�G̃����2

�G̃��� + V2�G̃����2cos ��� , �1�

with G̃���=�k��−�k�−1. We write the self-energy in terms of
its real and imaginary parts, 	����=
����+ i�����. All the
information about SO and AB phases is contained in the
second term of Eq. �1�. The spin-dependent contribution to
the self-energy is less important when the condition
V2 cos�����2D /� is fulfilled, where D is the half-
bandwidth of the leads.12 In the noninteracting case, even
when V2 cos�����2D /�, the spin-dependent term in the
self-energy is a relatively small correction. However, these
changes are crucial in the interacting case, as we will discuss
below.

Notice in Eq. �1� that for �AB=0, 	↑���=	↓��� �since the
cos is even�, although for arbitrary values of �AB the equality

does not hold. One has in general 
↑����
↓���, which
means that the local dot level acquires a spin-dependent
shift. This is similar to the effect of a Zeeman field, although
here the shifts are different in magnitude for each spin spe-
cies, and the shift is � dependent. Experiments where an
intrinsic magnetic field is observed have been reported re-
cently in an AB ring with strong Rashba SO interaction.3

To explore how this effect depends on system parameters,
we define 

����=
��� ,�SO�−
��� ,0�; this quantity
plays the role of the �-dependent magnetic field producing
the spin splitting. Figure 1�a� shows typical curves 

����
for V1=0.1414D, �AB=�SO=� /4, and different values of V2.
Figure 1�b� shows 

��0� as function of the coupling V2.
The maximum absolute value of 

��0� is obtained for
V2=2D /�.12 Notice that �

↑�0��� �

↓�0�� highlights the
p-h asymmetry and makes this phenomenon very different
from that of an external Zeeman field. Figures 1�c� and 1�d�
show the effective coupling �� that the localized electrons in
the QD have with the conducting leads. The SO interaction
and AB effect result in drastically different couplings �↑���
and �↓��� �although identical at the Fermi energy,
�↑�0�=�↓�0��. This has an important effect on the interacting
case, especially when the system enters the Kondo regime.
We emphasize that larger V2 values correspond to better con-
nectivity of the upper arm in the ring, while larger �SO arises
from larger SO coupling.3

Interacting case. In the following, we take U=0.5D and
�d=−U /2. In the NRG approach, the system is mapped into
an Anderson impurity coupled to an effective nonconstant
conduction band given by the effective spin-dependent cou-
pling �����=Im�	�����. A generalization of the NRG dis-
cretization for a nonconstant conduction band15 is used to
calculate the local interacting Green’s function.16 The latter
is written as �Gdd

� ����−1=�−�d+	�
����, where 	�

���� is the
proper self-energy from which we obtain the normalized lo-
cal density of states �LDOS�, �̃�=−���0�Im�Gdd

� ����.
Figure 2 shows the LDOS for V1=0.1414D, �AB=� /4,

and different V2 and �SO. Starting with V2=2D /� and
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FIG. 1. �Color online� Top: quantum dot embedded in
Aharonov-Bohm ring. �a� Noninteracting electron self-energy vs
frequency for V1=0.1414D, �AB=�SO=� /4 and various coupling
V2 /D, as indicated in panel �c�. �b� Self-energy energy shift


���=0� vs V2. �c� and �d� Effective coupling to leads �� vs �
for spin ↑ and ↓, respectively.
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FIG. 2. �Color online� Kondo peak splitting in the LDOS for
V1=0.1414D, �AB=� /4, and V2 and �SO as shown. Continuous
�blue� and dashed �red� lines are for spin ↑ and ↓, respectively.
Central inset shows QD effective free moment �2 for V2=2D /� vs
�SO.
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�SO=� /16 in Fig. 2�a�, one can see a small spin-resolved
shift in the Kondo peak, in addition to a clear asymmetry in
�.17 Increasing �SO in panels b and c results in stronger �
asymmetry and in weaker Kondo peaks near ��0. Similar
asymmetries have been found in a QD with ferromagnetic
leads,18 produced, as it is the case here, by different spin-
dependent couplings to the conduction electrons. The impor-
tance of the p-h asymmetry in the effective conduction band
has been demonstrated before;18 however, here the shape of
the effective coupling is determined by the AB and SO
phases and not from ferromagnetism in the leads. In Fig. 2�d�
we keep �SO=� /4, as in Fig. 2�c�, but decrease V2 to
1.022D /�; the Kondo peak is progressively restored as V2
decreases. This behavior can be qualitatively understood in
terms of the enhanced effective coupling ����� �and corre-
sponding larger TK� as V2 decreases, as seen in Figs. 1�c� and
1�d�. The inset in Fig. 2 shows the QD contribution to the
free magnetic moment vs �SO ��2= 	Sz

2
QD, where 	¯ 
QD is
the ground-state average after subtraction of the band
contribution14�. Notice that �2 increases with �SO, which
means that the QD magnetic moment is rapidly unscreened
by SO interactions.

As described previously,12 the suppression of the Kondo
peak at the Fermi level is detrimental to the spin-filtering
properties of the system, as the suppression prevents the ad-
ditional path to produce the required quantum interference in
the ring. We find that a way to restore the Kondo peak sup-
pressed by SO is to apply an in-plane magnetic field that
produces a Zeeman shift in the QD levels.18–20 Figure 3
shows the LDOS for different in-plane magnetic field B for
the same parameters as in Fig. 2�c�. The Kondo peaks are
progressively restored by increasing the Zeeman field and
reach their maximum at B=0.0049 �field is measured in en-
ergy units, corresponding to several Tesla in GaAs—of
course, the compensating field depends on the parameters of
the system, especially V2 and �SO�. Increasing B further rap-
idly suppresses the Kondo peak, as seen in Fig. 3�d�, over-
compensating the intrinsic magnetic field. The inset of Fig. 3

depicts �2 vs B, showing that �2→0 as B→0.0049, and the
complete screening of the local magnetic moment is restored.
Notice that the amplitude of the Kondo peak, although re-
stored by the Zeeman field, is somewhat different for spins ↑
and ↓. This asymmetry in spins arises not only from differ-
ences in ��, especially as �↑�0�=�↓�0�, but rather from the
fact that �

↑�0���

↓�0�, as seen in Fig. 1�b�. This dem-
onstrates the nontrivial effect of the p-h asymmetry and the
importance of considering it fully when evaluating the role
of electronic interactions. Moreover, as we now describe, this
asymmetry has dramatic effects on the conductance of the
system and on its spin-filtering properties.

We calculate the conductance in the zero-bias regime,
which can be written as12,19

G�/G0 = T0 − 2�̃0
�T0R0 cos����Re Gdd

� �0�

− �̃0�1 − T0�1 + cos2�����
Im Gdd
� �0� , �2�

where G0=e2 /h, T0=4r / �1+r�2 is the transmission through

the upper arm of the ring, R0=1−T0, �̃0=�0 / �1+r�, with
r=�2V2

2 /4D2, and �0=2�V1
2 /D.

The conductance G� is shown in Fig. 4�a� as function of
the Zeeman field. While G↑ remains in the unitary limit, G↓
drops sharply near B�0.0049. This can be understood in
terms of the contribution to the conductance in Eq. �2�: for
V2=2D /�, r=T0=1 and R0=0; in this case the second term
gives no contribution and the third term becomes

�̃0 cos2����Im�Gdd
� �0��. For �SO��AB=� /4, G↑ /G0�1 and

G↓ /G0=1− �̃0��↓�0��0,21 which gives the spin-filtering
condition �other values of the phases result in smaller con-
trast for the two spins�. In Fig. 4�b� we fix �AB=� /4 and
B=0.0049 and plot the conductance as function of �SO. We
see that G↑ remains close to the unitary limit in the interval
0��SO�� /2 while G↓ vanishes for �SO=� /4; the opposite
occurs in the complementary interval. The spin polarization
of the conductance, �= �G↑−G↓� / �G↑+G↓�, as function of
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FIG. 3. �Color online� LDOS vs � for Fig. 2�c� parameters and
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�SO is shown in Fig. 4�c�. Notice that for �SO=� /4 and
�SO=3� /4 the system exhibits almost perfect spin-polarized
conductance.

We have shown that the combination of SO interaction
and AB effect results in an effective magnetic field that
strongly suppresses the Kondo resonance. The transport be-
havior and the possibility of producing spin polarized con-
ductance are greatly affected. However, we show that it is
possible to fully restore the Kondo state screening and spin-
polarized transport by applying an in-plane Zeeman field.

Apart from its importance in spin-polarized transport, this
effect emphasizes the subtle interplay of many body correla-
tions and their control via external fields. It would be inter-
esting to explore this effect by measuring spin-polarized cur-
rents in this geometry.
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