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Pauli spin blockade in the presence of strong spin-orbit coupling
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We study electron transport in a double quantum dot in the Pauli spin blockade regime in the presence of
strong spin-orbit coupling. The effect of spin-orbit coupling is incorporated into a modified interdot tunnel
coupling. We elucidate the role of the external magnetic field, the nuclear fields in the dots, and the spin
relaxation. We find qualitative agreement with experimental observations, and we propose a way to extend the
range of magnetic fields in which blockade can be observed.
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Blockade phenomena, whereby strong interactions be-
tween single particles affect the global transport or excitation
properties of a system, are widely used to control and detect
quantum states of single particles. In single electron transis-
tors, the electrostatic interaction between electrons can block
the current flow,' thereby enabling precise control over the
number of charges on the transistor.? In semiconductor quan-
tum dots, the Pauli exclusion principle can lead to a spin-
selective blockade,® which has proven to be a powerful tool
for read-out of the spin degree of freedom of single
electrons.*%

In this spin blockade regime, a double quantum dot is
tuned such that current involves the transport cycle
(0,1)—(1,1)—(0,2)—(0,1), (n,m) denoting a charge
state with n(m) excess electrons in the left(right) dot [see
Fig. 1(a)]. Since the only accessible (0,2) state is a spin sin-
glet, the current is blocked as soon as the system enters a
(1,1) triplet state [Fig. 1(b)]; transport is then due to spin
relaxation processes, possibly including interaction with the
nuclear fields.’ This blockade has been used in GaAs quan-
tum dots to detect coherent rotations of single electron
spins,*> coherent rotations of two-electron spin states,® and
mixing of two-electron spin states due to hyperfine interac-
tion with nuclear spins.”8

Motivated by a possibly large increase in efficiency of
magnetic and electric control over the spin states,'®!! also
quantum dots in host materials with a relatively large g fac-
tor and strong spin-orbit interaction are being investigated.
Very recently, Pauli spin blockade has been demonstrated in
a double quantum dot defined by top gates along an InAs
nanowire.'>!® However, as compared to GaAs, spin blockade
in InAs nanowire quantum dots seems to be destroyed by the
strong spin-orbit coupling: significant spin blockade has been
only observed at very small external magnetic fields
[=10 mT (Ref. 12)]. An important question is whether there
exists a way to extend this interval of magnetic fields. To
answer that question, one first has to understand the physical
mechanism behind the lifting of the blockade.

In this work we study Pauli spin blockade in the presence
of strong spin-orbit mixing. We show that the only way
spin-orbit coupling interferes with electron transport
through a double dot is by introducing nonspin-conserving
tunneling elements between the dots. This yields coupling of
the (1,1) triplet states to the outgoing (0,2) singlet, thereby
lifting the spin blockade. However, for sufficiently small ex-
ternal magnetic fields this does not happen. If the (1,1) states
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are not split apart by a large Zeeman energy, they will rear-
range to one coupled decaying state and three blocked states.
When the external field B, is increased, it couples the
blocked states to the decaying state. As soon as this field-
induced decay grows larger than the other escape rates (i.e.,
BI'/>>T,, where I' is the decay rate of the (0,2) singlet, ¢
the strength of the tunnel coupling, and I'y; the spin relax-
ation rate,'* the blockade is lifted. Therefore, the current ex-
hibits a dip at small fields.

The presence of two random nuclear fields in the dots (of
typical magnitude K~ 1 mT) complicates matters since it
adds another dimension to the parameter space. We distin-
guish two cases: if the nuclear fields are small compared to
/T, they just provide an alternative way to escape spin
blockade, which may compete with spin relaxation. There is
still a dip at small magnetic fields, and the current and width
of the dip are determined by the maximum of I'.; and
K?T'/#*. In the second case, K> /T, the current may exhibit
either a peak or a dip, depending on the strength and orien-
tation of the spin-orbit mixing. If there is a peak in this
regime, the crossover from dip to peak takes place at
K~2/T.
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FIG. 1. (Color online) Double quantum dot in the Pauli spin
blockade regime. (a) The double dot is coupled to two leads. Due to
a voltage bias, electrons can only run from the left to the right lead.
(b) Energy diagram assuming spin-conserving interdot coupling.
The only accessible (0,2) state is a spin singlet: all (1,1) triplet
states are not coupled to the (0,2) state and the current is blocked.
(c) Energy levels and transition rates assuming nonspin-conserving
interdot coupling. We consider the “high”-field limit and neglect the
effects of the nuclear fields. Then three of the four (1,1) states can
decay, leaving only one spin blockaded state |a). Isotropic spin
relaxation ~I",; causes transitions between all (1,1) states.
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Let us now turn to our model. We describe the relative
detuning of the (1,1) states and the (0,2) states by the

Hamiltonian H,=—A|Sp,)(Sya|, where |Sy,) denotes the (0,2)
spin singlet state. The energies of the four (1,1) states are

further split by the magnetlc fields actlng on the electron

spins, H BO(SZ+SR)+KL SL+KR SR, where SL () is the
electron spin operator in the left (right) dot [for InAs nano-
structures g ~7 (Ref. 15)]. We chose the z axis along EO and
included two randomly oriented effective nuclear fields K LR
resulting from the hyperfine coupling of the electron spin in
each dot to N nuclear spins [in InAs quantum dots
N~10°_(see Ref. 15), yielding a typical magnitude
Kx1/Y\N~0.6 ueV]. We treat the nuclear fields classically,
disregarding feedback of the electron spin dynamics, which
could lead to dynamical nuclear spin polarization.'®

Let us now analyze the possible effects of spin-orbit cou-
pling. (i) It can mix up the spin and orbital structure of the
electron states. The resulting states will remain Kramers dou-
blets, thus giving no qualitative difference with respect to the
common spin-up and spin-down doublets. (ii) The mixing
also renormalizes the g factor that defines the splitting of the
doublets in a magnetic field. This, however, is not seen pro-
vided we measure B, in units of energy. (iii) The coupling
also can facilitate spin relaxation,!” but this is no qualitative
change either. Some of these aspects have been investigated
in Ref. 18.

The only place where strong spin-orbit interaction leads to
a qualitative change is in the coupling between the dots. (i)
The interdot tunnel coupling provides a finite overlap of
states differing in index of the Kramers doublet (in further
discussion we refer to this index as “spin”), effectively intro-
ducing non-“spin”-conserving tunneling elements. (ii) The
mutual Coulomb interaction between electrons in different
dots introduces an effective spin-spin coupling scaling with
Bj (see Ref. 10). Both these mechanisms influence the elec-
tron spin dynamics in the system and could be responsible
for lifting of the spin blockade. However, when all energy
scales investigated are much smaller than the typical orbital
energy splitting E_, in the dots, the effect of the tunnel cou-
pling dominates that of the Coulomb interaction.!? Since
most lifting effects were observed at Bp~ 10 mT<E_,, we
are working in this regime and therefore focus on the spin-
orbit modified tunnel coupling.

The most general nonspin-conserving tunneling Hamil-
tonian for two doublet electrons in left and right states reads
as H,= Eaﬁ{ ﬁaLaaRBHRBaRaaw} with a, 8 being the spin
indices, dj ) and d; ) are the electron creation and annihi-
lation operators in the left (right) state, and “® are coupling
matrices. We impose conditions of hermiticity and time re-
versibility on FAIt and concentrate on the matrix elements be-
tween the (1,1) states and |S,) in our double dot setup. In the
convenlent basis of orthonormal unpolarized triplet states
T, )=i""VH{|T )= IT)}A2, |T,)=1T,), and the (1,1) sin-
glet |S) this Hamiltonian reads as

H,=if - |T)Soy| + 10|S)(Sea| + H.c., (1)

vector of new coupling parameters, f:{tx,ty,tz}, to the usual
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spin conserving f,, the vector being a “real” vector with re-
spect to coordinate transformations. The degree of spin state
mixing by spin-orbit interaction, and therefore the typical
ratio |7]/1,, is estimated as E,,/E,,, with E being the energy
scale of the matrix elements in the spin-orbit interaction
Hamiltonian. We assume that E,, = E, 4, (which is believed to
be the case in InAs structures), and then all four coupling
parameters are generally of the same order of magnitude
foxy:~t. As the structure of the localized electron wave
functions is very much dependent on the nanostructure de-
sign and its inevitable imperfections, the direction of 7 is hard
to predict: we consider arbitrary directions.

We describe the electron dynamics with an evolution
equation for the density matrix.® Next to the Hamiltonian
terms, we complement the equation with (i) the rates ~T°
describing the decay of |S,) and the refill to a (1,1) state and
(ii) a small electron spin relaxation rate I',,<I". The full
evolution of the electron density matrix then can be written
as

dp

Z:_Z[H +H +Ht»p]+Fp+Frelp (2)
Experimentally, the temperature exceeds the Zeeman
energy,'? allowing us to assume isotropic spin relaxation:
each (1,1) state will transit to any of the other (1,1)
states with a rate I'./3. Explicitly, we use
Frelﬁ=—I‘relf)+éFreIEa,d&jﬁ&j, with 67 being the Pauli
matrices in the left (right) dot.

Motivated by experimental work, we assume that the de-
cay rate I' of |S,) is by far the largest frequency scale in Eq.
(2), i.e., '>By,K,t,I' (in principle I' can be comparable
with the detuning A). Under this assumption, we separate the
time scales and derive the effective evolution equation for
the density matrix in the (1,1) subspace

dp _ r Ao A | ina .
o= Z[Hm+Ht’p]_Gomp+Gmp+Frelp' (3)

The decay and refill terms are now incorporated into

G = 28T 2Tor + 8, T Tod T/ (D2 + 4A%)

kl,mn

G}cl;,mn = 5len2T2mF/(F2 + 4A2) 5 (4)
where T,,=(a|H|Sy). The coupling between the dots
gives also rise to an exchange Hamiltonian (H));
=4T,,T,,A/(T?+4A?), with H,~G*"* provided that I'~ A
This anisotropic exchange interaction has been investigated
in detail in Ref. 19. The diagonal elements of G°" give us
the decay rates: if we consider |7.) and |T), the three tri-
plet states split by an external magnetic field, we
find F‘O—Gf’i‘"i ii—2I‘(t +1 2)/(I2+4A% and 5= Goo0
=4It /(T2 +4A2), all of which are ~I°~ /T

Let us neglect for a moment the nuclear fields and focus
on zero detuning, A=0. This allows us to grasp qualitatively
the peculiarities of the spin blockade lifting, determined by
competition between the Hamiltonian (~B) and dissipative
terms (~#>/T",T";) in Eq. (3).

At sufficiently large fields, the basis states |7,) and
|S) are aligned in energy. The spin-orbit modulated tunnel
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FIG. 2. (Color online) Current as a function of By, at A=0, and
neglecting the nuclear fields. Around zero field a dip is observed,; its
width depends on the magnitude and orientation of 7.

coupling then sets the difference between these states,
which 1s best seen in a basis that mixes the states,
|y ={to| To) +it.|S)}H/\i2+12 and |B)={it|To)+1o|S)}H/ g +72.
Now |a) is a blocked state, i.e., Goy, ,,=0, while |3) decays
with an effective rate I'y'= %LE’BB=4F(I(2)+§)/(F2+4A2). In
Fig. 1(c) we give the energy levels of the five states and all
transition rates in the limit of “large” external fields. It is
clear that the system will spend most of its time in the state
|@). The current is determined by the spin-relaxation decay
rate of this state to any unblocked state, 3I',,;/3=I",,. Let us
note that if n,, states out of n states are blocked, such a decay
produces on average n/n,;, electrons tunneling to the outgoing
lead before the system is recaptured in a blocked state.
Therefore, the current is I/e=41".

This picture holds until the decay rates of the three non-
blocked states become comparable with I',, which takes
place at By~ vI'*I'},. To understand this, let us start with
considering the opposite limit, By<<\I'°T.,. In this case all
four (1,1) states are almost aligned in energy, and the instruc-
tive basis to work in is the one spanned by a single decaying
state, |m)=/{if-|T)+10|S)}/\|f>+}, and three orthonormal
states |1), |2), and |3) that are not coupled to [Sy,). At
B(y=0 three of the four states are blocked, and spin relaxation
to the unblocked state proceeds with a rate I',,;/3. A relax-
ation process produces on average n/n,=4/3 electron trans-
fers so that the total current is reduced by a factor of 9 in
comparison with the “high”-field case, I/ e= %Frel' This factor
of 9 agrees remarkably well with experimental observations
[see Fig. 2b in Ref. 12].

We now add a finite external field By, to this picture. Since
f is generally not parallel to By, the external field will split
the states |1), |2), and |3) in energy and mix two of them with
the decaying state |m). This mixing results in an effective
decay rate ~Bg/ I'*°, which may compete with the spin re-
laxation rate I',. At By~+\I"*T",,;, we cross over to the
“high”-field regime described above, where only one
blocked state is left. Therefore, the current exhibits a dip
(suppression by a factor of 9) around zero field with a width
estimated as VI'*°T",; (Fig. 2).

Let us now include the effects of the nuclear fields K, LR ON
a qualitative level. If the fields are small compared to the
scale 72/T, their only relevant effect is to mix the states de-
scribed above. This mixing creates a new possibility for de-
cay of the blocked states, characterized by a rate
Iy~ K?/T*°. This rate may compete with spin relaxation
~TI", and could cause the current to scale with 'y, and the
width of the dip with K. In the opposite limit, K> 1*/T", the
nuclear fields dominate the energy scales and separation of
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FIG. 3. (Color online) The current I=ep,,I" for (a) and (b) large,
(c) and (d) intermediate, and (e) and (f) small tunnel coupling. The
dip observed around zero field (a) disappears when t(z)/ I'~K (c) and
evolves into a peak for even smaller tunnel coupling (e).

the (1,1) states at By< K. Then, generally all four states are
coupled to |Sy,) on equal footing and the spin blockade is
lifted. Qualitatively, this situation is similar to that without
spin-orbit interaction [see Eqgs. 10-12 in Ref. 9]. Without
spin-orbit interaction, an increase in magnetic field leads to
blocking of two triplet states, resulting in a current peak at
zero field. With spin-orbit interaction, f,, still couple the
split-off triplets to the decaying state. Depending on the
strength and orientation of 7, the current in the limit of “high”
fields can be either smaller or larger than that at By=0, so we
expect either peak or dip. If it is a peak, the transition from
peak to dip is expected at K~ 1", that is, at 1~ VKT Indeed,
such a transition has been observed upon varying the mag-
nitude of the tunnel coupling (Fig. 2 in Ref. 12). If we as-
sume that K~ 1.5 mT and associate the level broadening
observed (~100 weV) with I', we estimate t~8 ueV,
which agrees with the range of coupling energies mentioned
in Ref. 12.

Let us now support the qualitative arguments given above
with explicit analytical and numerical solutions. The current
through the double dot is evaluated as I/e=p,,I’, with p,,
being the steady-state probability to be in |S,), as obtained
from solving Eq. (2). We give an analytical solution for
A=0, neglecting the nuclear fields and expressing the answer
in terms of the dimensionless parameter 7/,= 7. Under these
assumptions, we find

8 B
1=t 1= 2 ) ®

with B,=2\2(1+| 7 (172 + 72) " \T /T and Iy =4el ;.
The current exhibits a Lorentzian-shaped dip [see Fig. 2;
compare with Fig. 2(b) in Ref. 12]. The width B, and the
limits at low and “high” fields agree with the qualitative
estimations given above.

To include the effect of the two nuclear fields, we com-
pute steady-state solutions of Eq. (2) and average over many
configurations of I?L,R.g In Fig. 3 we present the resulting
current versus magnetic field and detuning for three different
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regimes. To produce the plots we turned to concrete values of
the parameters, setting I'=0.1 meV, I',,=1 MHz, and
7=0.25%{1,1,1}. We averaged over 5000 configurations of
I?L,R, randomly sampled from a normal distribution with a
rms of 0.4 ueV.

In Figs. 3(a) and 3(b) we assumed large tunnel coupling,
2/T=6 peV so that KI'/£3=0.07 is small. In Fig. 3(a) we
plot the current at A=0, while in Fig. 3(b) we plot it versus
detuning for different fixed B,. We observe in Fig. 3(a) a
Lorentzian-like dip in the current at By=0. While it
looks similar to the plots in Fig. 2, the width is determined
by the nuclear fields since K>1',;. The curve can be
accurately fit with Lorentzian (5), giving B.=7.4K and I,
=0.62 K’I'/t,. Figure 3(b) illustrates the unusual broadening
of the resonant peak with respect to its natural width deter-
mined by I'. The width in this case scales as ~#3/K and is
determined by competition of I'*° and T"y. These plots quali-
tatively agree with data presented in Fig. 2(b) in Ref. 12. In
Figs. 3(c) and 3(d) we present the same plots for smaller
tunnel coupling, té/F=0.2 peV=0.5K. We included in plot
(c) the curves for two random nuclear field configurations: it
is clear that the current strongly depends on I?L,R, which
agrees with our expectation that in the regime I';,;<I'y the
current Jo<I"yo K2, Remarkably, averaging over many con-
figurations smoothens the sharp features at small B, (c.f. Ref.
9). Plots (d) exhibit no broadening with respect to I, in cor-
respondence with Fig. 2a of Ref. 12. In Figs. 3(e) and 3(f) we
again made the same plots for yet smaller tunnel coupling,
15/T'=2 neV<K. Since the nuclear fields now dominate the
splitting of the (1,1) states, we see a peak comparable to the
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one in Fig. 4 of Ref. 9 surmounting a finite background
current due to spin-orbit decay of the split-off triplets.

We expect our results to hold for any quantum dot system
with strong spin-orbit interaction. Indeed, recent experiments
on quantum dots in carbon nanotubes in the spin blockade
regime?® display the very same specific features as, e.g., a
zero-field dip in the current.

Now that we understand the origin of the lifting of spin
blockade, we also propose a way to extend the blockade
region. If one would have a freely rotatable magnet as source
of the field B, one would observe a large increase in width

of the blockade region as soon as 1§0 and 7 are parallel. One
can understand this as follows. If 7 effectively points along
the z direction, 7, and #, and thus 'Y are zero: the states |7.)
are blocked (see Fig. 2). As |T.) are eigenstates of the field
By, this blockade could persist up to arbitrarily high fields.
Since |T,) and |S) are rotated into |a) and |B), current will
then scale in general with the antiparallel component of spin
instead of only the spin singlet.

To conclude, we presented a model to study electron
transport in the Pauli spin blockade regime in the presence of
strong spin-orbit interaction. It reproduces all features ob-
served in experiment, such as lifting of the spin blockade at
high external fields or at low interdot tunnel coupling. We
explain the mechanisms involved and identify all relevant
energy scales. We also propose a simple way to extend the
region of spin blockade.

We acknowledge fruitful discussions with A. Pfund, S.
Nadj-Perge, S. Frolov, and K. Ensslin. This work is part of
the research program of the Stichting FOM.
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