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The validity of the linear elasticity theory is examined at the nanometer scale by investigating the vibrational
properties of silver and gold nanoparticles whose diameters range from about 1.5–4 nm. Comparing the
vibration modes calculated by elasticity theory and atomistic simulation based on the embedded-atom method,
we first show that the anisotropy of the stiffness tensor in elastic calculation is essential to ensure a good
agreement between elastic and atomistic models. Second, we illustrate the reduction in the number of vibration
modes due to the diminution of the number of atoms when reducing the nanoparticles size. Finally, we exhibit
a breakdown of the frequency-spectra scaling of the vibration modes and attribute it to surface effects. Some
critical sizes under which such effects are expected, depending on the material and the considered vibration
modes, are given.
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I. INTRODUCTION

Describing structural and elastic properties at the nano-
meter scale has recently raised the interest of many scientists.
Especially, the applicability of the linear elastic theory is
questioned at these scales. Various approaches can be used to
test the validity of linear elasticity. Different groups have
tried to measure the elastic properties, most often the Young
modulus, by mechanical deformation while decreasing the
system size.1–5 Another approach to probe the elastic proper-
ties uses acoustic vibration of nanoparticles �NP� and is
mainly based on light or neutron scattering. Acoustic vibra-
tion modes frequencies of NP measured by Raman scattering
or pump-probe experiments are fairly well reproduced by
linear elastic-theory calculations even for NPs with sizes of a
few nanometers.6–9

The present work is concerned with the validity of elas-
ticity within the vibration properties computed for systems
whose sizes are smaller than the ones currently and experi-
mentally explored. To achieve this goal, we compare the vi-
bration modes calculated by linear elasticity and atomistic
semiempirical potential calculations in the case of metallic
NP of diameter ranging from 1.4 to about 4 nm. The choice
of metallic NP is motivated by the interest they arouse
among the physicists community due to their plasmon prop-
erties opening many promising applications.10,11

Vibration properties of metallic NPs have been the subject
of many theoretical studies using the linear elasticity or ato-
mistic simulation, and experiments. Since the nineteenth cen-
tury, linear elasticity has been used to calculate the vibra-
tional modes of spherical particles;12 such calculations
generally agree well with experimental measurements of NP
vibrations.7,13 Different refinements of this model have been
performed taking into account the anisotropy of the stiffness
tensor, the nonspherical shapes of the nanoparticles, and ma-
trix effects.14–16 The improvements in the experimental en-
ergy resolution and in the synthesis of such NPs have al-

lowed to demonstrate subtle effects due to the anisotropy of
the stiffness tensor17 and due to the shape of the NPs.9,18

On the other side, using atomistic simulations, Raman and
Kara19,20 studied the vibrational density of state of metallic
NPs. They showed that there is an enhancement in the vibra-
tional density of states at low frequencies and an overall shift
in the high-frequency band beyond the top of the bulk
phonons when decreasing the NP size. The effect of the cap-
illary pressure induced by the surface of the NPs has also
been exhibited on the vibrational density of state using ato-
mistic numerical approaches.21,22 Besides the study of the
vibrational density of states, several studies have focused on
few given vibration eigenmodes of NPs. Focusing on
Raman-active vibration modes, the elasticity theory showed
a very good agreement with atomistic calculations in spheri-
cal germanium nanoparticle.23,24 Recently, a breakdown of
frequency-spectra scaling of, respectively, silicon and zinc
oxide nanoparticles have been evidenced using atomistic
simulations and attributed to surface effects.14,25,26

In this study, we would like to address three issues con-
cerning the vibration properties of metallic NPs comparing
the linear elasticity predictions and atomistic calculations.
First, we compare the vibration modes of metallic NPs cal-
culated using either the elasticity theory or an atomistic ap-
proach based on an embedded-atom model �EAM�. A similar
study has been performed by Cheng et al.23 in the case of
germanium NPs. However, their elastic calculations did not
take into account the anisotropy of the stiffness tensor. In this
study, we show that taking into account this anisotropy in the
elastic calculations improves the agreement between both ap-
proaches and that linear elasticity reproduces very well the
vibration modes of NPs having a diameter of a few
nanometers.

Second, it is well known that the vibration properties of a
NP containing N atoms can be described by 3N normal vi-
bration modes. Therefore reducing the size of the NP also
reduces the number of normal vibration modes. Elasticity, as
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for it, cannot take into account this reduction because of its
description using a continuum medium. Some studies in-
clude this reduction in elasticity theory by artificially limit-
ing the number of modes.27 In this study, we illustrate the
reduction in the number of normal modes by showing the
disappearance of certain modes while decreasing the NPs
size.

Third and finally, while elasticity predicts that the fre-
quency of a given normal mode scales as the inverse of a
characteristic length of the NP, surface effects can alter this
law.14,25 We analyze this scaling in the case of silver and gold
spherical NPs and exhibit a characteristic size under which
the frequency scaling break down. The breakdown of this
scaling law is related to the surface-stress and surface-
relaxation effects.

Section II describes the numerical method used for the
elastic calculations, the atomistic model, and the procedure
used for comparing the two models. Section III addresses the
three problems mentioned above. Most of the results pre-
sented here concern silver NPs, except for the last issue for
which the case of gold NP has been considered.

II. METHOD

A. Elastic calculation

1. Solving the Navier equation with an anisotropic
stiffness tensor

The displacement fields u� associated to each vibration
mode are calculated in the scope of the linear elasticity
theory by solving the Navier equation,28

��2ui + �
jkl

Cijkl
�2uk

�xl � xj
= 0, �1�

where � is the mass density, � is the frequency, ui is the ith
component of the displacement fields u� , and C is the fourth-
order stiffness tensor. This equation can be solved analyti-
cally for a spherical system in the particular case of an iso-
tropic stiffness tensor.12 In the case of an anisotropic stiffness
tensor, we turn to a numerical solver. Using the scheme of
Visscher et al.,29 we develop the displacement field compo-
nents on a polynomial basis. Solving Eq. �1� then reduces to
matrix algebra. We use in this study polynomials of order up
to 20 to ensure the convergence of the method. Note that this
parameter depends on the vibration mode of interest; high-
frequencies vibration modes commonly correspond to high
spatial frequencies which require an extensive polynomial
basis.

2. Modes of interest and identification

Several experimental techniques enable the observation of
acoustic vibration modes, the main ones being inelastic neu-
tron scattering �INS�,30 Raman-scattering, time-resolved
pump-probe experiments, and far-infrared absorption.
Whereas the absence of selection rules in INS makes it sen-
sitive to all vibrations, the three other cited experimental
techniques only probe a few acoustic vibration modes.
Therefore, among the very numerous calculated vibration

modes, we are mainly interested in those observable by
Raman-scattering experiments. Selection rules for Raman
scattering and far-infrared absorption for an isotropic solid
sphere have been given by Duval.31 Only the breathing
�spheroidal, �=0� and quadrupolar �spheroidal, �=2� modes
are Raman active. Note that time-resolved pump-probe ex-
periments only detect the breathing modes of spherical NP.32

The irreducible representations corresponding to all the
vibration modes have been determined after the displacement
fields have been calculated.15 For a sphere made of a mate-
rial having a cubic elasticity �such as silver or gold�, the
nondegenerate breathing mode transforms into an A1g vibra-
tion �Oh point group�. The quadrupolar mode splits into Eg
and T2g vibrations15,17 and the corresponding frequency split-
ting is large, making the usage of elastic anisotropy a key
factor for materials such as gold or silver.

B. Atomistic calculation

1. Calculation details

We perform atomistic simulations using the EAM poten-
tials developed by Clery and Roseto.33 Table I reports struc-
tural and elastic properties calculated in the scope of this
model for silver and gold using the program GULP.34–36 The
calculated elastic coefficients have been used as input in the
Navier Eq. �1� in Sec. II A in order to focus on the compari-
son of the models and eliminate possible differences arising
from slightly different elastic tensors.

Spherical NPs are designed with atoms initially placed on
a perfect cubic close-packed crystal structure using the bulk
cell parameters of the modeled material. Our NPs do not
specifically reproduce NPs with magic number.38 In addition,
our construction procedure inevitably produces some steps
and facets especially for very small NP. The total energy is
then relaxed using a conjugate gradient algorithm; this pro-
cedure ensures that all vibration eigenfrequencies are real.
Our model omits the possible existence of surface recon-
structions and dangling bonds; these aspects could correctly
be addressed using more sophisticated techniques �for in-
stance density functional theory or tight binding�. The dy-
namical matrix is then computed and diagonalized to obtain
eigenfrequencies and eigenvectors. Eigenvectors are normal-
ized for the usual scalar product in the real space of dimen-
sion 3N with N the number of atoms in the NP. In the fol-
lowing, we study spherical NPs from 19 to 2072 atoms
corresponding to diameter ranging from 1.6 to 4.3 nm for

TABLE I. Cell parameter and elastic coefficients of Ag and Au
calculated using the EAM parameters of Cleri and Rosato �Ref. 33�.
Elastic coefficients are expressed in GPa. Experimental data �Ref.
37� for elastic coefficients are reported in parenthesis.

Silver Gold

a 4.078 Å 4.079 Å

C11 132.81 �131� 187.38 �187�
C12 97.47 �97� 154.40 �155�
C44 51.11 �51� 44.71 �45�
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silver NPs and from 10 to 2491 atoms corresponding to di-
ameter ranging from 1.4 to 4.5 nm for gold NPs. The validity
of the EAM potential for a 10 atom NP is arguable and we
admit that an ab initio density-functional calculation would
be more appropriate in this case. However, in the following,
we compare the vibration properties of NPs on a large range
of sizes. As a result, it does not seem judicious to use differ-
ent atomistic models for different sizes since it would also
result in a slight modification of the elastic stiffness tensor.
As a matter of fact, though quantitative results for the small-
est NPs would need a more accurate modeling, we believe
that results described below are semiquantitative in the sense
that they give a good sketch of the vibration properties of
NPs while reducing size. In the following, we will refer to
atomistic modes for vibration modes calculated in the frame-
work of the atomistic EAM calculations.

2. Mode identification

While the linear elasticity theory assumes a continuous
medium and thus provide a displacement field for each vi-
bration mode, atomistic vibration modes are described by the
data of each atom moves.24 For this reason, and because the
precise symmetry of the NPs shapes is not fixed when relax-
ing the energy, the symmetry analysis we did in the case of
the elastic calculation becomes more troublesome in the case
of atomistic modes. Instead, we prefer to project elastic
modes on atomistic ones as it has already been done in the
case of semiconductor NPs.23 The scalar product of the pth
elastic mode with the qth atomistic mode reads

�u�p
elas�u�q

atomic� = �
i�atoms

u�p
elas�R� i� · u�q,i

atomic, �2�

where R� i are the atomic positions in the atomistic model and
u�q,i

atomic is the displacement of atoms i located at position R� i.
Note that atomistic modes are normalized for this scalar
product. We also normalize elastic modes so that

�
q

�u�p
elas�u�q

atomic�2 = 1. �3�

A more relevant quantity is the sum of such squared pro-
jections of elastic modes onto atomistic ones for all degen-
erate elastic modes having the same irreducible representa-
tion and eigenfrequency.15 More precisely, if �elas is a set of
such elastic modes, we define its projection on atomistic
ones as

Qq
�elas =��p��elas

�u�p
elas�u�q

atomic�2

N�elas

, �4�

where N�elas
is the number of modes in the set �elas. The

denominator in Eq. �4� ensures the normalization condition
�similar to Eq. �3�	 for the projection of a set of elastic
modes. The quantity Qq

�elas does not depend on the choice of
degenerate elastic displacements. As such, it is suitable for
the comparison with atomistic calculations and will be used
in the following.

III. RESULTS

A. Elastic regime: Relevance of the anisotropy
of the stiffness tensor

Mode projection

When surface effects are negligible, i.e., the NPs size is
larger than a characteristic size which will be established
below, the elasticity theory reproduces very well the atomis-
tic calculations. Figure 1 reports the projection of the set of
fundamental quadrupolar Eg and T2g modes calculated by
elasticity theory on atomistic modes for a 4.3 nm diameter
silver spherical NP using Eq. �4�. In order to show the rel-
evance of the anisotropy of the stiffness tensor in elastic
calculations, Fig. 1 reports the projection of the set of fun-
damental quadrupolar elastic modes calculated using both an
isotropic and an anisotropic stiffness tensor. The anisotropic
elastic calculations use the stiffness tensor calculated from
the EAM atomistic model and reported in Table I. The iso-
tropic calculation uses a stiffness tensor obtained using the
three-dimensional averaged sound velocities. Atomistic cal-
culations intrinsically include the anisotropy of the elastic
properties.

In the isotropic elastic approximation, the displacements
of the five quadrupolar vibrations �m=0, �1, �2� corre-
spond to a single frequency. In the anisotropic elastic ap-
proximation, this degeneracy is partially lifted. As a result,
two of these “quadrupolar” vibrations have the same fre-
quency �Eg vibrations� and the three others have a different
frequency �T2g vibrations�. It should be noted that the main
effect of elastic anisotropy is to split the frequencies into two
groups but that the corresponding displacements are almost
unaffected.15 Figure 1 provides a simple way to check that
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FIG. 1. Projection of the fundamental quadrupolar elastic vibra-
tion modes of a 4.3 nm diameter silver spherical NP, calculated
using the linear elasticity theory on atomistic ones using the scalar
product given in Eqs. �2� and �4�. Results are reported for both
isotropic �above� and anisotropic �below� calculations. For isotropic
calculations, the quadrupolar elastic vibrations modes form a set of
five degenerated modes with the same irreducible representations.
In the anisotropic calculations, quadrupolar modes splits in two sets
of modes of respective symmetry Eg and T2g. Abscissa denotes
atomistic modes using their frequency in cm−1.
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taking into account anisotropy in the elastic calculations sig-
nificantly improves the description. The quadrupolar modes
from the isotropic elastic calculation have a significant pro-
jection onto atomistic modes over a much larger range than
the corresponding anisotropic quadrupolar elastic modes.
Therefore the anisotropic description is clearly an improve-
ment. The Eg vibrations have a significant projection over a
narrow frequency range. For the T2g vibrations, the projec-
tions are significant over a larger frequency range, but this is
probably due to the light mixing which occur in the elastic
calculations between the T2g branches coming from the iso-
tropic quadrupolar and torsional ��=3� modes.15 This mixing
is different within the atomistic approach which explains the
appearance of an additional peak at higher frequency
�
16.3 cm−1�. In the following, elastic calculations always
use the anisotropic stiffness tensor defined from Table I.

B. Size dependence and mode-number reduction

Following the work of Cheng et al.,23 we report in Fig. 2
the evolution of the projection of the fundamental breathing
mode for different silver spherical NP sizes. This particular
mode is the A1g vibration with a frequency close to the iso-
tropic breathing mode and having the largest volume
variation.15 The projection of this elastic mode onto the ato-
mistic ones is all the more peaked on a single atomic mode
for big NPs. This observation agrees with the expectation
that elasticity works well for large NPs for which the con-
tinuous medium approximation is more appropriated. Note
that even for a very small NP, elasticity reproduces the ato-
mistic modes fairly well. The same conclusion has been
raised by Cheng et al.23 while studying spherical germanium
NPs.

Reducing the size of the NP diminishes its number of
atoms. Thus, it also reduces the number of vibration modes.
From Fig. 2, the breathing mode is evidenced even for the
very small NP containing only 19 atoms. However, we ex-
pect that higher harmonics may disappear from the atomistic

spectra while decreasing the NP size. In Fig. 3, we report the
projection of the first overtone of the breathing mode �A1g
vibration with a frequency close to the first overtone of the
isotropic breathing mode and having the largest volume
variation� of silver spherical NPs on atomistic modes as a
function of the NP size.

Contrarily to the fundamental breathing mode, the projec-
tion of the first overtone spreads over several atomistic
modes for NPs made of 249 atoms and less. It is still possible
to assign a main corresponding atomistic mode for a 249
atom NP but no atomistic modes seem to describe the elastic
mode for the 87 atom NP. Instead, this mode projects onto
several atomistic modes with a weak scalar product. For
smaller NPs, it mainly projects onto the same atomistic mode
as the fundamental breathing mode. This behavior is a mani-
festation of the disappearance of higher-frequency elastic vi-
bration modes due to the decrease in the number of atoms in
the NPs. Indeed, while approximately 70 elastic modes have
a frequency smaller than that of the fundamental breathing
mode, this number increases to approximately 500 for its
first overtone. These numbers are to be compared with 3N
−3 which is the number of vibrations for a nanoparticle
made of N atoms. We can crudely estimate that the first
overtone of the breathing mode is not well defined for N such
that 3N�500, which is in agreement with the results pre-
sented in Fig. 3. The projection onto the same atomistic
mode as the fundamental breathing mode is due to the very
close symmetry of the two modes. Note that in Fig. 3, the
abscissa scale extends over the whole spectrum of vibration
states of the atomistic model. Tamura and Ichinokawa27 de-
fined some maximum frequencies for spheroidal and tor-
sional modes depending on the number of atoms in the NP in
order to use the elastic model to calculate the specific heat of
small NPs. A similar rule might apply to anisotropic calcu-
lations. But checking the rules proposed by Tamura and Ich-
nokawa from our calculations is beyond the scope of this
paper. Current computer facilities make the calculations of
vibration modes of small NPs easy so that the rules proposed
by Tamura and Ichonakawa are not crucial nowadays for
interpreting experimental data.
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FIG. 2. �Color online� Projection of the breathing vibration
modes of silver spherical NP calculated using linear elasticity
theory onto the atomistic modes using the scalar product given in
Eq. �2�. The number of atoms in the NP is reported on each graph.
The frequency in cm−1 of the atomistic modes is used on the
abscissa.
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FIG. 3. �Color online� Projection of the first overtone of the
breathing mode of silver spherical NPs calculated using linear elas-
ticity theory onto the atomistic modes using the scalar product
given in Eq. �2�. The number of atoms in the NP is reported on each
graph. The frequency in cm−1 of the atomistic modes is used on the
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C. Size dependence: Breakdown of elasticity prediction

Power law

Using linear elasticity theory and from Eq. �1�, the fre-
quency of a given vibration mode of a solid sphere scales as
1 /R, where R is the radius of the sphere. This law which we
will refer to as the elastic frequency law �EFL� in the follow-
ing, can be used to probe the validity of the elasticity theory.
Recently, the validity of the EFL has been questioned for
very small NP for which surface effects become
non-negligible.14,25

In this section, we investigate the validity of the EFL in
the case of metallic NP. We thus report the frequency of a
given atomistic mode as a function of 1 /N1/3 �proportional to
the radius of the NP� with N as the number of atoms in the
NP. This atomistic mode is defined as the one on which the
projection of elastic modes is maximum, ignoring the rela-
tive values of this projection compared to the other modes.
Figure 4 reports the frequencies of four selected atomistic
modes for spherical silver NP as a function of 1 /N1/3. We
first choose four elastic modes: one Eg mode and one T2g
mode coming from the fundamental isotropic quadrupolar
mode and two A1g modes coming from the fundamental and
first overtone of the isotropic breathing mode. Then for each
elastic mode and number of atoms N, we consider only the

atomistic mode onto which the elastic mode has the largest
projection and report its frequency as a function of 1 /N1/3.
To identify the possible breakdown of the scaling law, we
also plot the product of the frequencies and N1/3 as a function
of 1 /N1/3. Note that the evaluation of the radius of a NP in
the atomistic model may involve some technical issues re-
garding the precise definition of the surface, especially for
small NPs; the surface is not exactly spherical and the posi-
tion of the surface can be slightly different from the position
of the surface atoms when taking into account atomistic ra-
dius. As a consequence, we prefer to report frequencies as a
function of the unambiguous quantity 1 /N1/3.

Figure 4 shows that atomistic calculations agree well with
the EFL for the atomistic quadrupolar modes and the atom-
istic fundamental breathing mode. Except for the smaller NP
with 19 atoms, for which the frequency differs slightly from
the EFL, all the other points follow the EFL. The frequencies
of the atomistic fundamental breathing mode and the two
fundamental quadrupolar modes differ by about 6%�8 cm−1�
and 5 and 6 cm−1, respectively, for 19 atom NP. The differ-
ence for bigger NP is smaller than 1 cm−1.

Concerning the first overtone of the breathing mode, Fig.
4 shows that the atomistic frequency starts to differ signifi-
cantly from the EFL for less than about 250 atoms corre-
sponding to a characteristic diameter of 2.2 nm. This break-
down of the EFL could be related to surface effects14 �we
exclude at this point the case of the 19 atom NP�. Surface
and surface-relaxation effects thus do not affect equivalently
the different vibration modes. The relaxation of the surfaces
spreads on a characteristic size � of a few Angstroms under
the surface.21 We can reasonably expect that modes with a
small wavelength �such as harmonics of isotropic modes� are
more affected than longer wavelength ones �or fundamental
mode� by the presence of the surface. Obviously this claim
also depends on the relative volume affected by the surface
relaxation compared to the unaffected volume in the NP;
frequencies of optical modes or border-zone phonon modes
in a semi-infinite medium are not affected by the presence of
the surface. Finally, for the 19 atom NP, the atomistic first
overtone of the breathing mode is identical to the atomistic
fundamental breathing mode because of the reduction in the
number of modes and symmetry arguments, as already dis-
cussed in Sec. III B.

In addition, we performed the same study for gold NP to
investigate the dependence of our results on the material.
Figure 5 reports the frequency of the fundamental quadrupo-
lar and breathing atomistic modes for a spherical gold NP as
a function of 1 /N1/3. While the atomistic quadrupolar modes
reproduce the EFL fairly well, the atomistic fundamental
breathing mode significantly shifts from the EFL at a char-
acteristic size of about 87 atoms corresponding to a diameter
of about 1.6 nm; the frequency of the atomistic fundamental
breathing mode differs by about 18%�21 cm−1� from the
EFL for 19 atom NP and by about 12%�8 cm−1� for the 87
atom NP. As in the case of silver NP, we attribute the break-
down of the EFL to surface-relaxation effects. Note that our
results suggest that surface effects seem to be more impor-
tant in gold NPs than in silver NPs �for which the atomistic
fundamental breathing mode reproduces the EFL fairly well
except for the smallest studied NP�. This result is corrobo-
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rated by the fact that surface relaxation in gold NP extends
over a larger range than in silver21,39 and that the surface
stress �to which surface relaxation is related� in gold is about
two times the one in silver; this last result has been obtained
for different surface orientations by atomistic simulations
based on the EAM �Ref. 40 and 41� and on the modified
EAM.42 In addition, to rule out the dependence of our results
on the precise shape of the NP, we have also performed
simulations on truncated cuboctahedron silver NPs; no sig-

nificant deviation from the results presented here has been
observed.

IV. CONCLUSION

By comparing atomistic and linear elasticity calculations,
we have exhibited the importance of the anisotropy of the
stiffness tensor in elastic calculations. Especially, both atom-
istic and anisotropic elastic calculations lift the degeneracy
of the quadrupolar modes. By projecting the elastic modes
onto the atomistic ones, we evidenced the good agreement
between the two models for the fundamental breathing mode
even for very small NPs. These two results suggest the ap-
plicability of the linear elastic theory to less than 2 nm di-
ameter silver NPs. However, we also evidenced the decreas-
ing number of vibration modes and the breakdown of the
EFL when reducing the size. We conclude that the applica-
bility of the linear elasticity depends on the considered vi-
bration mode and the NP size. Our results suggest that the
breakdown of elasticity occurs for bigger NPs for high har-
monics rather than for fundamentals modes. Moreover, criti-
cal sizes depend on the material. Such breakdown, to our
knowledge, has never been evidence experimentally in any
material because of the difficulty to synthesize NPs of diam-
eter less than 2 nm with a narrow size distribution or to
perform single-particle measurements on such objects. Our
results suggest that the observation of the breakdown of the
vibration frequency scaling in silver NPs will be hazardous,
since it would imply some experiments on silver NP �or clus-
ter� of about 20 atoms for the fundamental breathing and
quadrupolar modes. This task though difficult, seems more
reachable in the case of gold NP since it would require mea-
surements on NPs with less than about 100 atoms. Finally,
because the shape of very small NPs can hardly be described
by a sphere, we have confirmed, through simulations on trun-
cated cuboctahedron silver NPs, that our results do not
strongly depend on the exact shape of the NPs.
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