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We investigate the relationship between the multiexponential photoluminescence �PL� dynamics of large
nanocrystal �NC� ensembles and the intensity intermittency �blinking� characteristic of single NCs. A general
model is developed and a simple fitting form derived for the analysis of PL decay curves allowing the
extraction of both the intrinsic radiative recombination rate and an intensity intermittence parameter. The
analysis is applied to the PL of a series of Si-NCs embedded in silicon oxide matrices yielding a good
agreement between extracted and theoretical recombination rates. An excellent agreement is furthermore re-
ported between the range of power-law exponents obtained and those previously determined through both
single-NC experiments and current blinking mechanism theory. We suggest that a similar approach may well
be fruitful in the analysis of time-resolved PL for a large variety of other carrier-confined materials.
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I. INTRODUCTION

It is well known that nanostructured Si materials such as
porous Si,1,2 Si quantum wells,3 and Si nanocrystals �Si-
NCs� �Refs. 4 and 5� exhibit greatly improved luminescent
properties in comparison with those of the bulk. However,
despite the long-held interest in these remarkable character-
istics, the fundamental nature of carrier recombination in
such systems remains highly controversial. This is particu-
larly exemplified by the anomalous multiexponential form of
photoluminescence �PL� decay.

It has been widely observed that the PL relaxation of
carrier-confined Si ensembles exhibits a multiexponential or
typically stretched-exponential form.6–17 Such observations
are a source of anomaly as populations of confined carrier
densities emitting at a given energy are expected to ideally
share a single recombination rate and thus decay according
to a single exponential.18 Multiexponential curves on the
other hand imply either recombination rate dispersions or a
recombination rate that is time varying.

The physical mechanisms that may be responsible for
such behavior have been extensively debated. Three main
models have been proposed to explain the elongation of PL
dynamics in carrier-confined Si and these can be differenti-
ated according to their assertions in regards to the escape of
carriers from confined states.

The first model, proposed by Pavesi and Ceschini19 to
describe PL dynamics in porous Si, relies on the supposition
that excited carriers can easily migrate to nearest-neighbor
NC core states by tunneling through the intervening oxide
potential barriers. A group of NCs is thus represented as an
interconnected network of confined states where distribu-
tions of random delays impede the recombination of carriers.
These delays determine the form of luminescence
relaxation7,20 and are introduced either by the occasional
trap-release of carriers in the case of correlated �exciton�
pairs11,19,21 or, conversely, in the case of uncorrelated
carriers15,22 the unlikely spatial concurrence of an electron-
hole pair. Evidence against such intercrystallite migration
however has been reported in two separate works. Mihal-
cescu et al.23 provide arguments based on resonant excitation

while Guillois et al.9 demonstrate the independence of PL
dynamics on intercrystallite distances.

The second model to be considered, though it discounts
any intercrystallite transport, asserts that PL decay is affected
by the escape of confined carriers to nonradiative states lo-
cated in much closer proximity to the NC.16,17,24 The prob-
ability of escape is determined both by local disorder at the
NC interface and the crystallites’ immediate environment.24

The variations between independent NCs within a sample
thus result in distributions of escape rates and, consequently,
nonradiative recombination rate dispersions.

The third mechanism arises from the notion that the PL
relaxation of confined Si is determined by the independent
and wholly migration-confined relaxation of core-state tran-
sitions which, it is suggested, result in dispersions of radia-
tive rates.6,9 Delerue et al.6 assert that small variations in
Si-NC structure may cause large variations in the overlap
between electron and hole wave functions in k space. This,
coupled with the multiphonon nature of confined-state tran-
sitions, would result in radiative rate dispersions for any en-
semble of indirect-gap NCs.

Although each of these three models could hypothetically
generate the required elongated or ”stretched-exponential”
decay form,20,25–27 without further evidence, for example, a
convincing agreement between theoretical and experimental
recombination rates, no single model can be confirmed.
However, perhaps due to both the theoretical complexities
involved in the simulation of atomic clusters28–30 and the
difficulty in deriving physically meaningful conclusions
based on aggregate behaviors of large NC populations with
intrinsic polydispersity,28,31,32 such information remains elu-
sive.

The observation of single NCs is therefore needed to pro-
vide basic information for the understanding of PL in con-
fined systems. Recently, advances in single-NC spectroscopy
have furnished excellent results relating to the characteristics
of single particulates.28 However, though single-particle be-
havior inevitably affects the characteristics of large en-
sembles, it is not immediately obvious how the attributes of
single NCs can be combined for the interpretation of experi-
mental results for large populations.33
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In this work, we broach a deeper analysis into the link
between the characteristics of single NCs and the lumines-
cent behavior of systems comprising large NC distributions.
In particular, we suggest that the widely observed phenom-
enon of intensity intermittence, or “blinking,” in single
fluorophores34,35 is likely to play an important role in the
multiexponential nature of PL relaxation for a large range of
luminescent materials.

Under continuous excitation, single NCs are observed to
exhibit intermittent and discrete luminescence intensity lev-
els resulting in a series of alternating on- and off-periods.28

This phenomenon, observed for a large variety of systems, is
now thought to be exhibited by single fluorophores of almost
all light sources.34,35 Interestingly, the distribution of on- and
off-periods for many nanoscale systems �NCs, nanorods,
nanowires, and some organic molecules� appears to be
characterized by power-law behavior with exponent values
in the vicinity of 1.5, irrespective of the nanoparticle
material.28,34–40

We propose that the blinking mechanism, producing sud-
den changes in PL intensity during continuous excitation, is
furthermore likely to affect carrier recombination during PL
relaxation and, consequently, must be significant in the evo-
lution of decay curves for NC ensembles.

We begin with the development of a general model de-
scribing the interaction of relaxing carrier populations with
the blinking mechanism and subsequently derive a simple
fitting procedure which allows the deconvolution of intrinsic
recombination rates and extrinsic blinking effects. This
analysis is then applied to relaxation curves recorded for a
series of Si-NCs embedded in Si oxide, which were synthe-
sized using reactive pulsed laser deposition �rPLD�. Good
agreement is obtained between extracted recombination rates
with energy and theoretical values reported in the literature.6

In addition to this, we achieve excellent agreement between
power-law blinking parameters thus obtained and the range
of values expected for the blinking statistics power-law ex-
ponent according to both experimental28 and theoretical41

works.

II. EXPERIMENT: METHOD AND RESULTS

Si-NCs were synthesized using the experimental proce-
dure described by Riabinina et al.42 in which Si-rich Si oxide
films are deposited using rPLD and are subsequently an-
nealed. Samples were hydrogen passivated in 5% forming
gas at 500 °C for 1 h. X-ray diffraction �XRD� and high
resolution transmission electronic microscopy �HRTEM�
were used to determine the average size of Si-NCs embedded
in the Si oxide matrix.43 Time-resolved PL output light was
recorded using a photomultiplier tube with a typical reso-
lution of 1 �s. Samples were excited using a diode laser
pulse of 30 �s at 405 nm. The observation energy is selected
within the range 1.2–1.9 eV using optical filters.

As previously reported42 significant PL is obtained from
Si-NCs embedded in Si oxide synthesized by rPLD. Figure
1�a� shows the continuous excitation PL spectra of four
Si-NC samples A, B, C, and D. The average NC diameters
were found to be 4, 2.5, 2, and 1.5 nm, respectively.43 As

expected,44 the peak positions of the PL spectra are size de-
pendent. These peaks are centered at 1.35 �A�, 1.51 �B�, 1.57
�C�, and 1.63 eV �D� with an average full width at half maxi-
mum �FWHM� equal to 0.3 eV. Time-resolved PL decay
curves were recorded as a function of emission energy for all
four samples and typical decay curves are shown in Fig. 1�b�
where one sees multiexponential behavior with slope magni-
tudes changing by a factor of 2 or more.

III. BLINKING MODEL OF LUMINESCENCE DECAY

A. Overview

In this section, we develop a model which explains the
multiexponential nature of pulsed stimulated decay curves by
including the effects of the single-NC blinking phenomenon.
In this model, we consider a collection of NCs that, having
turned “on” at some preceding time, are in an “on-state” at
the termination of pulse stimulation.

While in an on-state, carriers excited by the stimulus re-
combine according to an intrinsic recombination rate which
represents a sum of the available radiative and nonradiative
recombination pathways. However, during PL relaxation,
one by one, each of the radiators turn off irreversibly via a
strong Auger-type recombination pathway. The peculiar
characteristics of the power-law blinking process mean that
the longer a NC is in an on-state, the less likely it is to turn
off within a following interval.

As a result, the signal intensity initially drops much faster
than it would have according to intrinsic mechanisms alone,
due to the time-dependent turn-off rate of the emitters. This
effect, however, is not as straightforward, nor as abrupt, as
the power-law duration distribution, given that NCs taking
part in the decay process have already spent some undeter-
mined duration in the on-state.

Evidently, the total instantaneous rate of change per car-
rier for a segregated carrier population is not constant in
time, implying that the members of any exponential decom-
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FIG. 1. �Color online� �a� Continuous stimulation PL curves for
samples of embedded NCs with mean diameter 4 �sample A�, 2.5,
�sample B�, 2 �sample C�, and 1.5 nm �sample D�. �b� Typical decay
curves measured for sample B at emission energies between 1.35
and 1.8 eV. Each decay curve is fit with both the derived blinking
form �continuous line� and the common stretched-exponential form
�dashed line�.
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position of the relaxation curve are not necessarily directly
characteristic of the available recombination pathways. The
challenge, then, is to determine how the PL behavior of NC
ensembles may be analyzed to extract the basic information
concerning both carrier recombination and the blinking phe-
nomenon.

B. Development

Intensity intermittence in single quantum dots �QDs� was
first reported by Nirmal et al.45 in 1996, who observed that
under constant excitation the fluorescence of single CdSe
QDs exhibit sudden and discrete changes in intensity result-
ing in a series of alternating on/off periods. This phenom-
enon, now commonly referred to as blinking, has since been
reported for various other NC materials including InP,36

CdS,46 CdTe,47 and PbS,48 in addition to both Si QDs �Ref.
38� and porous Si particulates.37 In this section we consider
how this phenomenon may contribute to the recombination
of excited carrier populations during PL relaxation.

It is now widely accepted34,35,49 that the luminescence
quenching responsible for such two-state behavior is caused
by the sporadic transition of an excited carrier to localized
trap states external to the NC. The net charge left on the NC
as a result of local electron or hole deficiency opens an ad-
ditional strong Auger recombination pathway, whereby, re-
combination energy is transferred to another carrier rather
than to the emission of a photon. Subsequent radiative re-
combination events are thus rendered highly improbable un-
til the luminescence is reenabled by the trapped carrier re-
turning to the NC core.50

The ionization of the NC may occur in one of several
ways.28 First, at high excitation intensities, an Auger assisted
process may occur if multiple excitons are present in the
conduction band simultaneously. As one of the excitons re-
combine, it may release its energy to one of the remaining
excited carriers, effectively reducing the interface potential
barrier seen by that carrier and thus increasing the probabil-
ity of escape. However, as the nonradiative relaxation of
multiexciton states to single exciton states is expected to take
place on the picosecond scale,51 it is unlikely that this pro-
cess will be significant for systems such as embedded
indirect-gap NCs due to the low photon absorption rate. An-
other possible ionization mechanism, however, involves the
direct tunneling of single excited carriers to nearby external
trapped states. Cichos et al.37 calculate that the tunneling of
carriers to states external to the NC may be efficient for
Si-NC systems where trapped states are located within a few
nm of NC cores. As the tunneling mechanism does not rely
on the presence of multiexcitons or on continuous excitation,
it is likely that NC ionization �and consequently nonlumines-
cent states� will occur even during PL relaxation after pulse
excitation.

In general, the durations of both PL-on- and PL-off-
periods for nanoparticles ��on or �on referred to henceforth as
�on/of f�, as measured using single-NC photospectroscopy, are
found to be statistically distributed according to an inverse
power law, P�on/of f

�t�� t−�on/of f, where P�on/of f
�t� represents the

probability that the duration �on/of f is equal to t. Such behav-

ior is often characterized by power-law exponents �on and
�of f that are approximately equal to 1.5 or fall within the
range 1��on/of f �2.28,52 Various authors have had some suc-
cess in explaining these observations in terms of physical
models.34,35,49

Duration statistics have been shown to be well described
by the inverse power law for an extremely wide range of
time values, where cutoff points are often determined by
experimental limitations.28,49 However, due to the physically
unacceptable infinite short-time behavior of the inverse
power law, the duration statistics must deviate from the over-
all tendency as a result of some intervening mechanism
�likely to tend toward zero at t=0� at some short cutoff time
�min. Where �min is sufficiently small, the probability
P��on/of f ��min� is negligible in comparison with P��on/of f
��min�. As there is some evidence to suggest that power-law
behavior extends toward short times even into the nanosec-
ond regime49,53,54 and few works47 have reported any devia-
tion in statistics for long durations, despite several decades
of observation, it can be assumed that P��on/of f ��min� is ef-
fectively equal to zero.

For simplicity, we assume the short-duration cutoffs for
both on- and off-periods to be equal and constant ��min,on
=�min,of f =�min�. Long-time cutoffs �max, if they exist, are fur-
thermore expected to be many orders of magnitude greater
than both the excitation-pulse duration Tp and expected con-
fined carrier lifetimes.49,53,54 For the purposes of decay
analysis, it is therefore safe to neglect long duration cutoffs
and assume that �max=�.

Inverse time power-law behavior presents many formal
problems for analysis.55 To begin with, the expectation value
of the relation P�on/of f

�t� is infinite for �on/of f �2. This im-
plies that an average value calculated from experimental data
is dependent on the maximum observation time and, conse-
quently, cannot be characteristic of any physical process. The
conditional probability P�t+s �s� in addition, unlike purely
random �exponentially distributed� variables is not simply
equal to P�t�. As a result, the probability for a NC to remain
in a given state for some additional t after a time s depends
on the length of time s that the NC has previously passed in
that state. Given the counter-intuitive nature of blinking sta-
tistics, the interpretation of both single particle and ensemble
behavior requires particular care.

The cumulative distribution function �CDF�, of blinking
durations �on/of f, is determined by first applying the normal-
ization ��min

� P�on/of f
�t�dt=1 to the inverse time power-law

form and subsequently integrating over time from �min to
time t,

F�on/of f
�t� = 1 − � t

�min
�−��on/of f−1�

. �1�

Here, we employ the useful notation FX�x� to represent a
CDF that describes the probability that the random variable
X�x. The corresponding probability density function �PDF�
is denoted by fX�x�.

Figure 2 summarizes the sequence of events that are
likely to contribute to relaxation curves measured under
pulse excitation for large NC ensembles. As is shown in the
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diagram, assuming the ionization state is initially neutral, at
the onset of laser-pulse excitation at t0, each NC will be in an
on-state �indexed 1� which will persist for some duration
�on1

. Within this duration, carriers are excited by the laser
and recombine both radiatively and nonradiatively as deter-
mined by their potential environments.56

At some time Tdis,1, an instantaneous off event occurs,
forcing the NC into a nonluminescent off-state of duration
�of f1

. Any carrier excited by the stimulus will then recombine
very quickly, but nonradiatively, via the supplementary Au-
ger recombination pathway. Evidently, an alternating se-
quence of a statistically determined number of �on and �of f
periods will then ensue leading up to the termination of the
pulse at Tp.

If it happens that the NC is in an off-state at time Tp, it
will quickly and nonradiatively lose its excited population
and consequently remain dark for the remainder of the PL
decay. �This condition is not depicted in Fig. 2 as it does not
contribute to PL decay as no photons are emitted after Tp.�

The behavior of interest, for a given NC, obtains only if
the end of the pulse excitation at Tp,falls within a NC on-
duration. In this case, the relaxation could either proceed
normally until the excited carrier �likely to be singular� �Ref.
51� has been lost according to intrinsic mechanisms or the
process may be cut short at some time Tc �the last Tdis� by a
final terminal blinking off event. The otherwise intrinsic re-
laxation curve of any large ensemble of blinking NCs is
therefore effectively altered by the distribution of cutoff
times Tc.

The following four assumptions apply in the analysis: �1�
the pulse duration Tp	�min, �2� �on and �of f are distributed
according to Eq. �1� for �min
 t��, �3� sequences of ran-
dom variables �on/of f are memoryless,57 and �4� at a given
emission energy, members of a sequence containing only ei-
ther on- or off-periods ��on/of f1

, ¯�on/of fn
, ¯�on/of f j

� are
identically distributed for all n and j.

With these assumptions, and where PL is observed at a
selected wavelength �constant emission energy�, the intensity
recorded at some time t is described by the joint probability
that �i� a radiative recombination event occurs at t and �ii�
that a NC in an on-state at time Tp is still in that state at time
t. The PL intensity decay curve can then be represented as a
two-term product

I�t� = Iin�td + Tp�F̄Tc
�td� , �2�

where the time variable td= t−Tp is referenced to zero at the
pulse termination Tp, the first term Iin�t� will be the result of
the probability density of intrinsic band-band recombination
mechanisms without any random termination,58 and the

blinking term F̄Tc
�t� is a CDF that describes the probability

P�Tc� t� that a decaying NC is yet to undergo a terminating
off event at time t.

In the analysis described in the Appendix, stable distribu-
tion theory is applied to obtain a useful approximate form for

the CDF F̄Tc
�td�. We arrive at the simple expression

F̄Tc
� 	1 +

td

Tp

−��−1�

, �3�

where the blinking parameter � is related to the statistical
power-law blinking exponents �on and �of f through convo-
lution. As remarked in the Appendix, the substitution of Eq.
�3� into Eq. �2� can be used in the construction of fitting
forms for experimentally obtained decay curves, where some
small number of confined and/or bulk recombination mecha-
nisms are assumed.

IV. RESULTS

In this section we evaluate the significance of the blinking
model to multiexponential PL relaxation by applying a fitting
form based on the concept that the luminescence decay of a
NC ensemble is determined both by the density of intrinsic
recombination events and by the probability distribution of
terminal off events, as stated by Eq. �2� and discussed in the
previous section. In the simplest case, a singular recombina-
tion rate k is assumed to dominate intrinsic recombination at
a given emission energy �potentially addressing a group of
NCs with similar size and geometry�.5,56,59 We furthermore
assume that within this group of crystals, the power-law ex-
ponents �on and �of f are also shared.

This, coupled with the CDF F̄Tc
, as given by Eq. �3�,

results in the following fitting form:

I�t� = I0�1 + t/Tp�−��−1� exp�− kt� . �4�

Here Tp is set to the pulse duration �30 �s�, I0 is the initial
intensity, both the blinking characteristic exponent � and re-
combination rate k are fitting parameters, and time t is refer-
enced to the termination of pulse excitation.60

By way of comparison, each of the experimental Si-NC
decay curves �Fig. 1�b�� are also fitted with the conventional
stretched-exponential form

I�t� = I0 exp��− kstt��st� . �5�

The common stretched-exponential form is a semiempirical
construction that is often used to describe relaxation curves
in disordered systems for various quantities, for example,
magnetic or dielectric relaxation,61–63 or dispersive transport
in amorphous semiconductors.26 Although the physical
mechanisms that may be responsible for the behavior remain
a source of intense debate,20,25,26,58,64,65 the form has been

FIG. 2. Schematic representation of PL intensity vs time for the
pulse excitation of a single intermittent NC. The blinking NC un-
dergoes a series of statistically distributed �on and �of f intervals
before the termination of the laser pulse at Tp. While undergoing
natural relaxation processes after Tp, the decay may be cut short at
some time Tc due to a final disabling blinking event occurring at
Tdisj

�i.e., at the end of jth on-period�. If excited carriers remain in
the NC at time Tc, they will be lost nonradiatively.
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frequently applied to time-resolved luminescence in nano-
structured materials, where the fitting parameters �st and kst
have sometimes been associated with dispersion and carrier
lifetime, respectively �k=1 /�.10,11,66

As shown in Fig. 1�b�, both of these forms provide suit-
able fits for the experimental PL decay curves, however, for
the highest photon energies �1.6 and 1.8 eV�, the physically
derived blinking form �continuous curve, Eq. �4�� provides a
noticeably better agreement than the purely empirical
stretched-exponential fit �dashed curve, Eq. �5�� shown on
the same axis.

The intrinsic recombination rates k resulting from the
blinking model fit of PL decay data are presented in Fig. 3�b�
with observation energy for all four samples �A, B, C, and
D�. This tendency may be compared with theoretical results
from the literature. In particular, Delerue et al.,6 using a
tight-binding approximation for strong-confinement regime
oxide-shell Si-NCs, report an average E-k curve that is well
described by k=A exp�E /E0� for constants A=20.55 s and
E0=0.31 eV. This theoretical result is plotted in Fig. 3�b� as
a continuous gray line.

The pseudorate values kst, obtained from the stretched-
exponential fit for the same experimental decay curves �Fig.
1�b�� are shown in Fig. 3�d�. Evidently, though theoretical
recombination rates and rates obtained using the blinking
form are both on the same order of magnitude �both shown
in Fig. 3�b��, the stretched-exponential rate kst is consistently

an order of magnitude higher �Fig. 3�d��. However, as shown
in Fig. 3�b�, the intrinsic recombination rates obtained from
the PL decay curves using the blinking form �symbols� still
remain somewhat higher than radiative recombination rates
determined through simulation6 �gray line�.

As shown in Fig. 3�a�, the characteristic exponent values
� obtained from the blinking decay model exhibit an obvious
evolution toward higher values with increasing confinement
energy. This can be compared with the behavioral variation
in �st with energy, as shown in Fig. 3�c�, which appears to be
more random in nature with only a slight rising trend.

Significantly, for emission energies within the range 1.2
�E�1.45 eV, the blinking parameter � remains stable at
approximately 1.5, corresponding to the ideal power-law ex-
ponent predicted by simple blinking models.47,49,53,54 At
higher values of emission energy �E�1.45 eV�, � steadily
increases until it exceeds 2 at approximately 1.8 eV. These
values are in excellent agreement with the unusually high
range of power-law exponents reported for porous Si by
Cichos et al.37

V. DISCUSSION AND SUMMARY

By considering the simple case of a population of emitters
decaying with a shared characteristic recombination rate and
exhibiting identically distributed statistical power-law blink-
ing durations, we have demonstrated that single lumiphore
intermittency may naturally lead to multiexponential or
stretched-exponential luminescence decay for carrier-
confined materials. Using a number of approximations, we
have furthermore derived a simple fitting form for the analy-
sis of multiexponential time-resolved PL for nanostructured
materials, which permits the extraction of intrinsic recombi-
nation rates, effectively deconvolving the curve elongation
attributed to intensity intermittence from intrinsic confined-
state recombination.

We have applied this technique to a series of Si-NCs em-
bedded in Si oxide and obtained some useful agreement be-
tween extracted recombination rates and average theoretical
radiative rates reported in the literature.6 For a range of emis-
sion energies, the power-law exponents thus obtained are ap-
proximately equal to the ”ideal” value of 1.5 �Refs. 53 and
54� and subsequently tend upward to surpass 2.

We suggest, therefore, that the multiexponential nature of
PL decay for quantum confined systems is strongly related to
the blinking phenomenon, an assertion for which there is
some prior evidence. In general, the time-average PL relax-
ation of single NCs is observed to be multiexponential.67,68

However, by simultaneously monitoring the emission inten-
sity fluctuations of single NCs, and photons emitted follow-
ing pulse stimulation, Fisher et al.68 observe that where de-
cay curves are reconstructed using only photons emitted
during maximal intensity periods, PL relaxation is found to
be characterized by a single exponential. The implication
here is that intrinsic recombination for a single NC in the
absence of off blinking events is characterized by a single
recombination rate, indicating that the decay curve elonga-
tion is indeed a result of the blinking process.
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FIG. 3. Results of the analysis of time-resolved PL curves for
Si-NC samples A ���, B ���, C ���, and D ��� using either the
derived blinking form ��Eq. �4�, Figs. �a� and �b�� or the stretched-
exponential form �Eq. �5�, Figs. �c� and �d��. �a� Characteristic ex-
ponent “�” vs emission energy. �b� Intrinsic recombination rate “k”
vs emission energy. The exponential tendency �black dashed� of
experimental intrinsic recombination rates �symbols� is plotted to
guide the eye �k=A exp�E /E0�, where A=135 sec−1 and E0

=0.4 eV�. Theoretical radiative recombination rates with energy
�gray continuous� reported in the literature �Ref. 6� are included for
comparison �A=20.55 sec−1 and E0=0.31 eV�. �c� Stretched expo-
nential dispersion parameter “�st” vs emission energy. �d� Stretched
exponential rate parameter “kst” vs emission energy showing expo-
nential tendency �dashed� �A=270 sec−1 and E0=0.37 eV�.
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A. Short-time behavior

In this work we have approached investigations based on
the supposition that blinking durations of single particulates
follow inverse power-law statistics over a large range of time
values and deviate from this behavior at some short time �min
in comparison with the excitation-pulse length. Although it is
widely accepted that single emitters of various materials ex-
hibit this behavior, including direct-gap NCs and some or-
ganic molecules,49 the situation is somewhat less established
for indirect-gap Si particulates, possibly due to their low ra-
diative recombination rates. Indeed, of the two main works
that examine the blinking durations of single Si emitters �po-
rous Si particulates and Si-NCs, respectively�, only one
study37 reports power-law behavior �within the limited obser-
vation time of 10 ms to 60 s�, while the other38 reports purely
random �exponential� behavior, which is interpreted in terms
of early blinking models.69 Interestingly, the observations for
porous Si �Refs. 37 and 70� appear to be in contradiction
with those of Si-NCs.38

There is currently some evidence to suggest that power-
law durations may persist in direct-gap NCs even down to
excited carrier lifetimes or below,49,53,54 however, similar
methods are yet to be applied to their indirect-gap counter-
parts. It may be useful, therefore, to additionally consider the
case in which the restrictions on short-time cutoff �min are
lessened.

For example, simplistically, if it is assumed that �min is
comparable to, but shorter than the excitation-pulse duration,
the proportion of NCs that remain in a single on-state for the
entire pulse duration should be significant �equivalent to the
case in which j=1 for Fig. 2�, on the condition that P��on
��min�0 �where an intervening mechanism causes f�on

�t�
to tend to zero for t��min�, at which point, the blinking

contribution to decay �F̄Tc
�t� as appears in Eq. �2�� can be

approximated by the probability that a NC, having already
spent the duration of the pulse excitation Tp in an on-state, is
still on at some subsequent time t. This is given by the con-
ditional probability71 P��on� t+Tp ��on�Tp�= �1
+ t /Tp�−��on−1�. It is worth noting that this expression is in

agreement with the general form of F̄Tc
�t� derived for �min

�Tp given by Eq. �3�, except that where Tp is instead com-
parable to �min, the fitting parameter � may yield the unique
value of the on-state exponent �on. It is apparent, therefore,
that for a specific system, in this case Si-NCs, the exact form

of F̄Tc
�t� may well be dependent on the short-time behavior

of the blinking mechanism, however, further experimental
evidence is required in order to make progress on the specif-
ics.

B. Dependence on pulse duration

An interesting consequence of the power-law blinking
model of luminescence decay is the prediction that the form
of luminescence decay is explicitly dependent on the dura-
tion of pulse excitation �Tp�, as appears in Eq. �4�. Unfortu-
nately, however, there is comparatively little attention paid to
such a relationship �or lack thereof� in the literature. With
particular reference to confined Si, only two systematic in-

vestigations into the effect of pulse duration on the form of
relaxation have been reported but with opposing
conclusions.21,72

The first, by Pavesi,21 reports that the form of lumines-
cence decay of porous Si is indeed a function of excitation-
pulse length independent of the excitation energy per pulse.
They observe, that for increasing pulse durations within the
range 20 ns
Tp
2.15 ms, stretched-exponential fits of de-
cay curves yield increasing values of carrier lifetime and
marginally increasing values of �st. Kanemitsu10 and Chen et
al.20,73 note simply a strong dependence on excitation condi-
tions such as “laser-pulse width and laser intensity,” how-
ever, the effects of individual parameters are not elucidated.
On the other hand, Finkbeiner et al.72 report no variation in
decay form for pulse durations within the range 15
Tp

200 �s. In the same vein, Pacifici et al.74 report that car-
rier lifetimes in embedded Si-NCs are invariant with pulse
duration for the range 100 �s
Tp
0.1 s, however, they
do not discuss the decay form.

It is clear, therefore, that the possibility of a relationship
between excitation-pulse duration and the form of the lumi-
nescence decay for NC ensembles merits further investiga-
tion. There is no shortage of candidate effects to account for
such behavior. In addition to the relationship that results
from power-law blinking behavior, as suggested by Eq. �4�,
other dependencies have previously been predicted, particu-
larly where pulse duration is comparable to carrier lifetimes.
These have been deemed to be caused by, for example, the
gradual diffusion of carriers between localized states during
excitation for materials with restricted geometries,75 the fill-
ing of nonradiative centers and increased exciton
thermalization,21 or simply the probabilistic excitation and
relaxation of a distribution of states.76

C. Interpretation of the parameters

Despite an agreement on the order of magnitude, recom-
bination rates obtained using the derived blinking form fit
remain noticeably higher than theoretical radiative values.
Such discrepancies may be indicative of nonradiative recom-
bination processes, perhaps owing to the incomplete passiva-
tion of nonradiative defect centers. However, it is also diffi-
cult to discount the possibility that the discrepancy is related
to differences in structure between embedded NC samples
and the simulated oxide-shell NCs.

Extracted characteristic exponents � exhibit a good agree-
ment with the range of values �1���2� expected for
power-law exponents in blinking statistics for a variety of
NC materials.41,49,53,54 With particular reference to Si, Cichos
et al.37 report unusually high values for the on-state exponent
��on=2.2�0.1�. Though this appears to be congruent with
our results, one should bear in mind that the derivation of the
blinking fit is only valid for the range of characteristic expo-
nents 1��on/of f �2. It is possible, therefore, that where � is
determined to be much larger than 2, extracted parameters
may be erroneous. An illustration of this is provided in Fig.
3�b�; where ��2, the E−k curve begins to deviate from the
exponential tendency.

The interpretation of the fitting parameter � is, however,
somewhat complicated as its precise relationship to the
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blinking parameters �on and �on remains unclear. The ex-
tracted parameter � is the result of the convolution of two
stable distributions �SDs� with characteristic exponents
“�on−1” and “�of f −1.” However, as relationships between
arbitrary SD parameters and parameters of SD convolutions
have not been defined, the problem must consequently be
examined computationally.

It is, nevertheless, illustrative to consider the situation in
which �on�of f. In this case, the fitting parameter � is
equivalent to the single-NC characteristic exponent �on/of f.
The observation that �1.5 for emission energy 1.2�E
�1.5 eV is then particularly exciting as it corresponds to the
value predicted by the ideal diffusion-controlled electron-
transfer model of the blinking phenomenon.41 Considering
this encouraging result, and the obvious tendency observed
for � with emission energy, it is foreseeable that time-
resolved PL decay analysis of large ensembles may in fact
provide an extremely simple and effective alternative for the
extraction of blinking data, where a greater range of excita-
tion conditions �e.g., lower fluences� or fabrication proce-
dures may be used. Further work is, however, required in
order to understand the possible causes of the increase in �
with emission energy.

D. Conclusions

We have shown that blinking statistics represent an im-
portant consideration in the analysis of time-resolved PL data
for nanostructured materials. We have developed a method
for the extraction of both single-NC blinking parameters and
intrinsic radiative rates for recombination in quantum con-
fined systems. We further suggest that due to the large range
of systems exhibiting blinking phenomena and the preva-
lence of inverse power-law blinking statistics,28 a similar ap-
proach may be used for a wide range of nanoscale systems
including, for example, direct-gap nanostructures,37,38

indirect-gap nanostructures,36,46–48 and some organic
molecules.40

We nevertheless caution the reader that while the blinking
model does provide an excellent fit to decay data and yields
useful values for recombination rate k and characteristic ex-
ponent �, one cannot yet exclude the effects of other models
in contributing to multiexponential behavior. There is a clear
need for further experimentation to settle this aspect.
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APPENDIX: DERIVATION OF BLINKING FORM

To understand the influence of the blinking phenomenon
on group intensity decay, it is important to determine the

nature of the CDF F̄Tc
�t� considering the conceptual model

detailed in Sec. III. We begin by recognizing that the PDF

fTc
�t� can be represented as a sum of joint probabilities, for

an integer j number of on-periods,

fTc
�t� = �

j=1

Tp/2�min

fTc,j�t� . �A1�

Each of the joint PDFs fTc,j�t� describes the probability that
Tc �the last cutoff� is equal to t and occurs at the completion
of the jth on-duration �onj

. These summands fTc,j�t� are there-
fore defined according to the relation

fTc,j�t� = P�Tdisj
= t � Tenj

� Tp � Tdisj
� Tp� , �A2�

for a given known constant pulse duration Tp. This somewhat
complicated expression simply means that the probability is
given here for all cases with the following three conditions in
order �from left to right�: �i� the last disabling jth blink oc-
curred at t=Tdisj

, �ii� this jth PL-on event occurred before the
end of the pulse at Tp, and �iii� this jth PL-off event �at time
Tdisj

� happened after Tp.
If we construct a time sum Sj consisting of j−1 on-

periods and j−1 off-periods, terminating in the last �jth� on-
period, we have the total time from the start of the pulse to
the end of the last turn-off as follows:

Sj = �
j=0

j−1

��oni
+ �of fi

� + �onj
.

If we apply the relation P�A�C�= P�A �C�P�C� to Eq. �A2�,
each summand fTc,j�t� can then be rewritten partly in terms of

the negated CDF F̄on�t� according to the following form:

fTc,j�t� = H�t − Tp�F̄�on
�t − Tp�fTSj

�t� , �A3�

where F̄on�t�=1−F�on
and F�on

is given by Eq. �1�. This ma-
nipulation can be understood as

P�Tdisj
= t � Ten,j � Tp� = P�Ten,j � Tp�Tdisj

= t�P�Tdisj
= t� ,

where the notation P�A �C� reads, the probability that A is
true, given C is known to be true. The conditional probability
P�Tenj

�Tp �Tdisj
= t� is then equal to the probability that an

on-period is longer than the interval between t and Tp, i.e.,

P�Ten,j �Tp �Tdis,j = t�= F̄�on
�t−Tp�. Note that fTc

�t� is defined
on the interval Tp� t�� and is thus appropriately normal-
ized according to �Tp

� fTc
�t�dt=1.

Now, the term F̄�on
decreases rapidly to approach the hori-

zontal asymptote at zero. �Note that for �min�0.1 �s and
�on1.5, F�on

� �t� falls to below 0.1% �s−1 at 5 �s.� If we
consider the minimum resolution of the recording instrument

��s�, it is apparent that the term F̄�on
is effectively equal to

some small constant within the region of interest. It can
therefore be assumed that for t�Tp, FTc,j�t� is approximately
proportional to FTSj

�t�. Using the fact that the CDF of a sum
of any two random variables X1 and X2 �which here will be
�on and �of f� is given by the convolution of their respective
CDFs,77 FTc,j�t� can be decomposed according to
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FTc,j�t� � F�on

�j���t� � F�of f

�j−1���t� , �A4�

where F�n��x� represents the n-fold convolution of the CDF
F�x�.

It is now apparent �according to Eq. �A4� and assumption
1� that the cutoff distribution FTc

�t� is likely to be dominated
by CDFs of sums with a great number of random variable
summands �large j�. However, as the variance of Eq. �1� is
infinite for �on/of f �3, the classical central limit theorem, so
often applied in similar cases, is not valid here. Contrary to
intuition, the distribution of a sum of period durations �on,of fi
will, therefore, not tend toward a Gaussian limit irrespective
of the number of summands. It is for this reason that the
lesser-known generalized central limit theorem �GCLT� that
must be applied here as required, where random variable
summands are distributed with either infinite first or second
moments.78,79 This is indeed the case for power-law blinking
durations.

The GCLT states that the distribution FSn
�x� of a normal-

ized sum of identically distributed variables

Sn =
1

bn
�
i=1

n

Xi − an

does converge to some SD, G�x ;�G ,�G�, which in general is
not a Gaussian distribution. These SDs are members of a
family of functions providing solutions to the expression
G�x−h�=G�x /c1��G�x /c2�. Each SD is parameterized by
two variables, namely, the characteristic exponent �G and the
skew factor �G.78,79

Application of the GCLT to Eq. �1� yields the parameters
�G=�on/of f −1 and �G=1 for �on/of f 
3 on the assumption
that FTc,j =0 for t�0. The displacement constant an is then
defined according to the range of the characteristic exponent
�G=�on/of f −1,

an = �nET , 2 � �on/of f � 3

n ln�n��G, �on/of f = 2

0, 1 � �on/of f � 2
� .

Assuming the range 1��on/of f �2,28 the displacement con-
stant an is equal to zero. The normalization constant bn is

defined in terms of a function of n and �min which is given
for example in Ref. 79. Rewriting Eq. �A4� in terms of SDs,
we obtain

FTc,j�t� � G�bj−1�td + Tp�;�of f − 1,1� ,

�G��bj��td + Tp�;�on − 1,1� . �A5�

As the convolution of two maximally skewed SDs is also a
maximally skewed SD,79 Eq. �A5� can be represented by a
single SD parameterized by some exponent � and normaliza-
tion constant Bj. The determination of FTc,j�t� then reduces to
the search for a suitable representation of maximally skewed
SDs with arbitrary characteristic exponents. This, however,
poses a problem as only a single maximally skewed SD can
be represented in terms of fundamental functions �Levy dis-
tribution, �G=0.5�. It is preferable, therefore, to search for a
simple and general asymptotic approximation. It can be
shown78,79 that the long tail of any SD 1−G�x ;�G ,1� is
asymptotic to x−�G. Assuming this approximation and rewrit-
ing Eq. �A1� in terms of a summation over j of CDFs FTc,j�t�,
where FX�x�=�−�

x fX�u�du, we arrive at the following simple

expression for F̄Tc
:

F̄Tc
� �

j=1

Tp/2�min

�Bj�−��−1��td + Tp�−��−1� � 	1 +
td

Tp

−��−1�

.

�A6�

The substitution of Eq. �A6� into Eq. �2� for some theoreti-
cally determined intrinsic recombination rate distribution
��k� provides the complete intensity decay curve for con-
fined ensembles, where all carrier populations are exposed to
blinking phenomena. More importantly, in addition to this,
Eq. �2� can also be used in the construction of fitting forms
for experimentally obtained decay curves, where some small
number of confined and/or bulk recombination mechanisms
are assumed.
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