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We investigate analytically and numerically the emission spectrum of a two-electron quantum dot molecule
in a continuous wave driving electromagnetic field. For high frequency driving our findings reveal that the
analytic results based on a two-level approximate model predict correctly the emission spectrum for the
low-frequency regime for any parameters values. The analytically predicted spectrum becomes of satisfactory
agreement as we approach lower driving frequencies. Several features are reported from the numerical simu-
lations, as harmonics splitting and high-harmonic generation, which cannot be explained in the context of the
two-level scheme.
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I. INTRODUCTION

Double-coupled quantum dot �QD� structures, containing
two electrons �usually referred to as a two-electron QD mol-
ecule�, have received increasing interest recently.1 This nano-
structure is more complicated than a single-electron double
QD structure as the strong Coulomb interaction between the
two electrons should be included when the behavior of the
system is studied. The interaction of the two-electron QD
molecule with external electromagnetic fields has been the
subject of several investigations, mainly dealing with the po-
tential for controlled population dynamics and time-
dependent wave functions of the system.1–20

Even though the dynamics of the two-electron QD mol-
ecule system is well studied, the photon emission spectrum
of this system in the presence of an external oscillatory field
has only been studied in one publication.21 In Ref. 21 we
presented results on the occurrence of high-order harmonic
generation in a two-electron QD molecule under a low-
frequency and high-intensity external electromagnetic field
considering the coherent interaction of the QD structure with
the field. We presented numerical calculations for a GaAs
QD structure and compare our findings to results obtained
from analytic expressions derived from a level-crossing
model, with good agreement between analytical and numeri-
cal results.

We note that several articles have analyzed the emission
spectrum of single-electron double-coupled QD structures
interacting with high-frequency electromagnetic fields.22–26

In addition, the photon emission spectrum of two-level quan-
tum systems that are strongly driven by electromagnetic
fields has been studied in several publications,27–35 with em-
phasis given to the case of low-frequency driving fields and
the occurrence of high-order harmonic generation.

In the present paper we study the emission spectrum of a
two-electron QD molecule driven by an external oscillatory
field. We consider the high-frequency driving-field regime so
this study can be considered complimentary to our previous
investigation.21 Both numerical and analytical results are pre-
sented. For the low-frequency part of the spectrum the ana-

lytical results are in good agreement with the numerical re-
sults. However, this does not happen for the other regimes of
the spectrum. Therefore, the validity of the analytical results
is restricted. This is mainly because the analytical results are
derived based on the assumption that the dynamics of the
system can be well described by an effective two-level
model. Also, the analytical expressions derived are rather
complicated and take a simple form only in certain external
frequency regimes.

II. QUANTUM SYSTEM, RELEVANT EQUATIONS AND
ANALYTICAL RESULTS

The Hamiltonian of the two electrostatically interacting
electrons in a QD molecule driven by an external electric
field can be written as

H�t� = h�r�1,p�1,t� + h�r�2,p�2,t� +
e2

��r�1 − r�2�
, �1�

where h�r� , p� , t� is the Hamiltonian of each electron. The third
term expresses the Coulomb repulsion, where � is the dielec-
tic constant of the QD structure. The Hamiltonian h�r� , p� , t�
describing one electron confined in a double-dot structure is
given by

h�r�,p� ,t� =
p2

2m
− ezE�t� + Vl�r�� + Vv�r�� . �2�

The first term describes the kinetic energy of the electron,
with p being the momentum and m being the effective elec-
tron mass, the second term describes the interaction of the
electron �in the dipole approximation� with an external field
E�t�, and the last two terms represent the lateral and vertical
confinement of the electron, respectively. The confinement
potentials are described in harmonic-oscillator terms as7,16

Vl�r�� = Vl�x,y� =
m�z

2

2
C�x2 + y2� ,
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Vv�r�� = Vv�z� =
m�z

2

8a2 �z2 − a2�2, �3�

where �z is a characteristic angular frequency and C deter-
mines the strength of vertical confinement relative to the
lateral confinement. In this representation the two QDs are
centered at �a.

Our approach assumes that each QD contains only
one energy level; the ground state of the one-electron
system. This condition is achieved by proper selection of
the lateral confinement, vertical confinement, and interdot
distance.7,16 From the one-particle wave vectors we
generate six two-electron basis wave vectors,
��1,1� , �1� ,1� , �1,1�� , �1� ,1�� , �2,0� , �0,2��, with respect to
which we derive the matrix representation of the two-
electron Hamiltonian. The left/right numerical index indi-
cates the number of electrons in the left/right dot and the
prime index distinguishes between spin-up and spin-down
states. The two-particle basis can be rearranged so that it
contains three spin-singlet and three spin-triplet states. The
spin-triplet states with the electron number on each QD in-
variably one has no response to the applied electric field.
Therefore, we ignore them and work with the reduced spin-
singlet Hamiltonian, written using the spin-singlet basis
��2,0� , ��1� ,1�+ �1,1��� /	2, �0,2�� as7,9,16

H�t� = �
V�t� 	2k 0

	2k − W 	2k

0 	2k − V�t�
� . �4�

Here, W=W1−W2, with W1 and W2 being the intradot and
the interdot Coulomb interaction of the electrons, k denotes
the single-electron tunneling amplitude, and V�t� describes
the coupling between the electrons and the applied laser
field.

The wave function of the QD system can be expanded in
terms of the spin-singlet basis as

���t�� = a1�t��2,0� + a2�t���1�,1� + �1,1���/	2 + a3�t��0,2� .

�5�

The dynamic evolution of the system is described by means
of the time-dependent Schrödinger equation,

i
d

dt
a1

a2

a3
� = 
V�t� 	2k 0

	2k − W 	2k

0 	2k − V�t�
�
a1

a2

a3
� . �6�

Once we know the temporal evolution of the probability am-
plitudes, the induced dipole can be calculated by the expres-
sion

��t� = �̃��a1�t��2 − �a3�t��2� , �7�

where �̃ is the electric dipole transition matrix element. The
emission spectrum of the QD molecule can be estimated by
means of the Fourier transform

S���� = � e−i��t��t�dt�2

. �8�

Hence the coherent part of the emission spectrum of a typical
two-electron QD molecule can be derived from the numeri-
cal solution of the time-dependent Schrödinger equation, Eq.
�6�. We concentrate on a typical GaAs QD structrure with
parameters ��z=16 meV, C=0.5, and a=20 nm leading to
�W=5.6 meV and �k=−0.15 meV.7,9,11,16 Moreover, we
take an ac electric field so V�t�=� cos��t�, where � is the
Rabi frequency describing the coupling of the QD structure
with the external field and � being the angular frequency of
the applied field. The dynamic evolution of the system can
also be described by a simpler set of equations, once the
difference between the two types of Coulomb interaction W
is much larger than 	2k, as it is in the case studied here.
Then,9,11

a2�t� �
	2k

W
�a1�t� + a3�t�� , �9�

and the two-electron system is described by the following set
of differential equations:

i
d

dt
�a1

a3
� = �V�t� �

� − V�t� ��a1

a3
� , �10�

where � is defined as �� 2k2

W . It becomes obvious that the
system reduces to an effective two-level system, where only
the localized two-electron states are involved.

Obviously, Eq. �10� can be solved numerically as Eq. �6�.
However, here we make an effort to treat it analytically. The
Hamiltonian of the two-level system can equivalently be
written in terms of the well-known Pauli matrices �x ,�z as

�V�t� �

� − V�t� � = �0 �

� 0
� + �V�t� 0

0 − V�t� � = ��x + V�t��z.

�11�

In the Heisenberg picture, the time-dependent induced dipole
moment can be defined as

��t� = �̃�a1
��0��2,0� + a3

��0��0,2���z�t��a1�0��2,0�

+ a3�0��0,2�� , �12�

where

�z�t� = ��z
11�t� �z

12�t�
�z

21�t� �z
22�t�

� = � �z
11�t� �z

12�t�
��z

12�t��� − �z
11�t�

�
is a time-dependent Pauli matrix, which becomes the ordi-
nary Pauli matrix at t=0,

�z�t = 0� = �1 0

0 − 1
� .

In terms of the matrix elements of the �z�t� matrix, the
induced dipole becomes
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��t� = �̃��a1�0��2 − �a3�0��2��z
11�t� + �̃�a1

��0�a3�0�

+ a3
��0�a1�0���z

12�t� . �13�

From this expression it can be seen that the dipole moment
of the QD molecule can be found once the temporal evolu-
tion of the Pauli matrix is known, for given initial conditions
of the QD system.

Obviously, the time evolution of the dipole moment fol-
lows the dynamics of the components of the Pauli matrix.
The temporal evolution of the Pauli matrices can be found
from the Heisenberg equations of motion �

d�i

dt = i
� �H ,�i� , i

=x ,y ,z� as

d

dt
�+

�−

�z
� = i
2V�t� 0 − �

0 − 2V�t� �

− 2� 2� 0
�
�+

�−

�z
� , �14�

where we have defined the ���t�= ��x�t�� i�y�t�� /2 matri-
ces.

By straightforward manipulation of these equations we
can eliminate the ���t� matrices and find an expression for
the derivative of the �z�t� matrix that contains only the �z�t�
matrix. This is an integro-differential equation of the
form22–26

d�z�t�
dt

= − 2i���+�0�ei	�t� − �−�0�e−i	�t��

− 4�2
0

t

dt��z�t��cos�	�t� − 	�t��� , �15�

where 	�t�=2�0
t dt�V�t��.

As �+�t=0�= � 0 1
0 0 � and �−�t=0�= � 0 0

1 0 �, we find from Eq.
�15� that

d�z
11�t�
dt

= − 4�2
0

t

dt��z
11�t��cos�	�t� − 	�t��� , �16a�

d�z
12�t�
dt

= − 2i�ei	�t� − 4�2
0

t

dt��z
12�t�cos�	�t� − 	�t��� .

�16b�

By differentiating Eq. �13� and using Eqs. �16a� and �16b�,
we find the integrodifferential equation that the induced di-
pole moment of the QD molecule follows

d��t�
dt

= − 2i��̃�a1
��0�a3�0� + a3

��0�a1�0��ei	�t�

− 4�2
0

t

dt���t��cos�	�t� − 	�t��� . �17�

We will now consider the tunneling initial condition
where both the electrons are located in the same QD
initially �a1�0�=1 or a3�0�=1�. As 	�t�=2�0

t dt�V�t��
= �2� /��sin��t�, then Eq. �17� reads

d��
�
d


= − �̃2
0




d
���
��cos��̃ sin 
 − �̃ sin 
�� . �18�

Here, we defined the dimensionless parameters 
=�t, �̃
=2� /�, and �̃=2� /�. Applying the well-known Jacobi-
Anger identities,36

cos�z sin �� = J0�z� + 2�
n=1

�

J2n�z�cos�2n��

and

sin�z sin �� = 2�
n=1

�

J2n−1�z�sin��2n − 1��� ,

Eq. �18� can be rewritten as

d��
�
d


= − ��̃J0��̃��2
0




d
���
�� − �̃2G��;
�� , �19a�

with

G��;
�� = 2�
n=1

�

J2n��̃�cos�2n
�
0




d
���
��

�J0��̃� + 2�
m=1

�

J2m��̃�cos�2n
���
+ 2�

n=1

�

J2n+1��̃�cos��2n + 1�
�
0




d
���
��

�2�
m=0

�

J2m+1��̃�cos�2n
��� . �19b�

One can give a formal solution to Eq. �19a� as

��
� = �̃ cos��̃J0��̃�
� − �̃2
0




d
�

cos��̃J0��̃��
 − 
���G��;
�� . �20�

In the case of a high-frequency driving field where ��2�
�i.e., �̃=2� /��1�, the solution of Eq. �20� can be consid-
ered by perturbation expansion with respect to the parameter
�̃.

III. NUMERICAL RESULTS AND DISCUSSION

We begin the discussion for very high-frequency driving
fields. In this case, in the zero-order approximation the domi-
nant term is the first term of Eq. �20�. The dipole moment is

simply ��
�= �̃ cos��̃J0��̃��t� and its Fourier transform �see

Eq. �8�� has a peak at frequency �̃J0��̃��. As �̃�1 and

J0��̃��1 �for any value of the Rabi frequency�, this peak

corresponds to low-frequency generation ��LF= �̃J0��̃���.
However, the intensity of this low-frequency peak is ex-
pected to be very high since �̃ is the highest amplitude a
Fourier component can have. Moreover, if the field intensity
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and the driving frequency have a relation such that J0��̃�
=0, i.e., �̃ is a root of the zero-order Bessel function, the
low-frequency peak tends to zero and the induced dipole
moment gets a static value. This is a direct evidence of the
two-electron localization condition1,3,5–14,16 in the emission
spectrum.

We have compared the results predicted by the analytic
expression for the low frequency, �LF, with the predictions
of the Fourier transform of the dipole moment derived by the
numerical solution of the time-dependent Schrödinger equa-
tion �Eq. �6��. We remind that the numerical solutions are
valid in any regime and not only for the high-frequency driv-
ing regime. Our investigation reveals that there is an excel-
lent agreement between the numerical and analytical results
on the low-frequency generation, for cases not only with �̃
�1 �high-frequency driving� but also up to �̃�1. This upper
limit of �̃ corresponds to frequency of the field photons equal
to the splitting between the energy states in the effective
two-level system. We stress that the frequency �̃J0��̃�� is
present in any emission spectrum, even for very low-
frequency driving fields. But for low-frequency driving

fields, �̃J0��̃�� does not correspond to the lowest frequency
of the spectrum and we find even lower frequencies, which
can be explained from the two-level model analysis as con-
tributions from the second term of Eq. �20�, as now �̃ is not
small. In this regime of the driving-field frequency, it is quite

reasonable to find harmonics below �̃J0��̃��, as this fre-
quency can be quite high, especially for weak applied field.
In the case of weak fields the Rabi frequency is close to zero
and the zero-order Bessel function has a value close to unity

�J0�0��1�. Then the frequency �̃J0��̃�� of the emission
spectrum depends practically solely on the value of �̃. We
have investigated this theoretical estimation numerically, and
we have confirmed that for values of driving frequency such
that �̃ is large the corresponding frequency in the emission
spectrum is large too, at a value around �̃�.

By exploring Eq. �19�, we find that the most important
contribution of the second term of Eq. �20� is

−�̃�̃ sin��̃J0��̃�
��n=1
� J2n��̃�sin�2n
�

2n . This term is responsible
for the splitting of the even harmonics of the spectrum with
splitting equal to 2�LF. This splitting has been reported in
two-level systems22–26 and is also observed in our system
once we describe it by means of the equivalent two-level
system �see Fig. 1�a��. In addition, we observe that for cer-
tain values of the Rabi frequency in the two-level system the
odd harmonics �which are due to higher-order terms with
respect to �̃� are absent. However, the numerical solution of
the time-dependent Schrödinger equation that describes the
three-level two-electron QD system, predicts a more com-
plex emission spectrum �see Fig. 1�b��. Actually, we find
peaks at all harmonics �even and odd� and at all places be-
tween the harmonics �from 0.5� to 6.5���, which cannot
easily be explained by the analytic expression �see various
harmonic terms in Eq. �19��.

In Fig. 2 we explore the two-electron QD molecule driven
by an external electric field with frequency the same as in the
previous case �Fig. 1� but with intensity such that the Rabi

frequency of the field is ��=1.92386 meV. In this case �̃

=2.4048255, i.e., it is equal to the value of the first root of
the zero-order Bessel function and the low frequency be-

comes zero �as �LF= �̃J0��̃���. From the analytic expres-
sions, we expect that there is no splitting of the harmonics of
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FIG. 1. �Color online� The numerically estimated emission spec-
trum of �a� the two-level system described by Eq. �10� and �b� the
three-level two-electron QD molecule described by Eq. �6�, for field
parameters set at ��=��=1.6 meV. The spectrum has been ob-
tained after 128 cycles of the field. With harmonic order we mean
that the emitted frequency is expressed in units of the external
frequency.
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FIG. 2. �Color online� As in Fig. 1 but for external parameters
set at ��=1.6 meV and ��=1.92386 meV.

ANDREAS F. TERZIS AND EMMANUEL PASPALAKIS PHYSICAL REVIEW B 80, 035307 �2009�

035307-4



the emission spectrum. This is actually observed once we
treat our system as an equivalent two-level system �see Fig.
2�a��. However, the numerical solution of the three-level
two-electron QD system, predicts a more complex emission
spectrum �see Fig. 2�b��. As in Fig. 1 we find peaks at all
harmonics �even and odd� and at most places between the
harmonics.

By systematic investigation we set the limits of the two-
level model. We have found that in this high-frequency
driving-field regime, the lower the driving frequency the bet-
ter the agreement between the two-level approximation and
the numerical solution of the three-level system. For example
in Figs. 3�a� and 3�b�, we depict a case where the two-level
approach and the numerical solution of the three-level sys-
tem are in quite satisfactory agreement in the low-harmonics
regime. As we have mentioned the lower the driving fre-
quency the better the agreement, which depends on the
strength of the applied field �Rabi frequency�. Moreover, we
have found that as the driving frequency becomes very low
the dependence on the Rabi frequency practically disappears.

In the case of very low driving-field frequency, a case stud-
ied in our previous work �Ref. 21� where high-harmonic gen-
eration is predicted, the agreement between the two- and the
three-level model is very good.

From the same figure �Fig. 3�, we clearly see that the
agreement between the numerical predictions of the emission
spectrum and the predictions of the two-level equivalent sys-
tem is not good in the high-harmonic region, as the three-
level system shows a region of high harmonics �Fig. 3�c��
not present in the two-level system.

We also investigate more systematically the high harmon-
ics that appear in the emission spectrum �Fig. 3�c��. We find
that these well-separated regions of harmonics start to appear
once the driving-field frequency is bellow 1 meV. Moreover,
we see that the separation is such that the actual frequency of
the center of the high-harmonic region takes always almost
the same value. For example, compare Figs. 3�c� and 4�a�.
The position of the center of the high-harmonic part of the
spectrum is for the case with driving frequency ��
=0.16 meV at the 35th harmonic �Fig. 3�c�� and for the case
with driving frequency ��=0.6 meV at the 9th harmonic
�Fig. 4�a��. The actual frequency is almost the same, in both
cases around 5.5 meV. This is the case for even lower-driving
field frequencies. It worth pointing out that this value is prac-
tically identical with the W-parameter �see Hamiltonian of
the three-level system, Eq. �4��. This behavior of the two-
electron QD quantum system is not predicted by the simpli-
fied two-level model. Finally, we have shown that the emis-
sion spectrum in this region of high driving-field frequencies
depends strongly on the intensity of the external electric
field. Hence, for high value of the Rabi frequency the emis-
sion spectrum becomes different from the one reported in
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FIG. 3. �Color online� The low-harmonics part of the emission
spectrum, numerically estimated for �a� the two-level system de-
scribed by Eq. �10� and �b� the three-level two-electron QD mol-
ecule described by Eq. �6�, for field parameters set at ��=��
=0.16 meV. �c� The complete spectrum of case �b�. The spectrum
has been obtained after 128 cycles of the field.
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FIG. 4. �Color online� The numerically estimated emission spec-
trum of the two-electron QD molecule with external parameters set
at �a� ��=��=0.6 meV and �b� ��=0.16 meV and ��=8��
=1.28 meV. The spectrum has been obtained after 128 cycles of
the field.
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Figs. 3�c� and 4�a�, with harmonics appearing in a very wide
range �compare Figs. 3�c� and 4�b��.

Then, we try to understand the origin of these important
findings in the emission spectra and find out some explana-
tion for the discrepancies between the three-level and the
simplified two-level models. As all spectra are derived from
the induced dipole moments �Eq. �7��, we investigate and
compare the time-dependent induced dipole moments. In
Fig. 5 we plot the normalized dipole moments ���t� / �̃� for
the cases studied in Figs. 1 and 3. For the case of Fig. 1
���=��=1.6 meV� we clearly see that the difference in the
spectrum is purely related to the significant difference in the
induced dipole moments �see Figs. 5�a� and 5�b��. For the
case studied in Fig. 3 ���=��=0.16 meV� the two- and
three-level dipole moments seem to be very similar with a
minor phase difference �see Fig. 5�c��. Actually this is not
true as we can see from Fig. 5�d�. There is a difference
between the two dipole moments, which increases in magni-
tude with the time.

A very important feature of the three-level system, that
never appears in the simplified two-level model, is the exis-
tence of harmonics at half-integer frequencies �i.e., at 0.5�,
1.5�, etc., see Fig. 3�b��. We have investigated carefully
these findings and have concluded that the existence of these
harmonics depends on two factors, the driving-field fre-
quency and the Rabi frequency. For example, if we get the
spectrum for a case very similar to the one depicted in Fig. 3
but now with ��=0.15 meV and for the same Rabi fre-
quency, then we do not get peaks at half-integer frequencies
but obtain peaks at positions much closer to the integer fre-
quencies �not shown here�. This reveals that the splitting of
the harmonics depends strongly on the driving frequency.
Moreover, as it is expected, we have found that the strength

of the peaks depends on the Rabi frequency and for low
driving-field intensity some features are almost absent. On
the contrary, in the two-level model the terms of Eq. �20�
never predict splitting of the order of half driving frequency
no matter what is the value of the driving frequency and the
Rabi frequency.

Before closing this discussion, we want to point out that
as the driving frequency becomes lower we reach the regime
we have investigated in our previous article �Ref. 21�. In this
case still Eqs. �19� and �20� are valid but the approximations
we have followed in order to get solutions are not correct in
this regime �specifically it is not proper to consider a pertur-
bation theory with respect to parameter �̃�. But as it was
found in Ref. 21 in this case the agreement between the
three- and two-level system is very satisfactory. The reason
is that in that case the two-level approach is based on a
different theoretical model which relies on a level-crossing
model.

IV. SUMMARY

In summary, in the present work we have calculated the
emission spectrum of a GaAs two-electron QD molecule
mainly in the region of high-frequency driving field. We
have shown that the emission spectrum of the two-electron
QD molecule driven by an external oscillatory electric field
is rather complex. Very few of its features �harmonic peaks�
can be explained by describing the system as an equivalent
two-level system or by means of analytical expression de-
rived in the context of the two-level system. Actually, the
predictions of the analytic model are in quite good agreement
with the results of the numerical calculations only for the
low-frequency region of the emission spectrum. Moreover,
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FIG. 5. �Color online� The numerically estimated normalized induced dipole moment ���t� / �̃� of the two-level system described by Eq.
�10� and the three-level two-electron QD molecule described by Eq. �6�. In plots �a� and �c� we depict both the two- �dotted curve� and three-
�solid curve� level dipole moments. In plots �b� and �d� we depict the difference between the two- and the three-level dipole moments. The
field parameters set at ��=��=1.6 meV for �a� and �b� and ��=��=0.16 meV for �c� and �d�.
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the analytic expressions predict the major peaks of the emis-
sion spectrum but they cannot account properly for the split-
ting of the harmonics. Finally, the analytic and the numerical
two-level model do not predict any high-harmonics part in
the emission spectrum for the high-frequency driving case.
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