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We present a semiautomated computer-assisted method to generate and calculate diagrams in the disorder-
averaging approach to disordered two-dimensional �2D� conductors with intrinsic spin-orbit interaction �SOI�.
As an application, we calculate the effect of the SOI on the charge conductivity for disordered 2D systems and
rings in the presence of Rashba and Dresselhaus SOI. In an infinite-size 2D system, anisotropic corrections to
the conductivity tensor arise due to phase coherence and the interplay of Rashba and Dresselhaus SOI. The
effect is more pronounced in the quasi-one-dimensional case, where the conductivity becomes anisotropic
already in the presence of only one type of SOI. The anisotropy further increases if the time-reversal symmetry
of the Hamiltonian is broken.

DOI: 10.1103/PhysRevB.80.035305 PACS number�s�: 73.23.�b, 72.15.Rn, 71.55.Jv

I. INTRODUCTION

Spin-orbit interaction �SOI� is a promising tool for ma-
nipulating spin degrees of freedom via electric field; because
of that, it plays an important role in various novel microelec-
tronic devices.1 In two-dimensional �2D� semiconductor mi-
crostructures, Rashba2 and Dresselhaus3 types of SOI are the
most important ones. In phase-coherent diffusive systems,
their dominant effect on the transport properties is the so-
called antilocalization4,5—isotropic SOI-induced correction
to the conductivity tensor, leading to the sign change in the
phase-coherent correction to the conductivity. Rashba and
Dresselhaus SOI terms equally and independently contribute
to the weak antilocalization correction. The anisotropic con-
tribution to the conductivity tensor is a more subtle effect
�arising in the next order in the weak-disorder expansion�. In
an infinite-size 2D conductor it comes from the interference
between Rashba and Dresselhaus SOI.6

A pure-Dresselhaus SOI affects 2D electron systems in
the same way as pure-Rashba SOI with the same amplitude.
However, it is known that in a system with mixed �Rashba-
Dresselhaus� type of SOI their action is not independent.
This becomes most pronounced in the special case when the
amplitude of Rashba SOI is equal to the Dresselhaus one.6,7

In order to highlight the interference between the Rashba and
Dresselhaus SOI, it is convenient to consider effects, which
arise entirely due to this interference. An example is the an-
isotropic contribution to the conductivity of a diffusive �un-
confined� 2D electron gas, which is zero in case when only
one type of SOI is present in the system.6

Both the �isotropic� antilocalization correction and the
SOI-induced anisotropic correction are phase-coherent ef-
fects; hence it is not surprising that in a fully phase-coherent
system both of them depend singularly on SOI amplitudes. In
the limit of small SOI the weak-localization �WL� correction
diverges both in 2D and quasi-one-dimensional �1D� cases
while the behavior of the anisotropic correction depends on
system’s geometry: in an infinite 2D system with time-
reversal symmetry it remains finite also when SOI is infini-
tesimal and in a quasi-1D case it diverges with the vanishing
SOI. Moreover, while in an infinite 2D disordered slab, two

different types of SOI �Rashba and Dresselhaus� are required
in order to make the anisotropic component of the conduc-
tivity tensor nonzero,6 in a quasi-1D geometry �see Sec. X C�
the SOI-induced anisotropy of the conductivity tensor arises
also for the case when the energy spectrum is isotropic �i.e.,
when only one type of SOI is present�, despite the fact that
all dimensions of a quasi-1D sample are much larger than the
mean-free path l of an electron. Thus, in the phase-coherent
regime the macroscopic shape anisotropy of the sample re-
sults in the �microscopic8� anisotropy of the conductivity ten-
sor. The SOI is still required but the energy spectrum does
not need to be anisotropic.

According to the theorem by Vollhardt and Wölfle
�proved in Ref. 9 for the spinless case�, diffuson propagator
poles do not contribute to the conductivity if the system is
invariant under time reversal. We extend the validity of this
theorem to the spinful case in Appendix D. From this theo-
rem one may expect the appearance of uncompensated dif-
fuson divergences in systems with broken time-reversal sym-
metry, which would then result in enhancement of the SOI
correction to the conductivity tensor. We indeed observe such
an enhancement in the example of a ring pierced by a mag-
netic flux, where the time-reversal symmetry is broken due
to the presence of the vector potential �see Sec. XII�.

We perform our calculations using the disorder-averaging
diagrammatic techniques.10–13 In problems with spin, a sum-
mation over spin indices produces huge expressions which
cannot be handled manually anymore in a reasonable time.
We have overcome this problem by developing a symbolic-
calculation program14 that �i� generates diagrams having the
requested number of loops, �ii� calculates the Hikami boxes
�HBs�, and finally �iii� performs the integration over the
cooperon and diffuson momenta. The first two stages of the
program are universal, i.e., can be readily used for other
calculations in a diagrammatic approach. The program sig-
nificantly facilitates the usage of the diagrammatics, espe-
cially in the spinful case.

The first part of the paper is not specific to the problem of
anisotropic conductivity. In Sec. II we define the model
which we use in our calculation, then we introduce disorder-
averaged Green’s functions �GFs� �see Sec. III� and derive
the Kubo-Greenwood formula in the Keldysh technique �see
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Sec. V�. Then we derive the loop expansion for the diagram-
matic technique in Sec. VI and derive expressions for diffu-
sons �cooperons� in Sec. VII. The second part of the paper
starts with Sec. VIII where we derive the incoherent SOI
correction to the conductivity tensor. We then proceed with
the contribution from the weak-localization diagrams �which
remains isotropic at zero frequency� in Sec. IX. The results
for the anisotropic transport in 2D and quasi-1D geometries
in the presence of the time-reversal invariance are described
in Sec. X for the case of zero frequency �=0 and in Sec. XI
for ��0. Finally, in Sec. XII we give an example of how the
effect of SOI-induced anisotropy could be enhanced by the
time-reversal symmetry breaking terms.

II. HAMILTONIAN

Rashba and Dresselhaus spin-orbit interaction terms
modify the Hamiltonian as follows:

Ĥ� =
p̂2

2m
+ V̂s� + U��r�, Vs� = aVR� + bVD�

� , �1�

where p̂ denotes momentum operator, a and b are Rashba
and Dresselhaus amplitudes, and U��r� is the disorder poten-
tial created by impurities or defects randomly placed in the
sample. We assume that U��r� is uncorrelated

U��r�U��r�� =
�2

2���
��r − r�� , �2�

where � is the mean time between collisions of an electron
off impurities, � is the density of states �DOS� at the Fermi
level, and the over bar indicates average over the different
disorder configurations. The Rashba SOI is invariant under
arbitrary rotation in the �x ,y� plane

VR� = ẑ · ��� p� � �ẑ,�,p� = 	1p̂y − 	2p̂x = �ẑ,R

z �,R


z p�

= � 0 py + ipx

py − ipx 0
�, ∀ 
 , �3�

where �= �	1 ,	2 ,	3� is composed of Pauli matrices and R

z

denotes 3�3 matrix describing rotation by an angle 

around the z axis. The Dresselhaus SOI term can be written
as

VD� = �ẑ,C�,p� = 	1p̂x − 	2p̂y ,

C = R−�/2
z R�

y = � 0 − 1 0

− 1 0 0

0 0 − 1
	 . �4�

In the coordinate system �CS�, rotated by an arbitrary angle

 around the z axis with respect to the initial CS, the SOI
part of the Hamiltonian is transformed into

Vs�p,�� = Vs��R

z p,R


z �� = �ẑ,a� + bR−

z CR


z �,p� . �5�

In case when 
=−� /4, VD becomes similar to Rashba SOI15

so that the SOI term can be written as

R−�/4
z CR�/4

z = �− 1 0 0

0 1 0

0 0 − 1
	 ,

Vs � Vs�p,�� = �a − b�	1p̂y − �a + b�	2p̂x = ŝ�̂/2, �6�

where the SOI-induced spectrum splitting �̂ and the helicity
�spirality16� operators are defined as

�̂ = 2
p̂x
2�a + b�2 + p̂y

2�a − b�2,

ŝ = 2��a − b�p̂y	1 − �a + b�p̂x	2��̂−1, ŝ2 = 1 . �7�

The original disorder-free Hamiltonian in the rotated CS may

be written in the form p̂2 / �2m�+ ŝ�̂ /2; it possesses the fol-
lowing eigensystem:

�p,s� = � is�p/2
�a + b�px + i�a − b�py

1
	�p�, s = � 1, �8�

Ep,s = p,s�Ĥ0�p,s� =
p2

2m
+

s�p

2
, �9�

�p = p,s��̂�p,s� = 2
px
2�a + b�2 + py

2�a − b�2. �10�

We see that the simultaneous presence of Rashba and
Dresselhaus SOI leads to an anisotropy of the energy
spectrum.6,17 On the other hand, Eq. �10� is symmetric with
respect to the exchange a↔b; conversely, the same is true
for SOI-induced corrections to the conductivity tensor. We
note that helicity is invariant with respect to the time rever-
sal,

	2s−p
T 	2 = sp � p�ŝ�p� . �11�

In the rest of the paper we perform calculations in the coor-
dinate system, rotated by � /4 in the xy plane, where the
�unperturbed� Hamiltonian is given by

Ĥ =
p̂2

2m
+

ŝ�̂

2
+ U�r� , �12�

where U�r�=U��R�/4
z r� is the disorder potential in the rotated

coordinate system. Our assumption �2� that U��r� is a
�-correlated random disorder potential is inherited by the
disorder potential in the rotated coordinate system,

U�r�U�r�� =
�2

2���
��r − r�� . �13�

Hamiltonian �12� defines the velocity operator v̂ together

with the “fictitious” vector potential Ã,
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v̂ =
i

�
�Ĥ,r� =

p̂

m
−

e

mc
Ã ,

Ã =
mc

e
��a + b�	2,�b − a�	1,0� , �14�

so that

p̂2

2m
+

ŝ�̂

2
=

mv̂2

2
− m�a2 + b2� . �15�

The strength of the SOI can be characterized by dimension-
less Rashba and Dresselhaus amplitudes introduced as fol-
lows:

xa = 2pFa�/�, xb = 2pFb�/�, pF = 
2m , �16�

where  is the �temperature-dependent� chemical potential.
Alternatively, the SOI can be characterized by another set of
two dimensionless parameters,

x = 
xa
2 + xb

2, � =
2ab

a2 + b2 , − 1� �� 1, �17�

which characterizes the “total” SOI amplitude and the aniso-
tropy of the energy spectrum �Eq. �10�� correspondingly. The
choice between two parameter sets �Eqs. �16� and �17�� be-
comes important when we have to expand expressions in
Taylor series. On the example of the spectrum splitting �p
defined in Eq. �10� we see the advantage of the choice �Eq.
�17��: while the Taylor expansion of �p in powers of �x ,�� is
uniform, its expansion in the parameters �Eq. �16�� is non-
uniform: the expansion depends on the fact if one expands
subsequently in xa ,xb or in xb ,xa.

III. AVERAGED GREEN’S FUNCTION IN THE SELF-
CONSISTENT BORN APPROXIMATION

In our calculations, we use the electron-gas model of the
Fermi liquid.18 In the absence of SOI and applied electric
field, disorder-averaged Green’s functions are obtained from
the self-consistent Born approximation10

gr/a
E �p� = �E − �p�

i

2�
�−1

, ��p =
p2

2m
−  , �18�

where � has weak ��E� /� dependence on frequency E.
The presence of the SOI changes the expression for GF from
Eq. �18� into

GR
E�p� = gr

E�p��
n�0

�Vs�p�gr
E�p�/��n

= �	0�gr
E�p��−1 −

sp�p

2�
�−1

=
1

2
��	0 + sp�gr

E−�p� + �	0 − sp�gr
E+�p�� , �19�

where 	0 is the 2�2 unity matrix and

gr
E��p� = ��gr

E�p��−1�
�p

2�
�−1

= �ga
E��p���. �20�

From Eq. �19� we see that averaged GF for Hamiltonian �12�
can be obtained from the GF of the disorder-free Hamil-
tonian by substituting infinitesimal “epsilon” in the denomi-
nator with �2��−1. Thus for energies close to , the averaged
GFs are very different from GFs of the disorder-free system;
the latter are strongly modified due to the disorder. In fact,
Eq. �18� is the result of the summation of an infinite pertur-
bation series.

We calculate the universal contribution �Eq. �37�� to the
conductivity tensor �see Sec. IV below�; the corresponding
momentum integrals converge in the vicinity of the Fermi
level, so that the momentum arguments of all Green’s func-
tions are close to pF. The assumption p� pF simplifies the
SOI term Vs in the GF expression �19�. In the zeroth order
�in powers of ��p /�1�

Vs�p� � pF��a + b�	1 sin 
 − �a − b�	2 cos 
� , �21�

where 
 is the angular coordinate of p. This approximation
is sufficient for the calculation of the weak localization and
two-loop correction in Secs. IX and X. However, in the cal-
culation of the zero-loop contribution �see Sec. VIII�, higher
accuracy is required,

Vs�p� � pF�1 +
��p

2
�� ��a + b�	1 sin 
 − �a − b�	2 cos 
� .

�22�

IV. (NON)UNIVERSAL CONTRIBUTIONS TO THE
CONDUCTIVITY

We calculate the universal �i.e., independent of the details
of the energy spectrum far from the Fermi level� corrections
to the conductivity tensor. The latter quantity is derived in
linear response in the applied electric field �see Sec. V�. In
the diagrammatic approach, the SOI-induced correction to
the conductivity can be graphically represented as a sum of
diagrams. A contribution of an individual diagram is initially
expressed as an integral in both frequency and momentum
over the combination of Green’s functions and the distribu-
tion function. We call such an integral universal if its leading
contribution comes from the part of the integration space,
where all momentum and frequency arguments of GFs in the
integrand are close to the Fermi level. In the momentum
space this means �p− pF��� / l; in the frequency space
��E��T. �pF is the Fermi momentum and T is the tempera-
ture in equilibrium or effective temperature in a nonequilib-
rium case.� Then the integration in momentum space can be
performed assuming constant averaged DOS � and approxi-
mating �d2p / �2���2���−�

� d� where in 2D �=m / �2���.
According to the Fermi liquid theory, only electrons with
energies near the Fermi level behave like free electron gas so
that the effect of the interaction between electrons can be
disregarded. Thus only the universal corrections are expected
to give reasonable physical results. The nonuniversal contri-
butions �i� cannot be reliably calculated and �ii� cannot can-
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cel universal contributions. In the diagrammatics, arbitrary
universal contributions to Hikami boxes can be calculated.
Unfortunately, this is not true for nonuniversal corrections:
some of them can be considered within the diagrammatics19

and others are too complicated to be calculated. The impos-
sibility to take into account all nonuniversal contributions
may leave an impression of imperfection of the diagram-
matic technique. However, one should note that the situation
is not better in the nonlinear 	 model,20 where all approxi-
mations we use in the diagrammatics are required as well.

V. NONEQUILIBRIUM KUBO FORMULA IN KELDYSH
TECHNIQUE

The �mean� current density in a system, characterized by a
one-particle density matrix �DM� �̂ is given by

j�t� = Tr��̂�t�ĵ�, ĵ = ev̂ , �23�

where ĵ and v̂ denote current and velocity operators. We
proceed with calculations in momentum representation,

j�t� =� d2p

�2���2� d2p�

�2���2 Tr
spin

�p��̂�t��p��p��ĵ�p�� ,

p��ĵ�p� = ��p − p��e
�H�p,r�

�p
, Ĥ = Ĥ0 + �V̂ , �24�

where Ĥ0 is the unperturbed Hamiltonian and the perturba-

tion term �V̂ describes the applied electric field, see Eq. �27�
below. It is convenient to express the DM in terms of GFs
�see §2.1 from Ref. 21�.

���̂�t����� = �̂†��;t��̂���;t��

= − i lim
t�→t

���Ĝ��t�,t����

= −
i

2
lim
t�→t

����ĜK − �ĜR − ĜA���t�,t����

= − �
−�

� d�

2�
e−i�t

�
i

2
�

−�

� dE

2�
����ĜK − �ĜR − ĜA���E,E − ����� ,

�25�

where ���p ,s�. We assume that the unperturbed DM �̂�0� is
stationary �though not necessary equilibrium� and is charac-
terized by energy distribution function fE. Thus, the zero-
order DM is time independent and the zero-order GFs are
homogeneous in time.

The perturbation �see Eq. �27� below� affects both �̂�t�
and ĵ in Eq. �23�. We call the correction to ĵ “diamagnetic
part of the current operator” ĵD; the unperturbed part of Eq.
�24� we call “normal part of the current operator” ĵN,

p��ĵD�p� = ��p − p��e
��V

�p
,

p��ĵN�p� = ��p − p��e
�H0

�p
. �26�

When the system is perturbed by external electric field
E= 1

c
�A
�t , the perturbation operator is given by

p���V̂�p� = ��p − p��
1

2m
��p −

e

c
�A + Ã��2

− �p −
e

c
Ã�2�

� −
e

mc
A�p −

e

c
Ã���p − p��

= −
1

c
Ap��ĵN�p� ,

p��ĵD�p� = −
e2

mc
��p − p��A . �27�

Let us denote the Keldysh-contour time-ordered GF as Ĝ.

The applied electric field affects Ĝ; the first-order correction
is given by

��1�Ĝ�E,E − �� = ĜE�−
e

c�
v̂A��ĜE−�. �28�

Expressing Eq. �28� in a usual 2�2-matrix form,22 we get
perturbation expressions for GFs in Eq. �25�

��1��ĜR − ĜA��E,E − �� = − �
�=1

2
eA�

�

c�
�ĜR

Ev̂�ĜR
E−�

− ĜA
Ev̂�ĜA

E−�� , �29�

and

��1�ĜK�E,E − �� = − �
�=1

2
eA�

�

c�
��hE − hE−��ĜR

Ev̂�ĜA
E−�

+ hE−�ĜR
Ev̂�ĜR

E−� − hEĜA
Ev̂�ĜA

E−�� ,

hE = 1 − 2fE. �30�

In equilibrium

hE = � 0, E� � − 

tanh
E�

2T
, E� � −  � . �31�

We split the DM into “normal” and “diamagnetic” parts �like
we did with the current operator in Eq. �26��

����̂N������� =
i

2 �
�=1

2
eA�

�

c�

��
−�

� dE

2�
�����hE − hE−��ĜR

Ev̂�ĜA
E−����� ,

�32�
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����̂D������� = =
i

2 �
�=1

2
eA�

�

c�

��
−�

� dE

2�
�����hE−� − 1�ĜR

Ev̂�ĜR
E−�

− �hE − 1�ĜA
Ev̂�ĜA

E−����� . �33�

Then we rewrite Eq. �23� in the frequency space, substituting
�̂���= �̂�0�+��̂N���+��̂D���,

j��� = Tr���̂�0� + ��̂N��� + ��̂D�����ĵN + ĵD��

� Tr��̂�0�ĵN + �̂�0�ĵD + ��̂N���ĵN + ��̂N���ĵD� , �34�

where we neglected nonlinear �in the perturbation� terms.
Using Eqs. �25�, �26�, and �32� we can calculate Eq. �34� in
the momentum representation. From

Tr�viĜR
Ev jĜR

E� =
i

�
Tr��ri�ĜR

E�−1 − �ĜR
E�−1ri�ĜR

Ev jĜR
E�

=
i

�
Tr��ri,v j�ĜR

E�

=
i

�
Tr��ri,

p̂j

m
�ĜR

E�
= − �ij Tr ĜR

E, �35�

we conclude that

at � = 0 Tr���̂DĵN + ��0��ĵD� = 0. �36�

Both equilibrium23 and nonequilibrium24 contributions to the
persistent current in a mesoscopic ring are given by
Tr��̂�0�ĵN� while Tr���̂N���ĵN� is the linear response to the
applied electric field.

In the rest of this section we assume that A is directed
along the � axis and we measure the charge current in the �
direction. Then �for arbitrary energy distribution fE�

	����� = 	��
N ��� + 	��

D ���, 	��
N ���� 	��

D ��� ,

	��
N ��� =

c

i�A�
Tr���̂N��� ĵN

�� =
e2

h
Tr�v̂�ĜR

Ev̂�ĜA
E−�� ,

�37�

where we assumed that the �momentum� trace is
E-independent. �This assumption is valid for all universal
quantities except for the Drude conductivity, see Appendix
A.� The diamagnetic correction to the conductivity is given
by

	��
D ��� =

c

i�A�
Tr���̂D��� ĵN

� − ��̂D�0� ĵN
��

=
e2

h
�

−�

� dE

�
fE�Tr�v̂�ĜA

Ev̂��ĜA
E−� − ĜA

E��

− Tr�v̂��ĜR
E+� − ĜR

E�v̂�ĜR
E�� . �38�

In the frequency integral �−�
� dE / �2�� in Eq. �38�, large nega-

tive frequencies E�− /� give important contribution to the
result, so that the E dependence of � in Eq. �18� cannot be
neglected; this complicates the calculation of Eq. �38�. The
SOI-dependent part of Eq. �38� is nonuniversal �the momenta
of GFs are not bounded in the vicinity of pF�. Since Eq. �38�
does not contain products of different �retarded and ad-
vanced� GFs, it cannot contain diffusons or cooperons; hence
it is incoherent and cannot produce corrections to the con-
ductivity tensor having the same order in SOI, as our results
below �see Eqs. �84�, �87�, and �96��. In what follows, we
study the universal contribution �Eq. �37�� and do not calcu-
late �Eq. �38��.

An attempt to use the Kubo formula �37� for calculating
the leading �Drude� conductivity contribution leads to diver-
gences. In fact, Eq. �37� is valid only for calculating correc-
tions �due to ��0, SOI, interaction, etc.� to the main
�Drude� conductivity value. See Appendix A for details of
calculating the Drude conductivity.

We derived the universal contribution to the conductivity
tensor �Eq. �37�� for a general case of nonequilibrium sta-
tionary distribution function. Result �37� is the same as the
one derived for the equilibrium case.25 Thus, we see that
corrections to the conductivity are independent of the distri-
bution function fE. Note that this is not true for the leading
�Drude� conductivity �Eq. �A6��, which does depend on fE.

In what follows, we always perform calculations in the
rotated coordinate system, where the spin-orbit part of the
Hamiltonian is given by Eq. �6�. In this coordinate system,
the conductivity tensor is diagonal in all considered geom-
etries; its anisotropic part is proportional to 	3. �See the dis-
cussion after Eq. �76�.� We denote the isotropic and aniso-
tropic parts of the conductivity tensor 	 with symbols 	is and
	an,

	 = 	is	0 + 	an	3. �39�

In an arbitrary coordinate system, the �an�isotropic properties
of a 2D symmetric tensor can be characterized by two non-
negative scalars 	is and �	an�—isotropic and anisotropic am-
plitudes defined by

	is =
1

2
Tr 	 ,

��

q − p

q − pp

p

�

�

v̂α v̂β

q − p

q − p

p

p

v̂α

� �

� �

v̂β

(b)(a)

FIG. 1. �Color online� Two representations of the weak-
localization diagram, cf. Fig. 4.8 from Ref. 11. We call Fig. 1�a�,
ladder representation and Fig. 1�b�, coordinate representation.
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�	an� = 
Tr��	 − 	0	is�2/2�

=
�Tr�		1

2
��2

+ �Tr�		3

2
��2

. �40�

It is easy to check that both 	is and �	an� are independent of
the choice of the coordinate system. Finally, we give explicit
expressions for the anisotropic part 	an of the conductivity in
the original and rotated by � /4 coordinate systems,

in the original CS 	an = 	xy and

in the rotated CS 	an =
	xx − 	yy

2
. �41�

VI. LOOP EXPANSION

It is convenient to represent the different contributions to
the averaged conductivity in graphical form as diagrams. The
simplest �bubble� diagram �see Fig. 2�a�� �Ref. 26� is pro-

duced by Kubo formula �37� by substituting ĜR and ĜA with
the averaged GFs GR �given by Eq. �19�� and GA= �GR�†. The
bubble has neither diffuson nor cooperon lines. One can pro-
ceed by connecting the retarded GF GR of a bubble with an
advanced one GA by a cooperon or diffuson �CD� ladder in
all possible �two� ways. Doing so we obtain diagrams de-
picted in Figs. 1 and 2�b� containing one cooperon and one
diffuson. Adding more and more diffuson or cooperon lines
in all possible ways, one obtains an infinite number of dia-
grams. In this section we describe how the most important
diagrams can be selected out of this infinity for further cal-
culation.

A. Two ways of drawing diagrams

In Fig. 1, the same �weak-localization� diagram is drawn
in two equivalent representations: on the left-hand side �lhs�,
the cooperon is drawn in the “ladder” form, �see the lhs of
Fig. 3�b�� while on the right-hand side �rhs� the “coordinate”
form �wavy line with two ends, see the rhs of Fig. 3�b�� is
used.

The weak-localization diagram is usually drawn in the lhs
�ladder� form �or as topologically equivalent “bubble with
maximally anticrossing disorder-averaging lines,” cf. Fig. 4.8
from Ref. 11�. Below we use the rhs �coordinate� form �its
advantages are discussed in Sec. VII B below�; Fig. 3 gives a
recipe how a diagram can be transformed from one form into
another and back.

A diagram in the coordinate representation consists of
Green’s function boxes �GFBs� �bubbles, triangles, squares,
pentagons, etc.� connected by wavy lines �cooperons and/or
diffusons�. A vertex of a GFB may be occupied by a �i�
observable operator, �ii� external field operator, or �iii� end of
a cooperon and/or diffuson line.

B. Loops formed by cooperons and diffusons

There are two important momentum scales in the
disorder-averaging technique: �i� the �characteristic� absolute
value of the momentum argument in averaged GFs p� pF
and �ii� � / l�pF �where l is the mean-free path of an electron
between two subsequent elastic scatterings off impurities�.
Momentum integrals from products of GFs of the form

� d2p

�2���2�
i=1

r

GR�p − qi��
j=1

a

GA�p − q j� �42�

usually converge within the interval pF−� / l�p�pF+� / l;
hence � / l characterizes the deviation of momentum argu-
ment of an averaged GF �Eq. �18� or Eq. �19�� from pF. The
assumption that “large” momentum pF is much larger than
“small” momentum � / l is crucial for the disorder-averaging
technique since �pFl /��−1�1 is its main expansion param-
eter �see Sec. VI C below�.

The mean-scattering free path l is also a scale on which
averaged GFs �Eqs. �18� and �19�� decay, e.g., in 3D
GR/A�r−r���exp�−�r−r�� / l�. We can interpret this saying
that the length of a Green’s function line in our diagrams is l.
Within the disorder-averaging technique we cannot observe
effects on scales shorter than l, i.e., to say that the length of
a GF line is l, is almost the same, as to say that this length is
zero; thus we can consider a GF line not as a line but as a
point.

v̂βv̂α v̂α v̂β

(b)(a)

FIG. 2. �Color online� Zero-loop diagrams: �a� the Drude bubble
and �b� the vertex renormalization.

����� �����

����� �����

ˆ̃ v β
ˆ̃ v α

(a)

���� ����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

ˆ̃ v α
ˆ̃ v β

(b)

���� ����

���� ����

ˆ̃ v α
ˆ̃ v β

(c)

FIG. 4. �Color online� Three relevant two-loop diagrams, which
contribute to S00

1 . See Ref. 6 for more details. Each diagram con-
tains small-momentum singularities, which mutually cancel each
other in accordance with the theorem from Appendix D.

31

2

1

2 4

3

4

GR(p) GR(p)

GA(p − k) GA(p − k)

31

42

1 3

2 4

GR(p) GR(p)

GA(k− p)GA(k− p)

(b)(a)

FIG. 3. �Color online� Diagrams for �a� diffuson and �b� coop-
eron in two representations. On the lhs, the diffuson �cooperon� is
drawn as a ladder; on the rhs it is drawn as a wavy line. �See also
Sec. VI A and Fig. 1.�

OLEG CHALAEV AND DANIEL LOSS PHYSICAL REVIEW B 80, 035305 �2009�

035305-6



Now if we draw some diagram in its “coordinate repre-
sentation” �see Sec. VI A� and squeeze all Green’s function
lines into points, the result will contain only CD lines form-
ing a certain number of loops. For example, a bubble in Fig.
2�a� has no loops �since it has no CD lines which could form
a loop�; a WL diagram in Fig. 1�b� has one loop and all
diagrams in Figs. 4 and 5 have two loops. The number of CD
loops is equal to the number of independent small momen-
tum variables �which are �� / l� or, in other words, to the
number of integrals over the CD-momentum variables.

C. Comparing two arbitrary diagrams

Let us estimate two arbitrary diagrams for the same physi-
cal quantity. An estimate for a GFB is ���h−1, where h is the
number of Green’s function lines composing the GFB. Every
CD line has a prefactor �4����−1 �see Sec. VII B below�. We
estimate the DOS as ��m / �2���d−2�, where ��� / pF and
d is the spatial dimension �d=2 or d=3�. Let us denote L1,2,
H1,2, and C1,2 the corresponding number of loops, GFBs, and
CD lines in the two considered diagrams; the quantities h1j
denote number of GF lines in the jth GFB of the first dia-
gram and h2n do the same for the second diagram.

The calculation of diagrams is often much simpler in the
diffusion approximation, i.e., assumption that q�l��, where
q� is the characteristic momentum of a CD line �i.e., small
momentum variable�. �The validity of the diffusion approxi-
mation in our calculation arises from the assumption that
q�l�x���.� Sometimes a GFB gains additional smallness
on the order of q�l /��1. One has to calculate a GFB in
order to reveal how much of these “extra” q�l /� it has—this
is not uniquely defined by the number of loops. In the fol-
lowing estimates we assume q�l�� in order not to mix up
expansions in two different small parameters: q�l /��1 and

�pFl /��−1�1. Then the relation between two different arbi-
trary diagrams is estimated as

first diagram

second diagram

�
� �i=1

L1 ddki

�2���d�� j=1

H1 2���h1j−1�� 1

2���
�C1

� �l=1

L2 d̆dql

�2���d��n=1

H2 2���h2n−1�� 1

2���
�C2

.

�43�

We use the fact that Li=Ci−Hi+1 for i=1,2 and
� j=1

H1 h1j −�n=1
H2 h2n=2�C1−C2�, so that

first diagram

second diagram
� � 1

�2��d� �pFl
�d−1�L1−L2

, d� 1.

�44�

As we discussed above, apart from �pFl /��−1�1, there is an
additional small expansion parameter q�l /��1; so the total
number of expansion parameters is two. �Later, in Sec. XI
the number of small parameters is three.� The loop expansion
predicts how large �small� an arbitrary diagram is only in
powers of �pFl /��−1.

To conclude, the statement that “every loop brings a
smallness �pFl /��−1” is known in mesoscopics; for the dia-
grams produced by the nonlinear 	 model27 it is explained in
Sec. III.3.c of Ref. 28. However, we are not aware of earlier
papers, where this statement is justified for diagrams within
the usual disorder-averaging diagrammatic technique; this
was the reason to include Sec. VI in this text.

VII. ZERO-FREQUENCY COOPERON AND DIFFUSON IN
THE PRESENCE OF SOI

Both cooperon and diffuson11 can be graphically repre-
sented as a sum of ladders; each ladder is given by retarded
Green’s function GR �bold line in our drawings� connected to
the advanced one GA �bold line� with some number of
disorder-averaging �dashed� lines. An elementary building
block of every such ladder is made of one dashed line con-
necting GR with GA. Below we discuss a convenient way of
rearranging spin indices in every building block of the lad-
der.

A. Separating spin indices

One can write the expression for two GF lines connected
with a disorder-averaging line in different ways; we will
write it either as

p2,�p1,�

p1�,�� p2�,��
=

1

2���
�GR�p1�GR�p2�����GA�p1��GA�p2������� =

1

4���
�
l=0

3

�GR�p1��lGA�p1�������GA�p2���lGR�p2�����,
R R

AA

�45�

or as

p2,�p1,�

p1�,�� p2�,��
=

1

2���
�GR�p1�GR�p2�����GA�p1��GA�p2������� =

1

4���
�
l=0

3

�GR�p1��̄l
†GA

T�p1�������GA
T�p2���̄lGR�p2�����,

R

A

R

A

�46�

�
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�
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�
�
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�
�
�

�
�
�
�

�
�
�
�

�
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�
�

�
�
�
�

�
�
�
�
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�
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�
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�
�
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�
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�

�
�
�
�
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�
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�

FIG. 5. �Color online� Six irrelevant two-loop diagrams, which
do not contribute to S00

1 .
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where the identity is used

2�s1s2
�s3s4

= �
�=0

3

	�
s1s3	�

s4s2 = �
�=0

3

	̄�
s1s3�	̄�

†�s4s2, 	̄� � 	2	�.

�47�

Note that, differently from the first lines of Eqs. �45� and
�46�, square brackets in their second lines contain spin and
momenta variables belonging only to the pair of GFs from
one side of the diagram �the lhs or the rhs from the central
disorder-averaging line�. This “separation of spin indices”

effectively makes the lhs of the diagrams in Eqs. �45� and
�46� independent from their rhs.

Every diagram with cooperons or diffusons contains an
infinite number of elementary blocks �Eq. �45� and/or Eq.
�46��. Below we will always separate spin variables in them
according to Eq. �45� or Eq. �46�.

B. Defining cooperon and diffuson

Now let us transform every elementary building block in
the diffuson series according to Eq. �45�,

p1,�

p1�,��

R R

AA

p2,�

p2�,��
+ ¯

= �
l,l�=0

3

Dp1−p1�
ll� �GR�p1��lGA�p1�������GA�p2���l�GR�p2�����,

p2,�

p2�,��
+

p1,�

p1�,��

p2,�

p2�,��
+

p1,�

p1�,��

R

A

R

AA

R

A
R

A
RR R

A A

�48�

where p1−p1�=p2−p2� and

Dq
�� =

1

4�����
n�0

XD
n �
��

=
1

4���
�1 − XD�q����

−1 , XD
���q� =

1

4���
� d2p

�2���2 Tr
spin

�	�GR
E�p�	�GA

E−��p − q�� , �49�

where Trspin stands for the trace only in spin indices. So Eq. �45� helped us to convert the diffuson series into geometric series
that we could sum. Analogously we use Eq. �46� to transform the cooperon29 series,

p1,�

p1�,��

R

A

R

A

p2,�p2,�p2,�

p2�,��
+

p1,�

p1�,�� p2�,��
+

p1,�

p1�,�� p2�,��
+ . . .

A
RR

A

R

A A
R

A
R R

AA

R

�
l,l�=0

3

Cp1+p2

ll� �GR�p1��lGA�p1�������GA�p2���l�GR�p2�����,=
�50�

where p1+p1�=p2+p2� and

Cq
�� =

1

4�����
n�0

XC
n�
��

=
1

4���
�1 − XC�q����

−1 , XC
���q�

=
1

4���
� d2p

�2���2 Tr
spin

�	̄�GR
E�p�	̄�

†�GA
E−��q − p��T� .

�51�

From Eq. �11� it follows that in a system with time-reversal
symmetry

	2GR/A
T �− p�	2 = GR/A�p� , �52�

so that

XC
���q� = XD

���q� and Cq
�� = Dq

��. �53�

Series �48� �or �50�� depend on four momentum and four

spin variables; without external four GF lines only Dp1−p2

ll� �or

Cp1+p2

ll� � is left, which is a function of two momentum and two
spin variables. We call the quantities Dq

�� and Cq
�� the diffu-

son and the cooperon, respectively.
Diagrammatically, Dq

�� can be drawn in two ways. The lhs
diagram in Fig. 3�a� is more similar to the series in Eq. �48�
while the rhs diagram in Fig. 3�a� stresses the fact that the
diffuson without external four GF lines has only two ends.

This rhs diagram in Fig. 3�a� reflects better the spatial
structure of the diffuson in the coordinate space. From Eq.
�13� one can see that the distance between points 1 and 2 in
Fig. 3 is zero, and the same is true for the points 3 and 4. We
merged these identical points in the rhs diagram in Fig. 3�a�,
so that 1=2 and 3=4. A diffuson at frequency � in coordi-
nate space decays on the scale min��L�� ,Ls�� l,

L� = l/
2i��, 
i � �1 + i�/
2, Ls = l/
2x ,
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�� � 1, x� 1 ⇒ min��L��,Ls�� l . �54�

Thus, we see that the distance �in coordinate space� between
points 1 and 2 �or 3 and 4� in Fig. 3�a� is �within our accu-
racy� infinitesimal and this fact is graphically reflected by
merging points 1 and 2 together �as well as points 3 and 4� in
the rhs of Fig. 3�a�. A similar reasoning is valid for the coop-
eron as well �see Fig. 3�a��.

C. Explicit 2D expressions for q=0

The diffuson at zero momentum, q=0, can be calculated
without assuming that the SOI amplitudes xa,b are small. Us-
ing the fact that

GR
T�p� + GR

T�− p� = GR�p� + GR�− p� ,

one obtains a sum rule

XD
22 = XD

00 − XD
11 + XD

33. �55�

For q=0, XD is a diagonal 4�4 matrix with elements

XD
00 = 1, XD

11 =
1 + K

1 + �xa + xb�2 + K
, XD

33 =
1

K
,

K = 
�1 + �xa + xb�2��1 + �xa − xb�2� . �56�

The components of the diffuson at zero momentum are given
by the diagonal matrix

4���D0 =
2m�

�
D0 = diag�L


2

l2 ,1 +
1 + K

�xa + xb�2 ,1

+
1 + K

�xa − xb�2 ,
K

K − 1
� , �57�

where the electron �orbital� dephasing length L
 �due to in-
elastic scattering� serves as a cutoff for the infinity and the
first element L


2 / l2 does not contribute to physical quantities
when the Vollhardt-Wölfle theorem holds �see Appendix D�.
The sum of the two diagrams in Fig. 2 is equal to the dia-
gram in Fig. 2�a� with one velocity vertex renormalized,

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

= + ,
�58�

which corresponds to the expression

ṽ� = v� + �
�=1

3

	�D0
��Tr�	�GR�p�v�GA�p�� =

p�
m

, �59�

where D0
�� are components of the zero-momentum diffuson

given by Eqs. �56� and �57�.

Since the vertex renormalization of this type occurs in
every diagram for the conductivity, we take it everywhere
into account by substituting the velocity operator v� with its
renormalized value ṽ�= p� /m; the only exception is the zero-
loop contribution �calculated in Sec. VIII�, which is repre-
sented by the diagram in Fig. 2�a� with only one velocity
vertex being renormalized.

D. Explicit 2D expressions for qÅ0

Because of the SOI, most components of the diffuson do
not have a pole at zero momentum and frequency even if the
dephasing effects are neglected; the diffuson gains a nonzero
“mass,” see Eq. �57�. In case of pure-Rashba or pure-
Dresselhaus SOI, this mass is quadratic in the SOI ampli-
tude. This still remains true in case when one �Rashba or
Dresselhaus� SOI amplitude is much smaller than the other
one, so that the SOI-induced anisotropy of the energy spec-
trum �Eq. �17�� � is a small parameter. Consequently, the
integrals in diffuson momenta k and q converge on the scale
of q�x� / l, and it is convenient to introduce dimensionless
variables

K � lk/x�, Q � lq/x� , �60�

so that K�1 and Q�1. Like in Sec.VII D, the calculation
shows that only the �1,1� minor �i.e., 3�3 matrix block� of
the 4�4 diffuson matrix is affected by the SOI. In other
words, the upper line and the left column of the diffuson
matrix are independent of SOI,

Dq
00 =

�

2m�

1

l2q2/2� − i��
,

Dq
�0 = Dq

0� = 0, � = 1, . . . ,3. �61�

The element Dq
00 gives no contribution to the conductivity in

systems with time-reversal symmetry �see Appendix D�; it
becomes important, when this symmetry is broken, see Sec.
XII. In the rest of this section we reduce 4�4 matrices of XD
and Dq to corresponding �1,1� minors.

To simplify the calculation, we further assume that x�1
�diffusion approximation�. Then the diffuson is obtained us-
ing Eq. �49� with XD given by

XD � 1 − x2�YQ
�0� − �YQ

�1,0�� , �62�

where � is defined in Eq. �17� and

YQ
�0� =

Q2

2
1 +

1

2� 1 0 − 2iQx

0 1 − 2iQy

2iQx 2iQy 2
	 , �63�

YQ
�1,0� =

1

2� − 1 0 iQx

0 1 − iQy

− iQx iQy 0
	 . �64�

Note that the above expression for XD is Hermitian and
obeys the sum rule �Eq. �55��.

The resulting diffuson matrix DQ has a denominator
��det YQ

�0��n, where n�0 is an integer and
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8 det YQ
�0� = 2 + Q2 + Q6

= �Q2 + 1��Q2 −
1 − i
7

2
��Q2 −

1 + i
7

2
�

�65�

Expression �65� is independent of the direction of Q,
so the same is true for the denominators of all diffuson
components. Consequently, an arbitrary diagram containing a
diffuson line with a nonzero momentum �e.g., rhs of Fig. 4�
has denominators �consisting of powers of det YK

�0�,
det YK+Q

�0� , and det YQ
�0��, which are invariant with respect

to two “mirror reflections:” �i� �Kx→−Kx ,Qx→−Qx�, �ii�
�Ky→−Ky ,Qy→−Qy�, and �iii� �Kx↔Ky ,Qx↔Qy�. �Note
that original Hamiltonians �1� and �12� do not possess any of
these symmetries.� These symmetries are used in the
program14 for reducing the size of the integrands. Finally, we
note that the easiest way to obtain the results of this section
is to utilize the computer program.14

VIII. ZERO-LOOP CONTRIBUTION

In the zero-loop approximation �ZLA�, the calculation can
be performed without assuming that SOI amplitudes are
small, xa,b�1 �i.e., without assuming the validity of the dif-
fusion approximation�. Only two diagrams �see Fig. 2� hav-
ing zero loops contribute to the ZLA. As we discussed in
Sec. VII C, their sum is equal to the diagram in Fig. 2�a�
with one velocity vertex substituted by its renormalized
value �Eq. �59��

	��
�0� − ���	D =

e2

h
Tr�v̂�ĜR

p̂�
m

ĜA − 	0
p�p�
m2 ĝr

Eĝa
E�

=
e2

h
� d2p

�2���2

p�p�
m2 �gr

E−ga
E− + gr

E+ga
E+ − 2ĝr

Eĝa
E�

−
e2

2h
Tr�� e

mc
Ã�� p̂�

m
ŝ�gr

E−ga
E− − gr

E+ga
E+�� ,

�66�

where gr/a
E� are defined in Eq. �20� and we subtracted the

SOI-independent Drude conductivity 	D �Eq. �A6��. The sec-
ond line of Eq. �66� gives

� d2p

�2���2

p�p�
m2 �gr

E−ga
E− + gr

E+ga
E+ − 2gr

Ega
E�

=
�

2�
��xa

2 + xb
2�	0 + xaxb	3� , �67�

where we used Eq. �21�. The rest of Eq. �66� equals

1

2
Tr��−

e

mc
Ã�� p̂�

m
ŝ�gr

E−ga
E− − gr

E+ga
E+��

=
1

2�
i=1

2 � e

mc
�2

Tr�Ã�Ãi
2p�pi

m�p
· �gr

E−ga
E− − gr

E+ga
E+��

=
�

2�
�−

xa
2 + xb

2

2
	0 − xaxb	3� . �68�

We see that the anisotropic terms in Eqs. �67� and �68� cancel
each other so that the charge conductivity �Eq. �66�� is pro-
portional to the unity tensor.6 Thus, within the ZLA 	an=0
and

	is
�0� − 	D =

e2

h

xa
2 + xb

2

4�/�
+

e2

h
� O���/��−3� , �69�

which is confirmed by the computer algebra calculation14 for
the limiting case when 2xaxb�xa

2+xb
2�1.

The absence of CD loops in the ZLA diagrams in Fig. 2
means that the ZLA contribution neglects interference be-
tween electrons. Thus, result �69� is valid also for the phase-
incoherent system �e.g., at high temperatures�. The ZLA is
local, that is, independent of the macroscopic �on scales �l�
geometrical details of the sample, being the same in 2D and
quasi-1D cases. Since the ZLA diagrams contain no cross-
ings of disorder-averaging lines, their contribution coincides
with the results of the Boltzmann equation approach, see the
discussion in Sec. 9.6 of Ref. 30.

Note that at finite frequency � there are nonzero aniso-
tropic corrections to the conductivity tensor. We do not
present them in the main text; see Ref. 14 for details.

According to the loop expansion �see Sec. VI�, diagrams
having one �weak localization� and two loops may produce
the contribution to the conductivity of the same order, or
even larger, than Eq. �69�. We calculate contributions coming
from these diagrams in the following sections.

IX. WEAK-LOCALIZATION CONTRIBUTION

The weak-localization contribution is provided by the dia-
gram in Fig. 1�b� with the renormalized �dashed� Hikami box

σ(1) = �
�
�

�
�
� ≡ �

�
�

�
�
�

+ �
�
�

�
�
�

+ �
�
�

�
�
� ,

�70�

where both vertices are renormalized according to Eqs. �58�
and �59�. The contribution of the diagrams in Eq. �70� can be
written in the form

	��
�1� =� d2k

�2���2 �
i,j=0

3

Hij
���k�Dk

ij ,

Hij
�� = Aij

�� + Bij
�� + Cij

��, �71�

where we used Eq. �53� and
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2 − 1.max → Aij
���k� =

�

2m�
�
l=0

3 � d2p1

�2���2 Tr
spin
�	lGR

T�− p1��−
p1�

m
�GA

T�− p1�	̃ jGR�p + k��
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Expressions �72�–�74� are generated by our program14 and
taken from the �automatically created� files 2−1.max,
2−2.max, and 2−3.max.

In the absence of orbital dephasing and at zero frequency,
the isotropic part of Eq. �70� diverges reproducing the well-
known result for the weak-antilocalization correction.5,31,32

The anisotropic part of Eqs. �70� and �71� converges. Its
leading �in the SOI� contribution is given by

	an
�1� = 2xaxbS20

0 e2

h
+

e2

h
� O���/��−2� , �75�

where we assumed that 2xaxb�xa
2+xb

2�1 and

S20
0 =

�131� + 262 arcctg
7�/
7 − 88 − 7 log 2

224�
� 0.14.

�76�

These results are obtained in Ref. 14, where the expression
for the renormalized Hikami box �together with other details
of calculation� can be found.

Results �69� and �75� manifest the general rule �39�: the
disorder-averaged conductivity tensor is diagonal in the con-
sidered �rotated by � /4� basis, where the SOI is given by Eq.
�6�. To demonstrate this rule, consider an arbitrary diagram
produced by averaging the Kubo formula �37� for the off-
diagonal conductivity element 	xy. Let us change the sign of
px and of 	2 everywhere in the expression for the diagram.
The identity �Eq. �47�� remains valid if the sign of any Pauli
matrix is changed, so that expressions for diffusons and
cooperons will not change, as well as Hikami boxes, except
for the Hikami box with the vertex vx, which will change
sign. Thus the total expression will change its sign; on the
other hand, since our transformation is only the change in
variables �over which the Tr is taken�, the expression must
remain invariant. So we conclude that every diagram for 	xy
is zero and the disorder-averaged conductivity tensor is di-
agonal.

X. TWO-LOOP CONTRIBUTION

A. Expansion in SOI

In the remainder of the paper we assume that the SOI
parameters �Eq. �17�� are small, x�1 and ����1 �we also
assumed this in Sec. IX�, and expand contributions to the
conductivity in powers of x and �. According to Ref. 6, in an
infinite 2DEG,

	yy�− a,b� = 	xx�a,b� = 	xx�− a,− b�

or 	yy�x,− �� = 	xx�x,�� . �77�

Then the anisotropic part of the conductivity tensor is given
by the following expansion:

	an =
e2

h
�

m,n,r�0
Smn

r xm�2n+1

�pFl/��r . �78�

Physical quantities should depend only on even powers of
SOI amplitudes; thus, we expect that ∀n ,r Smn

r =0 for arbi-
trary odd m; our calculations confirm this statement for sev-
eral values of n and r. The two-loop diagrams can only affect
terms with r�1 in Eq. �78�; the calculation shows that
S00

1 �0. Below we calculate 	an �i� for a 2D case �an infinite
film—see Sec. X B�, �ii� in quasi-1D case �infinite wire—see
Sec.X C�, and �iii� for the quasi-1D ring pierced by magnetic
flux �see Sec. XII�.

From Eqs. �41�, �77�, and �78� we conclude that the an-
isotropic contribution 	an to the conductivity tensor �see the
definition in Eq. �40�� can be extracted from the odd in � part
of 	xx,

	an�x,�� =
	xx�x,�� − 	xx�x,− ��

2
. �79�

B. 2D case

In total, there are nine two-loop diagrams: three are
shown in Fig. 4 and the other six in Fig. 5. The calculation in
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Ref. 14 shows that the leading contribution S00
1 is produced

by three diagrams in Fig. 4. Each relevant diagram consists
of two Hikami boxes �dashed� and three diffuson and/or
cooperon lines. For Ref. 6, we calculated the Hikami boxes
manually �that is, we programmed expressions for them our-
selves and then computer evaluated them�. In order to facili-
tate the calculation, we made a variable change, which al-
lowed us to express the sum of three diagrams in Fig. 4 as
the diagram in Fig. 4�a� with the renormalized upper HB. We
do not use this trick in this paper because �i� it works only
for systems with time-reversal invariance and �ii� such tricks
became useless after we modified the program,14 which now
generates programs for calculating Hikami boxes of arbitrary
diagrams.

Let us now describe how HBs for diagrams in Fig. 4 are
calculated. Every diagram in Fig. 4 contains two dashed HBs
and every dashed HB is given by the sum of three nondashed
HBs, like in Eq. �70�. Thus, every diagram in Fig. 4 is a sum
of nine diagrams with nondashed HBs. For example, the dia-
gram 4�c� can be expanded into a sum of nine diagrams in
Fig. 6. Let us take the diagram 6�d� as an example. It is equal
to
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�80�

where we used Eq. �53�. The quantity H f1f2f3

s1s2s3 is the product
of two HBs; it is calculated in the �automatically generated�
file14 batch.me/5–1.max:
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These expressions could be simplified but we on purpose
wrote them in the same form, as they have been generated in
the file batch.me/5–1.max in order to make the comparison
easier for an interested reader.

The sum of the three diagrams with dashed HBs in Fig. 4
is equal to the sum of 27 diagrams with nondashed HBs.
These HBs are calculated in 27 automatically generated files
batch.me/5–1.max,…,batch.me/5–27.max.

After the HB calculation, the integration over the diffuson
momenta �k and q in Eq. �80�� is performed. While the cal-
culation of Hikami boxes is done fully automatically, inte-
gration over diffuson/cooperon momenta must be manually
programmed, differently for different problems. The techni-
cal details are discussed in Appendix C. The resulting aniso-
tropic contribution to the conductivity is given by Eq. �78�
for r=2 and m=n=0,

	an
�2� = S00

1 �
e2

2�

1

pFl
, �82�

where � is defined in Eq. �17� and the coefficient S00
1 is given

by

in 2D S00
1 = − 5.6� 10−3. �83�

Expression �82� has a nonobvious property connected with
the symmetry of the energy spectrum �Eq. �10�� with respect
to the substitution a↔b: the two limiting cases xa�xb and
xa�xb are described by the same expression �82�. Using Eqs.
�17� and �77�, we rewrite Eq. �82� in the form

	an
�2� = S00

1 2xaxb

xa
2 + xb

2

e2

2�

1

pFl
, 2xaxb� xa

2 + xb
2� 1. �84�

The contribution �Eq. �84�� is nonanalytic for small x: an
infinitesimal SOI coupling results in a finite correction 	�2� to
the conductivity tensor. We note that a similar nonanalyticity
occurs also in the weak-antilocalization problem: if one ne-
glects the dephasing �assuming infinite dephasing length L
�,
an infinitesimal SOI reverts the sign of the weak-localization
correction, switching it to the antilocalization regime. Simi-
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FIG. 6. �Color online� The sum of these nine diagrams with
nondashed Hikami boxes is equal to the diagram in Fig. 4�c�.
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larly to the weak-antilocalization problem, the nonanalyticity
in Eq. �83� can be smeared by introducing the finite dephas-
ing rate �


−1�0. A convenient way to do this is to consider
the response for the finite-frequency electric field; see Sec.
XI.

C. Quasi-1D case

Consider a long wire whose cross section L� is much
larger than the mean scattering length l but with the corre-
sponding Thouless energy Ec�=�lvF /2L�

2 being large com-
pared with the SOI-induced spectrum splitting �Eq. �7��,

Ec��/� � x̃2 � max�x2,l2/L

2 � . �85�

When Eq. �85� holds, Hikami boxes remain two dimensional
while diffusons and cooperons become one dimensional �cf.
Sec. 7.4.1 of Ref. 11�. In other words, in Eq. �81� still
Trp��d2p / �2���2 but in Eq. �80� the momentum integration
becomes one dimensional,

� d2k

�2���2� d2q

�2���2 →
1

L�
2 �

−�

� dkx

�2���2�
−�

� dqx

�2���2 ,

�86�

and one should set ky =qy =0 in the integrand. From Eq. �86�
one can estimate that the quasi-1D SOI-induced contribution
to the conductivity is l2 / �x̃L��2�1 times larger than the 2D
one.

A quasi-1D sample is macroscopically anisotropic �i.e.,
does not possess rotational symmetry� but this anisotropy
becomes relevant only on the scales much larger than l.
Thus, Eq. �77� as well as the claim in Ref. 6 that “the con-
ductivity tensor is isotropic when �=0” are valid in the ZLA
and for the WL diagram �since the distance between all ver-
tices in corresponding diagrams is on the order of l� but may
not be valid for the contribution of the two-loop diagrams in
Fig. 4. In fact, we obtain the following anisotropic contribu-
tion for the conductivity tensor in the quasi-1D case �in the
rotated CS�:

	�2� =
e2

h

�

pFl

l2

x̃2L�
2 ��− 0.39 0

0 6.7
� + ��− 852 0

0 13
�� ,

�87�

which leads to

	an
�2� =

e2

h

�

pFl

l2

x̃2L�
2 �3.5 + 433�� . �88�

Thus, in the quasi-1D case the singularity in the SOI correc-
tion to the conductivity tensor is more pronounced: �i� it
occurs even when the �averaged� energy spectrum is isotro-
pic and �ii� it diverges at vanishing SOI when orbital dephas-
ing effects are neglected.

XI. FINITE-FREQUENCY CASE

In this section we will see that the anisotropic part of the
conductivity tensor becomes an analytic function of the SOI
amplitudes �xa ,xb� at finite frequency ��0; we assume that

the frequency is large enough compared to the strength of the
SOI so that �����x2.

Here we have to expand corrections to the conductivity
tensor not only in SOI but in powers of ���� as well. Simi-
larly to the zero-frequency case we choose three expansion
parameters, xc, x1, and W, defined in the following way:

xc = 
− 2i��, x1 = 
x2 + xc
2� 1,

W = 2xcx/x1
2, �xc�, �x1�, �W�� 1. �89�

Differently from the zero-frequency case �see Sec. VII�, the
effect of the SOI on the diffuson can be calculated perturba-
tively in case when �����x2. The leading contribution is
equal to the diffuson in the absence of SOI,

Dq
�� =

�

m�

1

l2q2/�2 − 2i��
���, �,� = 0, . . . ,3. �90�

The derivation of SOI corrections to Eq. �90� is straightfor-
ward but lengthy, so we do not present it in the text of the
paper; see the program14 for more details.

Comparing Eq. �90� with expressions for the diffuson at
�=0 �see Secs. VII C and VII D� we see that the diffusons
for �����x2 and �����x2 are very different. Consequently,
while at �=0 the vertex renormalization cancels the anoma-
lous part of the velocity operator, this is no longer the case
for ��0 and at large frequencies the effect of the vertex
renormalization is negligible.

Despite that the calculation of the finite-frequency case is
similar to the one for �=0; differences come from the fact
that now we have three expansion parameters �Eq. �89�� in-
stead of two �Eq. �17�� for �=0. We obtain14

	an
�2� = − 2� 0.25 ·

− 2i�� · 2xaxb

�xa
2 + xb

2 − 2i���2

e2

2�

1

pFl
,

2xaxb� xa
2 + xb

2��� � 1. �91�

This finite-frequency result obtained first in Ref. 6 can be
interpreted in terms of dephasing; substituting −i��→� /�
,
we obtain

	an
�2� = �5.6� 10−3 ·

�− − �+

�− + �+

e2

2�

1

�
, �� � �
,

0.13 · � �

�+

−
�

�−
� e2

2�

1

�
, �
 � ��, � , �92�

where the Dyakonov-Perel’ relaxation times are defined as
Ref. 33 2� /��= �xa�xb�2.

XII. QUASI-1D RING PIERCED BY MAGNETIC FLUX

The simplest way of breaking the time-reversal invariance
of the Hamiltonian is considering a constant vector potential
field A. It arises in a quasi-one-dimensional ring pierced by a
magnetic flux. �The magnetic flux can be described by sub-
tracting eA /c from momentum arguments of GFs.� In a ring
geometry, the SOI interaction of the type �Eq. �6�� cannot be
provided by usual Rashba and Dresselhaus mechanisms.
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However, such SOI is not forbidden and thus can occur due
to different reasons, e.g., such as in InAs nanowires.34

Let us assume that A is directed along the ring’s circum-
ference so that A�A� �Ax. The presence of nonzero vector
potential breaks the identities �Eqs. �52� and �53�� together
with the generalized Vollhardt-Wölfle theorem from Appen-
dix D thus making the anisotropy effect more pronounced
because of the small-momentum diffuson singularities,
which now remain uncompensated.

Equation �53� now changes into

Cq
�� = Dq−2eA/c

�� . �93�

The calculation of the HBs is the same as in Secs. X B and
X C. Like in Sec. X C we have to perform summation over
two diffuson variables, see Eq. �86�. For the diagrams which
contain no cooperons, this summation is performed in the
same way, like for the infinite quasi-1D wire, see Eq. �86�.
The diagrams with cooperons become different: in every
such diagram, eA� /c is always subtracted from one �out of
two� cooperon momentum. The summation rule becomes
then different from Eq. �86�,

� d2k

�2���2� d2q

�2���2 →
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� dk�
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1

2�L�
�

qn
�
=2��n/L�

�94�

with L� being the circumference of the ring and L� its cross
section. The summation is performed over all integer n and it
cannot be approximated with integration; one can use the
Poisson summation formula instead,

1
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�
n�Z

f�qn
� −

2e

c
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n�Z
exp�2�in

 

 0

e

�e��Cn,
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−�
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2��
eiq�nL�/�f�q��,  =

AL�

c
, 0 =

h

2�e�
, �95�

where the leading �A-dependent� contribution comes from
the terms with n=�1 and we will neglect contribution of
terms with �n��1. Keeping only divergent terms �i.e., terms
containing massless cooperon/diffuson matrix elements� and
assuming that xL
� l we obtain14 the flux-dependent correc-
tion to the conductivity tensor,

	an
�2� =

e2

h
�cos�2�





0
� − 1� lL


x̃L�
2

�

pFl
�!0 + !1�� , �96�

with the coefficients

!i = aie
−L̃� + exp�−

L̃�

2

2
2 − 1�

��bi cos� L̃�

2

2
2 + 1� + ci sin� L̃�

2

2
2 + 1�� ,

a0 = −
2L̃�

2 + 274L̃� − 219

128
, a1 = − 2L̃�

2 − L̃� − 1,

b0 = −
7124
7L̃� + 4513
2
2 − 1
7 − 2965
2
2 + 1

1792
7

= − 3L̃� − 2.1,

b1 = − 1.9� 10−4L̃�
3 − 2.3L̃�

2 − 6.7L̃� + 4.2,

c0 =
28L̃� − 4513
2
2 + 1
7 − 2965
2
2 − 1

1792
7

= 6� 10−3L̃� + 4, �97�

c1 = − 8.6� 10−5L̃�
3 + 4.5L̃�

2 − 0.46L̃� − 0.87,

where L̃� =xL� / l. Like in Sec. XI we assumed that the diver-
gence at small SOI �x→0� is regularized by the orbital
dephasing. In Eq. �97� we wrote numerical values of b1 and
c1 instead of their analytic expressions in order to save space.
The analytic expressions for b1 and c1 can be found in Ref.
14.

Result �96� has the same order of magnitude in the loop
expansion �in powers of �pFl /��−1� as �i� the infinite-plane
results �82� and �83�, as well as the �ii� quasi-1D result �88�.
However, out of all three considered geometries it is the most
sensitive one with respect to orbital dephasing. In fact, in the
coherent limit, L
→�, it diverges as �L
 for finite SOI
amplitude x and as �L


2 in the limit x� l /L
→0.

XIII. CONCLUSIONS

We presented symbolic program14 for generating, sorting,
and calculating diagrams in the disorder-averaging diagram-
matic technique. This program strongly facilitates analytical
calculations, allowing one to calculate subtle effects due to
spin-orbit interaction which were virtually inaccessible be-
fore due to the large number of integrals to be calculated.
The possibility to automatize the calculation improves the
usefulness of the diagrammatic approach, especially also in
comparison to the nonlinear 	 model,20 as a tool for studying
disordered systems.

Using this program, we studied anisotropic corrections to
the conductivity tensor due to the SOI. The arising aniso-
tropy is a phase-coherence effect; therefore it strongly de-
pends on the geometry of the sample. In the quasi-1D wire
the anisotropic correction is larger than in an infinite 2D
plane. Moreover, while in 2D case the effect arises due to the
anisotropy of the energy spectrum induced by the interfer-
ence between Rashba and Dresselhaus types of SOI, in the
quasi-1D case the conductivity is anisotropic even in the
presence of only one type of SOI �Rashba or Dresselhaus�,
that is, when the energy spectrum is isotropic. The �micro-
scopic� anisotropy of the conductivity tensor arises due to the
macroscopic �shape� anisotropy of the sample �on the scale
much larger than the mean-free path l�.

We also studied the case when the time-reversal symme-
try of the system is broken �a ring pierced by a magnetic
flux�; then the anisotropy of the conductivity tensor becomes

OLEG CHALAEV AND DANIEL LOSS PHYSICAL REVIEW B 80, 035305 �2009�

035305-14



more sensitive to orbital dephasing effects due to the uncom-
pensated small-momentum divergences in the integration
over the diffuson momentum.

In all the considered geometries, the effect is nonanalyti-
cal in the amplitude of the spin-orbit interaction, if the orbital
dephasing effects are not taken into account. Once the
dephasing effects are considered, the conductivity becomes
an analytical function of the spin-orbit amplitudes.
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APPENDIX A: INHOMOGENEOUS DISTRIBUTION OF
ELECTRIC FIELD IN A HOMOGENEOUS WIRE

The Kubo formula �37� is not valid for the calculation of
the leading �Drude� contribution to the conductivity. From
Sec. V one obtains

Tr���̂NĵN
�� = −

ie2A�
��

c�m2 �
−�

� dE

2�
fE� Tr�p̂�

2 ĝr
Eĝa

E�, �→ 0,

�A1�

where the main contribution to Tr�p̂�
2 ĝr

Eĝa
E� is given by

Tr�p̂�
2gr

Ega
E�. �Note that we do not take into account spin de-

gree of freedom in this section and use expression �18� for
Green’s functions; consequently, Tr operators here do not
contain trace over spin.�

Only values of E close to the Fermi level �E=0� contrib-
ute to the integral in Eq. �A1� so that

Tr�p̂�
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E� = 2im� Tr� p̂�

2

2m
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E − ga
E��

= 2im� Tr� p̂�
2

2m
�ĝr

E − ĝa
E�� . �A2�

From the Lehmann representation we obtain the matrix ele-
ment of ĝr

E− ĝa
E in some �arbitrary� � representation,

��ĝr
E − ĝa

E���� = − 2�i�
n

��E − En���n�n���� , �A3�

En = n�Ĥ�n� , �A3�

where �n� are the exact eigenstates of the unaveraged Hamil-
tonian. In a �spinless� disordered system, the states �n� are
nondegenerate due to the disorder; thus one can rewrite Eq.
�A3� in the �"� basis with �n���"�,

Tr� p̂�
2

2m
�ĝr

E − ĝa
E�� =

1

d
�
"

"�
p̂2

2m
�"�"�ĝr

E − ĝa
E�"�

= −
2�i

d
�
","�

��E − "��"�
p̂2

2m
�"�"�"��"��"�

= −
2�i

d
�
"�

��E − "��"��
p̂2

2m
�"�� , �A4�

where d is the dimension �d=2 in 2D�. Substituting Eq. �A4�
into Eq. �A1� we obtain

j���� = 	���
i�

c
A�
� = Tr���̂NĵN

�� =

−
2ie2A��

mcd�
� dE�fE�E�

p̂2

2m
�E� ,

�→ 0. �A5�

Thus the main �Drude� contribution to the conductivity per
spin projection is given by

	D = −
2e2

dm�
�� dE�fE�E�

p̂2

2m
�E� . �A6�

The easiest case is equilibrium at T=0; then fE� =−��E� and
the integral is equal to �0� p̂2

2m �0���, so that
	D=� ·e2 /h ·4�� /dm.

Consider a wire of length L between two leads under the
voltage V, so that the energy distribution in the leads is given
by fE

R,L. If the effect of the interaction between electrons in
the wire is weak, its distribution function linearly depends on
the coordinate,20

fE�r� =
r

L
fE

L + �1 −
r

L
� fE

R. �A7�

From Eq. �A6� we conclude that also the leading �Drude�
contribution to the conductivity is slightly inhomogeneous.
Consequently, the stationary distribution of the electric field
in the wire will also be inhomogeneous, so that the wire will
be homogeneously charged. Thus the charge neutrality of the
current-currying wire is slightly violated.

APPENDIX B: GENERATING DIAGRAMS ON
COMPUTER

The diagrams are generated in the program14 from the
Kubo formula �37� according to the following algorithm:

�1� the simplest diagram is obtained from Eq. �37� by

substituting GF operators �ĜR
E and ĜA

E−�� with their averaged
values. The result corresponds to the diagram in Fig. 2�a�.

�2� Add one cooperon or one diffuson line to the dia-
gram�s� obtained on the previous step in all possible ways.

�3� Leave only diagrams having no more than two loops
�to calculate the number of loops, the diagram has to be
redrawn in the coordinate representation, see Sec. VI A�.

�4� Recursively perform two previous steps, until the last
step produces no more new diagrams.

�5� Redraw all diagrams in the coordinate representation.
Add single impurity lines in the Hikami boxes �in all pos-
sible ways� �cf. Eq. �70��.

�6� E.g., consider the diagram in Fig. 4�a� without lonely
disorder lines inserted in the Hikami boxes; each of its three
diffuson lines is given by the infinite series �Eq. �48��. Leav-
ing only the first terms in these series, we note that the re-
sulting diagram is exactly the one depicted in Fig. 1�a� with
three disorder �dashed� lines left. We see that the diagram in
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Fig. 4�a� includes the contribution which has been already
taken into account in the weak-localization diagram. To pre-
vent double counting, it should be subtracted. Such situation
�when two different diagrams have common contributions�
can occur also for many other diagrams. All the diagrams
must be checked for that; double-counted contributions must
be subtracted.

In principle, the above steps can be done manually but it
is better to make use of the computer program.14 On the first
step we started with one diagram; in the end we get 215
ones.35

APPENDIX C: S00
1 AT �=0: CALCULATING

�d2k Õ (2��)2�d2q Õ (2��)2 ON COMPUTER: ANALYTICS
AND NUMERICS

Once all diagrams with no more than two CD loops are
generated, they are automatically divided into different
groups according to the number of HBs and diffuson lines �in
total we get eight groups�. The Hikami boxes of all diagrams
are automatically calculated. We have checked that the dia-
grams of only one �the fifth� group contribute to 	an. The
diagrams of the fifth group are calculated in the directory
D.5/.

Within the same group, the Hikami boxes can be summed
up; after that the expression for the sum of all diagrams from
the group can be written in the form �80� with Hf1f2f3

s1s2s3 being
the sum of all HBs.

Then we integrate over the diffuson momenta. We use
dimensionless momentum variables �K and Q� defined in
Eq. �60�. We checked14 that only the diagrams in Fig. 4 con-
tribute to S00

1 . Each of these diagrams has three diffuson/
cooperon lines; we label their momenta as K, Q, and
K+Q. In case of small anisotropy of the energy spectrum,
��1, the denominator of the diffuson/cooperon depends
only on the modulus of its momentum. Thus the angular
dependence of the denominator comes only from
�K+Q�2=K2+Q2+2KQ cos �, where � is the angle between
K and Q.

We calculate �d2k / �2���2�d2q / �2���2 in polar coordi-
nates. In total there are two angular integrations; since the
denominator depends only on one angle, another angular in-
tegration can be easily �and analytically� performed. The sec-
ond angular integration is more complicated: the integrand is
given by the sum of rational functions which have the form

�
0

2� d�

2�

P1�sin �,cos ��
P2�cos ��

, �C1�

where P1,2 are polynomials. The denominator is even in �,
so we can leave only even �in �� part of the numerator. Then
numerator thus can be expressed as an another polynomial,

�
0

2� d�

2�

P3�cos ��
P2�cos ��

, P3�cos �� = �
n�1

an cosn � .

Next, we perform the analytical integration over �. Because
of the large number of terms to integrate and large size of the
expressions, this analytical integration �basically, calculation

of residues� can only be done on computer. We use the fact
that the denominators of all massfull elements of the diffuson
Dk+q can be factorized into two expressions. In the
program14 they are denoted as uno=1+ �K+Q�2 and
due=2− �K+Q�2+ �K+Q�4. The size of the integration result
grows rapidly with powers of uno and due in the denomina-
tor, so it is necessary to split integrands into elementary
fractions.36

We assume that integrals over �k ,q� converge on the scale
of k�x� / l and q�x� / l, so that the integrals in dimension-
less variables �K ,Q� converge on the scale of K� and
Q�1. Together with the assumption x�1, this permits us to
use Taylor expansions �e.g., for Hikami boxes� in powers of
kl /��1 and ql /��1. The usage of Taylor expansion here
corresponds to the diffusive limit and is justified by the fact
that we do not get any large-momenta divergences.

Next, the integrand is symmetric with respect to K↔Q
and the integration operator has this symmetry too. So we
symmetrize every term of the integrand and express it in
terms of new variables P=K2+Q2 and A=2KQ / P. Accord-
ingly, our integration operator is changed

�
0

�

dK�
0

�

dQKQ = 2�
0

�

dK�
0

K

dQKQ = 2�
0

�

dP�
0

1

dA
PA

2J
,

A =
2KQ

K2 + Q2 , �C2�

and J is the Jacobian

J = � ��P,A�
��K,Q�

� = �4
K2 − Q2

K2 + Q2� = 4
1 − A2. �C3�

The integration results produced by integrate.max for A→0
have insufficient precision �since the difference of large
numbers has low numerical accuracy�, so we integrate by P
and A not from zero but from 0.001. Since ∀P the
integrand=0 at A=0 and maximal contribution to the result
occurs for A→1, this adjustment of the lower limit intro-
duces only a negligible error into the result.37

We treat separately �see files KpQ.max� the terms contain-
ing massless elements of Dk+q and see that no divergences at
small �P ,A� occur, as it is predicted according to the VW
theorem in Appendix D.

The �0
�dP together with the subsequent �0

1dA is performed
in directory D.5/A/. �As a check, we performed the numeri-
cal integration using alternative variables in the directory
D.5/B/, which led to the same result.� We use functions qagi
for �0

�dP and qaws for �0
1dA, which are part of the QUAD-

PACK package.38 In order to minimize possible rounding cor-
rections, all calculations are done with high precision �35
digits�.

The integrand for �0
1 dA


1−A
is plotted in Fig. 7. The final

result �83� has been calculated using different lisp realiza-
tions �clisp, gcl, and sbcl� and for different numbers of digits
in the numerical integration �20, 25, and 35�.
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In conclusion, the steps of the diffuson momentum inte-
gration are:

�1� perform the first �easy� angular integration;
�2� select terms that contain massless component Dk+q

00 ;
integrate them by � �second angular integration variable�;

�3� split other terms into elementary fractions, in order to
decrease powers in their denominators; integrate them by �
and combine them with the terms obtained in the previous
step;

�4� and calculate the integrand in many points within the
interval A� �0,1�. Interpolate �linearly� the integrand in the
integration interval A� �0,1� and integrate the interpolation
result by A.

APPENDIX D: GENERALIZATION OF THE VOLLHARDT-
WÖLFLE THEOREM FOR HAMILTONIANS WITH

SPIN-ORBIT INTERACTION

We assume that the following statements �demonstrated
above for the case of Rashba and Dresselhaus SOI� are valid
in general for a system with time-reversal symmetry:

�1� the anomalous part of the velocity operator vanishes at
�=0 due to the vertex renormalization �Eq. �59��;

�2� the only39 divergent �massless� element of the diffuson
matrix �Eq. �49�� is D00.

Then, the Vollhardt-Wölfle theorem9 can be generalized to
spin-dependent Hamiltonians:

Theorem 1. In the calculation of linear response coeffi-
cients, no diffuson-type divergences occur if the unperturbed
system possesses time-reversal symmetry.

In particular, diffuson singularities cannot occur in the
calculation of the conductivity or spin susceptibility, as well
as in the calculation of corresponding cumulants. We con-
sider an arbitrarily complicated diagram with one or more
diffusons. We choose any of them and prove that the coeffi-
cient in front of D00 vanishes when the momentum flowing
through this diffuson approaches zero. Let us draw only the
selected diffuson in the coordinate representation �see Sec.
VI A�; other diffusons and all cooperons �if present� remain
in the “ladder representation;” e.g., Fig. 8. Drawn in this
way, a diagram consists of two bubbles with a wavy diffuson
line between them �e.g., Fig. 8�a��. In a diagram for linear
response to applied electric field �at least� one of two vertices
�we assume that it is the rhs one� is proportional to the renor-
malized velocity operator �Eq. �59��. Let us downgrade all
diffusons/cooperons to crosses �removing disorder-averaging
�dashed� lines connecting them�.40 After that the rhs bubble
of an arbitrary diagram can be written as

�� d2p

�2���2pA Tr
spin

��0GR
�m��p − q,p�GA

�n��p,p − q�� ,D
αβ
q

G
(m)
R

(p − q,p)

G
(n)
A

(p,p − q)

p̂Aσ0

�D1�

where GR
�m��p−q ,p� and GA

�n��p ,p−q� are unaveraged
Green’s functions in the mth and nth order of the perturba-
tion theory in the disorder potential. �Note that we did not

draw the crosses on the GFs lines in �D0�.� Since the disorder
cannot break the time-reversal symmetry of the unperturbed
Hamiltonian,

value at A=1: 0.334

0.923
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FIG. 7. �Color online� The integrand for �0
1 dA


1−A
.

RR

A A

Dq

R

A R

A

Dq

(b)

(a)

FIG. 8. �Color online� Illustration to the proof of Theorem D.
Only one diffuson �with momentum q� is depicted in the coordinate
representation; this diffuson Dq divides both diagrams in two parts
�bubbles�. The vertex on the rhs of both diagrams is proportional to
the renormalized velocity operator �Eq. �59��. The rhs bubble of �b�
is the mirrored �and then rotated by 180°� rhs bubble of �a�. The
sum of two diagrams is regular at q→0.
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∀m,n,p1,p2�	2�GR
�m��− p2,− p1��T	2 = GR

�m��p1,p2�
	2�GA

�n��− p2,− p1��T	2 = GA
�n��p1,p2�

, �D2�

which is a generalization of Eq. �52�. From our assumptions
it follows that GR/A commutes with the renormalized velocity
vertex vA. Applying the transformation �D0� to GFs in �D0�,
transposing matrices under the trace, and substituting
p→−p in the integral we obtain

−� d2p

�2���2pA Tr
spin

�	�GR
�m��p − q,p�GA

�n��p,p − q��

=� d2p

�2���2pA Tr
spin

�	�GR
�m��p,p + q�GA

�n��p + q,p�� , �D3�

so that �D0� vanishes at q=0 and the diffuson divergence
is regularized. The proof can be performed for every
diffuson in the diagram, so that all diffusons are

regularized. An example of mutually canceling diffuson
divergences is depicted in Fig. 8: both diagrams
8�a� and 8�b� diverge at q→0 but their sum is regular. A
similar cancellation takes place for the diagrams in Fig. 3:
the singularity in Dk

00 in the diagram 4�a� is canceled
�i.e., regularized� by the diagram 4�b� while the singularity in
Dq

00 in the diagram 4�a� is canceled by the diagram 4�c�.
Such cancellation is provided by the fact that in a system
with time-reversal invariance cooperon components are
exactly the same as components of a diffuson. �This
remains true also in the presence of interaction between
electrons.41�

Thus we demonstrated that �in the absence of
interaction� there can be no diffuson-type singularities
in the presence of the time-reversal symmetry, thus
generalizing the theorem proved in Ref. 9 for the spinless
case without SOI.
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