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Molecular hydrogen in silicon has been studied by path-integral molecular-dynamics simulations in the
canonical ensemble. Finite-temperature properties of these point defects were analyzed in the range from 300
to 900 K. Interatomic interactions were modeled by a tight-binding potential fitted to density-functional
calculations. The most stable position for these impurities is found at the interstitial T site with the hydrogen
molecule rotating freely in the Si cage. Vibrational frequencies have been obtained from a linear-response
approach, based on correlations of atom displacements at finite temperatures. The results show a large anhar-
monic effect in the stretching vibration, �s, which is softened with respect to a harmonic approximation by
about 300 cm−1. The coupling between rotation and vibration causes an important decrease in �s for rising
temperature.
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I. INTRODUCTION

Hydrogen can be incorporated into semiconductors both
intentionally and unintentionally during manufacturing pro-
cesses carried out for technological applications. It appears
in these solids in a number of different configurations: as an
isolated interstitial, bound to impurities, bound to native de-
fects, in molecular form, etc.1–3 In the early 1980s, isolated
hydrogen molecules were predicted to be stable in crystalline
semiconductors and to play an important role in the diffusion
of hydrogen in these materials.4,5 However, they were not
unambiguously detected by spectroscopic methods until
more than ten years later.6–8

Vibrational transitions have been reported for interstitial
H2 in Si,7,8 Ge,9 and GaAs.6 In these semiconductors, theory
predicts that the H2 molecule is stable at an interstitial tetra-
hedral �T� site and behaves as a nearly free rotator.10,11 This
gives rise at low temperatures to two stretching local vibra-
tional modes originating from para and ortho nuclear states,
which are split due to rovibrational coupling.12

Here we will concentrate on isolated hydrogen molecules
in the bulk of crystalline silicon. The interest of this problem
is twofold. On one side, it is important as a point defect in
semiconductor physics, for its relevance in the hydrogen dif-
fusion and stability in these materials. On the other side,
from a fundamental point of view, H2 in silicon is an ex-
ample of a light molecule sitting and moving in a confined
geometry, and one can study its behavior when localized in a
spatial region with extension of a few Å.

Earlier theoretical studies of molecular hydrogen in semi-
conductors have concentrated on determining the lowest-
energy site and stretching frequency of the molecule, includ-
ing in some cases anharmonic effects derived from the
calculated potential-energy surface10,11,13–15 as well as the
quantum rotation of H2 molecules.16,17 Density-functional
electronic-structure calculations in condensed matter are very
reliable, but they treat atomic nuclei as classical particles,
and typical quantum effects like zero-point vibrations are not
directly accessible. These effects can be included by employ-
ing harmonic or quasiharmonic approximations, but are dif-
ficult to take into account when large anharmonicities are
present, as can happen for light impurities like hydrogen.

To consider the quantum character of the nuclei, the path-
integral molecular dynamics �or Monte Carlo� approach has
proved to be very useful. A remarkable advantage of this
method is that all nuclear degrees of freedom can be quan-
tized in an efficient manner, thus including both quantum and
thermal fluctuations in many-body systems at finite tempera-
tures. In this way, Monte Carlo or molecular-dynamics sam-
pling applied to evaluate finite-temperature path integrals al-
lows one to carry out quantitative and nonperturbative
studies of highly anharmonic effects in solids.18,19

In this paper, the path-integral molecular-dynamics
�PIMD� method is used to study interstitial hydrogen mol-
ecules in silicon. Special attention has been paid to the vi-
brational properties of these impurities, by considering an-
harmonic effects on their quantum dynamics and the
rovibrational coupling at different temperatures. The results
of the present calculations show that anharmonic effects lead
to a significant decrease of the vibrational frequencies of the
impurities, as compared to a harmonic approximation. We
have analyzed the isotopic effect on structural and vibra-
tional properties of these molecules, by considering also mo-
lecular deuterium �D2�. Path-integral methods analogous to
that employed in this work have been applied earlier to study
hydrogen in metals18 and semiconductors20–24 as well as on
surfaces.25,26 In connection with the behavior of molecular
hydrogen in confined regions H2 has been studied inside car-
bon nanotubes by diffusion Monte Carlo.27 Also, path-
integral simulation methods have been extensively applied to
study condensed phases of hydrogen in molecular form.28–31

The paper is organized as follows. In Sec. II, we describe
the computational method and the models employed in our
calculations. Our results are presented in Sec. III, dealing
with the kinetic energy of the molecules, spatial delocaliza-
tion, interatomic distance, and vibrational frequencies. Sec.
IV includes a discussion of the results and a summary.

II. COMPUTATIONAL METHOD

A. Path-integral molecular dynamics

In the path-integral formulation of statistical mechanics
employed here, the partition function is evaluated by a dis-
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cretization of the density matrix along cyclic paths, consist-
ing of a finite number P �Trotter number� of “imaginary-
time” steps.32,33 In the implementation in numerical
simulations, this discretization gives rise to the appearance of
P “beads” for each quantum particle. These beads can be
formally treated as classical particles so that the partition
function of the original quantum system is isomorph to that
of a classical one. This isomorphism is obtained by replacing
each quantum particle by a ring polymer consisting of P
classical particles connected by harmonic springs.18,19 In
many-body problems, the configuration space is usually
sampled by Monte Carlo or molecular-dynamics techniques.
Here, we have employed the PIMD method which has been
found to need less computer time for the present problem.
We have used effective algorithms for performing PIMD
simulations in the canonical NVT ensemble, as those de-
scribed in detail by Martyna et al.34 and Tuckerman.35

Our calculations have been performed within the adia-
batic �Born-Oppenheimer� approximation, which allows one
to define a potential-energy surface for the nuclear motion.
An important issue in this kind of simulations is the proper
description of interatomic interactions, which should be as
realistic as possible. Since using true density-functional �DF�
or Hartree-Fock-type calculations requires computer re-
sources that would restrict enormously the size of our simu-
lation cell, we obtain the Born-Oppenheimer surface from a
tight-binding �TB� effective Hamiltonian, derived from DF
calculations.36 The TB energy consists of two parts, the first
one is the sum of energies of occupied one-electron states,
and the second one is given by a pairwise repulsive inter-
atomic potential.36 For the present study the H–H pair poten-
tial was tuned to reproduce the main features of known ef-
fective interatomic potentials, such as the Morse potential.37

The capability of TB methods to simulate different properties
of solids and molecules has been reviewed by Goringe et
al.38 The convergence of the total energy with the sampling
in reciprocal space was checked by using several sets of
special k points.39 We found that a set of 4 k points provides
already good convergence �relative error less than 0.001% in
the total energy�. The use of only the � point introduces a
small systematic error in the total energy that affects slightly
the value of energy differences between different spacial
configurations of H2 in silicon with typical errors of about
0.01 eV. These results justify that the simulations presented
in this work were performed by using only the � point for
the reciprocal space sampling.

Simulations were carried out on a 2�2�2 supercell of
the silicon face-centered cubic cell with periodic boundary
conditions, containing 64 Si atoms and a hydrogen �or deu-
terium� molecule. For comparison, we also carried out simu-
lations of pure silicon, using the same supercell size. Sam-
pling of the configuration space has been carried out at
temperatures between 300 and 900 K. The electronic-
structure calculations were performed without considering a
temperature-dependent Fermi filling of the electronic states,
which is reasonable for this temperature range. For a given
temperature, a typical simulation run consisted of 104 PIMD
steps for system equilibration, followed by 5�105 steps for
the calculation of ensemble-average properties. To keep a
nearly constant precision in the path-integral results at differ-

ent temperatures, we have employed a Trotter number that
scales as the inverse temperature. In particular, we have
taken PT=18000 K, which means P=60 for T=300 K.
Quantum exchange effects between protons or deuterons
were not considered, as they are negligible at the tempera-
tures considered here, so that both atomic nuclei in a mol-
ecule were treated as if they were distinguishable particles.

The simulations were carried out by employing a staging
transformation for the bead coordinates. The canonical en-
semble was generated by coupling chains of four Nosé-
Hoover thermostats �with mass Q=��2 /5P� to each degree
of freedom.40 To integrate the equations of motion, we used
a reversible reference-system propagator algorithm, which
allows one to define different time steps for the integration of
fast and slow degrees of freedom.34 The time step �t asso-
ciated to the calculation of DF-TB forces was taken in the
range between 0.1 and 0.4 fs, which was found to be appro-
priate for the interactions, atomic masses, and temperatures
under consideration. For the evolution of the fast dynamical
variables, including the thermostats and harmonic bead inter-
actions, we used a smaller time step �t=�t /4. We note that
for H2 in silicon at 300 K, a simulation run consisting of
5�105 PIMD steps needs the calculation of forces and en-
ergy with the TB code for 3�107 configurations, which has
required the use of parallel computers.

B. Calculation of anharmonic vibrational frequencies

Vibrational frequencies of impurities in solids are impor-
tant characteristics, which depend on the site that they actu-
ally occupy and on its interactions with the nearby hosts
atoms. In this context, the question arises whether the oscil-
lator frequencies associated to an impurity can be extracted
by assuming the host atoms fixed in the relaxed geometry
corresponding to the minimum-energy configuration. This is
a method usually employed to calculate vibrational frequen-
cies of impurities in crystals. On the other side, when the
host atoms are allowed to relax by following the impurity
motion, the potential-energy surface is flatter than when the
host atoms are fixed. To obtain an approach for the actual
vibrational frequencies of the impurities, one can calculate
the eigenvalues of the dynamical matrix of the whole simu-
lation cell, and obtain the frequencies in the harmonic ap-
proximation �HA�. However, for light impurities the anhar-
monicity can be appreciable and the harmonic frequencies
are only a first �maybe crude� approximation.

To calculate anharmonic frequencies we will use here a
method based on the linear response �LR� of the system to
vanishingly small forces applied on the atomic nuclei. To this
end, we consider a LR function, the static isothermal suscep-
tibility �T, that is readily derived from PIMD simulations of
the equilibrium solid, without dealing explicitly with any ex-
ternal forces in the simulation. This approach represents a
significant improvement as compared to a standard harmonic
approximation.37 The tensor �T allows one to derive a LR
approximation to the low-lying excitation energies of the vi-
brational system that is applicable even to highly anharmonic
situations. For a system with 3N vibrational degrees of free-
dom, the LR approximation for the frequencies reads
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�n =
1

��n

, �1�

where �n�n=1, . . . ,3N� are eigenvalues of �T, and the LR
approximation to the low-lying excitation energy of vibra-
tional mode n is given by ��n. Details on the method and
illustrations of its ability for predicting vibrational frequen-
cies of solids and molecules are given elsewhere.37,41–43

III. RESULTS

A. Minimum-energy configuration

We first present results for classical calculations at zero
temperature, where the atoms are treated as pointlike par-
ticles without spatial delocalization. The employed inter-
atomic potential gives reliable results for molecular hydro-
gen in vacuo. The lowest-energy molecular configuration
corresponds to a distance R0 between hydrogen atoms of
0.741 Å. At this distance we obtain for H2 in a harmonic
approximation a stretching frequency of 4397 cm−1.

For H2 as an impurity in silicon, we find a lowest-energy
position for the center of gravity of the molecule located at
an interstitial T site. The minimum energy is found for the
H–H axis along a �100� crystal direction, with a distance
between H atoms of 0.752 Å. Moreover, changes in the en-
ergy for molecule rotation keeping its center of gravity at a T
site are very small, in agreement with earlier calculations
based on DF theory.10,11,14 In silicon an increase in the H–H
distance of about 0.01 Å was found with respect to the mol-
ecule in vacuo, as expected for an attractive interaction be-
tween each H and the nearby Si atoms.

Assuming the H2 molecule at a T site, and oriented along
the �100� direction, we find in the harmonic approximation a
stretching frequency of 4071 cm−1, close to the harmonic
value of 4015 cm−1 derived from the �anharmonic� vibra-
tional frequency observed in Raman spectra.44 This repre-
sents a decrease in more than 300 cm−1 vs the harmonic
frequency for the molecule in the gas phase, in line with a
weakening of the H–H bond due to interaction with the sili-
con lattice, as discussed earlier.10,11 In the HA we also find
frequencies �� =954 cm−1 and ��=1385 cm−1 �twofold de-
generate� for motion of the molecule along and perpendicu-
lar to the H–H axis in the silicon cage. These two vibrational
frequencies are not expected to be observable because they
will be mixed by the free rotation of the molecule �see be-
low�.

B. Kinetic energy

We now turn to our PIMD simulations at finite tempera-
tures. To obtain insight into the motion of H2 around the
tetrahedral site, we will consider various models in which the
number of degrees of freedom will be successively in-
creased. In particular, we will consider: �1� motion of the H2
molecule in one dimension �along the H–H bond� in a fixed
and unrelaxed silicon lattice; �2� free motion �in 3d� of the
hydrogen molecule with fixed host atoms, and �3� free mo-
tion of H2 with mobile Si atoms. In the latter case, all 66

atomic nuclei in the simulation cell are treated as quantum
particles.

In our finite-temperature simulations for cases �2� and �3�,
where the molecule can rotate around the T site, we observe
a free molecular rotation, without any preferential orienta-
tion. This is in agreement with earlier conclusions derived
from theoretical10,11 and experimental45,12 works, and with
the fact that the potential-energy surface for the rotation does
not display deep minima.

In Fig. 1 we show the kinetic energy of the hydrogen
molecule in the three considered approaches. Symbols indi-
cate results derived from our PIMD simulations using the
so-called virial estimator46,40 and solid lines represent the
kinetic energy expected in a harmonic approximation. For 1d
motion of H2 �approach 1, squares� we find a slight increase
in Ek as temperature is raised. In this approach, results of the
simulations are somewhat lower than those derived for the
HA, as expected for a softening of the vibrations due to the
anharmonicity of the interatomic potential. In fact, the linear-
response method introduced in Sect. II B gives in this case
for the stretching frequency �s=3770 cm−1 at 300 K, which
means a decrease in about 300 cm−1 with respect to the har-
monic model for H2 in silicon ��s=4071 cm−1�.

Circles in Fig. 1 correspond to our approach 2 with H2
moving in a fixed silicon lattice. Now we are dealing with
six degrees of freedom, two of which correspond to molecu-
lar rotation. This approximation gives again values of the
kinetic energy smaller than those predicted by the HA �solid
line�. This harmonic approximation includes a classical de-
scription of the two rotational degrees of freedom of the H2
molecule. To analyze the kinetic energy of the defect com-
plex in model 3 �all atoms are free to move�, we calculate Ek
for the simulation cell with and without the H2 molecule:
Ek�defect�=Ek�64Si+H2�−Ek�64 Si�. The results �triangles�
lie appreciably above those obtained for model 2, indicating
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FIG. 1. Temperature dependence of the kinetic energy of mo-
lecular hydrogen in silicon for various approximations. Squares:
motion of H2 in one dimension with fixed host atoms; circles: free
motion of H2 in a fixed silicon lattice; triangles: free motion of H2

with unrestricted motion of the Si atoms. Solid lines correspond to
harmonic approximations for H2 motion in one and three dimen-
sions. Dashed lines are guides to the eye.
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a non-negligible coupling in the motion of interstitial mol-
ecule and host atoms.

At the temperatures considered here, rotation of H2 can be
considered with a high precision to be classical. This means
that its contribution to the kinetic energy of the molecule will
be kBT �two degrees of freedom�. Then, we can subtract this
classical energy from Ek derived from the PIMD simulations
to obtain a vibrational contribution to the kinetic energy Ek

v.
This part of the kinetic energy is shown in Fig. 2 for H2
�squares� and D2 �circles�. At low temperature it converges to
values close to 0.24 and 0.18 eV, respectively. This gives a
ratio Ek

v�H2� /Ek
v�D2�=1.33, somewhat smaller than the limit

1.41 expected for harmonic vibrations at low temperatures.
This deviation may be due to both anharmonicity in the in-
teratomic interaction and changes in the effective mass
caused by coupling to the host atoms. This ratio decreases as
T is raised and amounts to 1.19 at 900 K. For comparison we
also present in Fig. 2 the kinetic energy corresponding to the
classical limit with four vibrational degrees of freedom
�2kBT, dotted line�.

C. Atomic delocalization

To study the spatial delocalization of a quantum particle
from PIMD simulations, it is convenient to consider the cen-
ter of gravity �centroid� of the quantum paths of the particle,
defined as

r =
1

P
�
i=1

P

ri, �2�

ri being the coordinates of the “beads” in the associated ring
polymer.

The mean-square displacement of a quantum particle
along a PIMD simulation run is then given by

�2 =
1

P��
i=1

P

�ri − �r��2	 , �3�

where � . . . � indicates a thermal average at temperature T.
After some straightforward manipulations, one can write �2

as

�2 = �Q
2 + �C

2 , �4�

with

�Q
2 =

1

P��
i=1

P

�ri − r�2	 �5�

and

�C
2 = ��r − �r��2� . �6�

The first term, �Q
2 , is the mean-square “radius of gyration” of

the ring polymers associated to the quantum particle �atomic
nucleus� under consideration.18 This is a measure of the av-
erage extension of the paths and, therefore, of the importance
of quantum effects in a given problem. The second term in
Eq. �4� is the mean-square displacement of the center of
gravity of the paths. This term is the only one surviving at
high temperatures since in the classical limit each path col-
lapses onto a single point �hence with a vanishing radius of
gyration�. For situations in which the anharmonicity is not
extremely large, the distribution of r is similar to that of a
classical particle in the same potential, and thus �C

2 can be
considered as a kind of semiclassical delocalization.

Going back to our problem of H2 in silicon, for each
hydrogen atom in the molecule we have calculated sepa-
rately both terms giving the atomic delocalization in Eq. �4�.
Shown in Fig. 3 are the values of �Q

2 �spreading of the quan-
tum paths, squares� and �C

2 �centroid delocalization, dia-
monds�, as derived from our PIMD simulations at several
temperatures. In this plot, one observes that �C

2 is much
larger than �Q

2 in the whole temperature range under consid-
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FIG. 2. Temperature dependence of the vibrational part of the
kinetic energy of H2 and D2, as derived from approach 3 with free
motion of all atoms in the simulation cell. Symbols indicate results
derived from PIMD simulations: squares for H2 and circles for D2.
Error bars are on the order of the symbol size. Dashed lines are
guides to the eye. The dotted line corresponds to the classical limit
with four degrees of freedom.
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FIG. 3. Spatial delocalization of atomic nuclei �protons� in H2.
Diamonds indicate the mean-square displacement of the centroid of
the quantum paths, �C

2 , and squares correspond to the mean-square
radius of gyration of the paths, �Q
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eration. This is not strange if one takes into account that the
molecular rotation around the interstitial T site can be con-
sidered as a classical motion at these temperatures. In fact,
the order of magnitude of this spatial delocalization can be
obtained from the free motion of a particle on a spherical
surface with radius equal to half distance between atoms in
an H2 molecule. For a distance R=0.77 Å, we obtain a
mean-square classical displacement of 0.15 Å2, close to the
value of �C

2 at 300 K. This magnitude increases for rising
temperature, as expected for an increase in the fluctuations of
the distance from each H atom to the average position �T
site�.

For the spreading of the quantum paths of each H atom
we obtain at room temperature �Q

2 =0.03 Å2 and it decreases
as temperature is raised. This gives for the paths an average
extension of 
0.1 Å at 300 K, much smaller than the H–H
distance, and thus justifying the neglect of quantum ex-
change between protons. Moreover, the fact that �Q

2 is much
smaller than �C

2 in the temperature range considered here
does not mean that quantum effects are irrelevant but is a
consequence of the enhancement in �C

2 due to molecular
rotation.

D. Interatomic distance

As mentioned above, the interatomic distance between
hydrogen atoms increases when the molecule is introduced
from the gas phase into a silicon crystal due to the interaction
between H and host atoms. For the minimum-energy dis-
tance we found R0=0.752 Å, which is smaller that the val-
ues obtained in earlier calculations �0.788 Å in Ref. 14 and
0.817 Å in Refs. 11 and 47�.

We now present the temperature dependence of the mean
distance H–H for the three approaches considered above to
study molecular hydrogen in silicon. Our results are dis-
played in Fig. 4, where symbols represent data points derived
from PIMD simulations. For approach 1 �1d motion in a
fixed lattice�, we find at 300 K a mean distance R
=0.780 Å, which represents an appreciable increase vs the
distance obtained for the minimum-energy configuration. In
this model, R increases very slowly as a function of T
�squares in Fig. 4� since molecular rotation is not allowed
and the molecule expansion is only due to the increasing
population of excited vibrational levels. In fact, we find
dR /dT=1.0�10−6 Å /K.

When molecular rotation is allowed in a fixed lattice �ap-
proach 2�, we observe an increase in R �see circles in Fig. 4�.
At 300 K we found R=0.785 Å, about 5�10−3 Å larger
than for 1d motion. Now R rises with temperature much
faster than in approach 1 with dR /dT=1.1�10−5 Å /K.
Next, we allow the Si atoms to move, introducing the full
quantization of all degrees of freedom in the simulation cell,
and we obtain a reduction in the distance H–H with respect
to approach 2. This can be understood as due to a softening
of the effective Si–H interaction, which decreases as a con-
sequence of Si motion. In this case with full motion of the 66
atoms in the cell, we find dR /dT=1.6�10−5 Å /K, which
means a larger slope than in approach 2.

It is interesting to compare these changes in the mean
distance R with those corresponding to molecular hydrogen

in the gas phase. To this end we have carried out some PIMD
simulations of an isolated hydrogen molecule with the same
interatomic potential. In this case we obtain an increase in R
with temperature given by dR /dT=7.5�10−6 Å /K, a value
clearly smaller than those obtained for H2 in silicon in our
approaches 2 and 3. This means that, for H2 in silicon, the
change in interatomic distance with temperature is controlled
by both the centrifugal expansion due to rotation and inter-
action with the nearby host atoms.

PIMD simulations can be also employed to study the iso-
topic dependence of the mean interatomic distance R. The
molecular expansion with respect to the lowest-energy clas-
sical geometry is due to a combination of anharmonicity with
quantum delocalization. One expects smaller distances for
molecular deuterium due to its smaller vibrational ampli-
tudes. In fact, at 300 K we found for D2 in silicon, R
=0.767 Å, to be compared with R=0.776 Å for H2 at the
same temperature and a distance R0=0.752 Å for the lowest-
energy position in the classical limit. In Fig. 5 we present the
temperature dependence of the mean distance for both H2
and D2, as derived from our PIMD simulations for approach
3 �full motion of molecular hydrogen and host atoms�. For
D2 we find dR /dT=1.5�1��10−5 Å /K, which coincides
within error bar with the slope obtained for H2 in silicon in
the temperature region from 300 to 900 K.

E. Stretching frequency

The stretching frequency of H2 is an important fingerprint
of the molecule, that in fact has been used to detect and
characterize this impurity in the silicon bulk.8,48 This stretch-
ing vibration has been found at 3618 cm−1 �at 4 K� indepen-
dently by Raman8 and infrared-absorption spectroscopies.49

In Fig. 6 we show the temperature dependence of �s for
H2 in the three approaches considered here, as derived from
the LR method presented above. In approach 1 �1d motion�
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FIG. 4. Mean distance between H atoms in an H2 molecule in
silicon. Symbols correspond to different approximations for the mo-
lecular motion. Squares: motion of H2 in one dimension with fixed
host atoms �approach 1�; circles: free motion of H2 in a fixed silicon
lattice �approach 2�; triangles: free motion of H2 and host atoms
�approach 3�. Error bars are in the order of the symbol size. Dashed
lines are linear fits to the data points.
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the frequency decreases slightly in the analyzed temperature
range. In approaches 2 and 3, the coupling between molecu-
lar rotation and vibration causes an appreciable change in �s
with the temperature. For model 2 �fixed Si lattice� we find
d�s /dT=−0.13 cm−1 /K, to be compared with a slope of
d�s /dT=−0.24 cm−1 /K for model 3, which includes motion
of the host atoms. Thus, motion of the Si atoms causes a
significant change in d�s /dT, which becomes almost twice
larger than in the case of a static Si lattice. It is interesting
that at room temperature �s is smaller for model 2 than for
approach 3 but due to its faster decrease in the latter ap-

proach, �s becomes smaller for model 3 at high T.
Something similar has been obtained for the stretching

vibration of D2. In particular, for approach 3 we find a rather
constant ratio between the stretching frequencies of H2 and
D2, that amounts to 1.37�1�, somewhat smaller than the ratio
expected in a harmonic approximation �1.41�. Experimen-
tally, a ratio of 1.37 is found from infrared7 and Raman8,44

spectra of H2 and D2 in silicon, a little smaller than the ratio
1.39 observed for these molecules in the gas phase.50

For the HD molecule in silicon, an infrared study allowed
to determine the energy of the first excited rotational level.45

In fact, a value of 73.9 cm−1 was found for the wave number
difference between the levels J=0 and J=1, somewhat lower
than that corresponding to the gas phase �89.3 cm−1�. By
scaling that wave-number difference with the reduced mass,
we expect for H2 an energy difference of about 99 cm−1.
Since our PIMD simulations yield results for the average
frequency �s, one can estimate a frequency shift from the
rotational energy, taking into account the population and de-
generacy of the different levels.45 By considering only the
levels J=0 and J=1, one would expect at room temperature
a frequency shift d�s /dT on the order of −0.05 cm−1 /K,
clearly lower than the value found from our simulations for
approach 3 �−0.24 cm−1 /K�. This is not strange, taking into
account that at these temperatures higher rotational levels
will be excited, contributing to a larger decrease in the aver-
age frequency. However, the actual position of these levels
further than J=1 is not known at present and a more detailed
comparison with our results is not possible.

We note that the quantum treatment of atomic nuclei in
molecular-dynamics simulations is crucial to give a reliable
description of the vibrational frequencies of light atoms, such
as hydrogen. In fact, we have applied the LR method to
calculate the stretching frequency �s from classical simula-
tions. At 300 K we found for H2 in silicon a frequency �s
=4039 cm−1 �for full motion of interstitial hydrogen and
host atoms�, to be compared with �s=3728 cm−1 derived
from PIMD simulations. As expected, the classical value is
much closer to the frequency �s=4071 cm−1 obtained in a
HA for H2 in silicon.

IV. DISCUSSION

In Sec. III we have presented results of our PIMD simu-
lations for H2 and D2 in silicon. The main advantage of this
kind of simulations is the possibility of calculating energies
at finite temperatures, with the inclusion of quantization of
host-atom motions, which are not easy to be accounted for in
fixed-lattice calculations. Isotope effects can be readily ex-
plored since the impurity mass appears as a parameter in the
calculations. This includes the consideration of zero-point
motion, which together with anharmonicity gives rise to non-
trivial effects. In addition, the vibrational motion of H2 is
coupled with molecular rotation, leading to a change in the
stretching frequency with temperature.

As mentioned above, an important feature of isolated H2
molecules in semiconductors is their stretching vibration �s.
In a harmonic approximation, the tight-binding potential em-
ployed here yields for H2 in silicon a frequency �s
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FIG. 5. Mean interatomic distance for H2 and D2 molecules in
silicon, as a function of temperature. Symbols indicate results de-
rived from PIMD simulations for approach 3, in which all atoms are
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order of the symbol size. Dashed lines are linear fits to the data
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perature �Ref. 8�.
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=4071 cm−1 vs 4397 cm−1 for H2 in the gas phase, which
means a reduction of about 330 cm−1 due to interaction with
the host atoms. This reduction is accompanied by an increase
in the H–H distance, as shown in Sec. III C. An additional
decrease in �s is obtained when anharmonic effects are taken
into account in a one-dimensional motion of the molecule in
a fixed lattice. In fact, at 300 K the LR calculations give in
this case �s=3770 cm−1, which means a decrease in fre-
quency of about 300 cm−1 with respect to the HA for H2 in
silicon. This frequency change due to anharmonicity is in the
order of that derived in Ref. 47 from DF calculations,
namely, ��s=−408 cm−1. This frequency is further lowered
when full �quantum� motion of the molecule and host atoms
are allowed, giving �s=3728 cm−1. In this latter reduction
there is a contribution of two competing effects: coupling
between molecular rotation and vibration, and interaction
with Si atoms, whose motion allows for a larger delocaliza-
tion of the H2 molecule in the interstitial space.

In general we observe a correlation between �s and mean
interatomic distance R in the H2 molecule, in the sense that a
rise in �s is accompanied by a decrease in R. This is in line
with the general trend found by Van de Walle11 for molecular
hydrogen in crystalline semiconductors, as derived from DF
calculations at T=0. However, this trend is not so strict when
atomic motion is included at finite temperatures, as derived
from Figs. 4 and 6. In this case, the mobile Si atoms may
contribute to an additional decrease in the stretching fre-
quency of H2 by a rise in the effective mass associated to this
vibrational mode.

In connection with this, it is clear that theoretical tech-
niques to deal with the electronic structure of solids have
been improving their precision over the years. For various
purposes, the accuracy currently achieved by these methods
is excellent, when comparing their predictions with experi-
mental data. However, quantum-nuclear effects limit the ac-
curacy of state-of-the-art techniques to predict actual proper-
ties of light impurities in solids. The answer to this question
has to be found in ab initio path-integral simulations, where

both electrons and nuclei are treated directly from first prin-
ciples. But even in this case the question is not simple when
one has to deal with phenomena such as molecular rotation
at low temperatures, where a proper description of quantum
rotation has to be included in the formalism.

There is an important challenging point that should be
considered in future work. It refers to considering coupling
between nuclear spins in the hydrogen molecule, i.e., dealing
separately with ortho and para H2 �both have been observed
in silicon12,44,51�. This becomes specially relevant at low tem-
peratures, where the quantum character of molecular rotation
has to be explicitly considered in the simulations. Usually
these kind of calculations have been carried out by assuming
the molecule to be a rigid rotor, without taking into account
vibrations and deformations, and thus neglecting the rovibra-
tional coupling.

An analysis of hydrogen diffusion in silicon is out of the
scope of this paper. Actual diffusion coefficients are not di-
rectly accessible with the kind of simulations employed here
since the time scale employed in the calculations is not
readily connected to the real one. In this respect, PIMD
simulations could be applied to study quantum diffusion of
H2 in silicon, by calculating free-energy barriers in a way
similar to that employed earlier to study the diffusion of
atomic hydrogen in metals25 and semiconductors.24,52

In summary, the PIMD method has turned out to be well
suited to study finite-temperature equilibrium properties of
hydrogen molecules in silicon. This has allowed us to notice
the importance of anharmonicity and rovibrational coupling
in order to give a realistic description of the properties of
these interstitial impurities. Anharmonicity shows up in the
stretching motion of the molecules, causing important shifts
with respect to the harmonic expectancy.
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