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The electronic energy levels of one-dimensional aperiodic systems driven by a homogeneous electric field
are studied by means of a phase-space description based on the Wigner distribution function. The formulation
provides physical insight into the quantum nature of the electronic states for the aperiodic systems generated by
the Fibonacci and Thue-Morse sequences. The nonclassical parameter for electronic states is studied as a
function of the magnitude of homogeneous electric field to achieve the main result of this work, which is to
prove that the nonclassical properties of the electronic states in the aperiodic systems determine the transition
probability between electronic states in the region of anticrossings. The localization properties of electronic
states and the uncertainty product of momentum and position variables are also calculated as functions of the
electric field.
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I. INTRODUCTION

Analysis of the electronic states of artificial structures
�e.g., superlattices, quantum wires, rings, or dots� plays a
central role in modern condensed-matter physics because
they determine many useful properties indispensable in in-
dustrial applications of atomic-scale or nanoscale devices.
The experimental realization of that kind of structures allows
us to investigate the influence of quantum effects on me-
chanical, optical, or transport properties. The atomic cluster
structures such as quantum corrals or chains can be fabri-
cated using the low-temperature scanning tunneling micro-
scope �STM� manipulation of individual atoms on the con-
ducting substrate1,2 or mechanically controllable break
junction �MCBJ�.3–5 The latter method allows us to fabricate
only very short monatomic or mixed atomic chains that con-
sist of four or five metal atoms;6,7 on the contrary, the tip of
STM can be used to build longer and much more complex
structures with different shapes. Additionally, long atomic
chains can be reconstructed on a flat surface by self-
assembly. Experimental results for self-assembled gold
atomic chains on silicon surfaces confirmed the existence of
long and stable chains.8,9 In this case the chains are extended
over hundreds of nanometers and can break due to atomic
defects or because of the intentional removal of single atom
or group of atoms from the perfect chain. It means that ex-
perimental techniques open up the possibility to fabricate
metal nanostructures created by the intentional atomic rear-
rangement. On the other hand, the external fields interacting
with electronic states of the systems can modify their elec-
tronic spectrum and properties of the system are observed.
Especially the interaction with the electronic states in the
system with broken translational symmetry �disordered or
aperiodic systems� seems to be interesting because the quan-
tum interference effects determine the electronic properties
of the systems at low temperatures, e.g., Refs. 10–12. One of
the simplest but nontrivial examples of the interactions is the
effect of the homogeneous electric field on electronic states

in crystals where the Wannier-Stark quantization was
predicted13–16 and confirmed experimentally in artificial
semiconductor and optical superlattices.17–19 Discussion of
the effect in one-dimensional periodic systems has been car-
ried out for many years20–28 and is still the subject of current
experimental as well as theoretical research.29–32

In this paper, we apply the phase-space approach based on
the nonclassical distribution functions33–36 to the problem of
electronic states in isolated and finite one-dimensional aperi-
odic systems generated by the Fibonacci and Thue-Morse
sequences37–39 in the presence of an external homogeneous
electric field. This approach is widely used in the study of
quantum transport phenomena40–44 but less exploited in the
description of electronic states of nanosystems.45 The phase-
space method allows one to carefully investigate the increas-
ing role of the quantum effects resulting from interplay be-
tween the electric field and aperiodic ordering in the one-
dimensional systems and leading to the greater importance of
the nonclassical properties of electronic states. We compute
the Wigner distribution functions for some electronic states
in the aperiodic systems and analyze their localization prop-
erties in the phase space as a function of electric field. The
analysis is based on the inverse participation ratio �IPR� in
the phase space.46,47 This approach allows us to show that the
electric field increases the nonclassical properties of elec-
tronic states close to the transition between them.

The presented analysis can be simply extended to the de-
scription of cold atoms in the optical lattice48–50 or layered
systems such as aperiodic superlattices consisting of two dif-
ferent materials that are arranged according to appropriate
aperiodic sequence, e.g., Refs. 51–53, and references therein.

The rest of the paper is organized as follows. In Sec. II,
we present the theoretical model of pseudoatomic chain. In
Sec. III we apply the formalism of nonclassical distribution
functions to the quantitative analysis of electronic states in
the aperiodic systems in the external electric field. In con-
cluding remarks we summarize presented results.
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II. THEORETICAL MODEL AND METHODS

We consider the aperiodic chain of metallic potential
wells modeling atoms which can be described by the one-
particle Hamiltonian in the form

H0 =
px

2

2m
+ �

i=1

N

v�x − Xi� , �1�

where m is the effective mass of electron and N is the num-
ber of wells. The positions of wells, Xi, are distributed ac-
cording to the binary Fibonacci and Thue-Morse sequences.
We generate these sequences over set �0,1� using the follow-
ing inflation rules:38 �a� Fibonacci sequence: 0→01 and 1
→0 and �b� Thue-Morse sequence: 0→01 and 1→10.

In our notation zero corresponds to an empty site in the
simple crystal lattice and one corresponds to a site in the
lattice occupied by the potential well v�x−Xi�. The potential
term in Hamiltonian �1� is represented by the superposition
of the potential wells v�x−Xi�. We assume that each well in
the chain is given by the Shaw pseudopotential modified by
screening, namely,

v�x − Xi� = − v0�
exp�− ��x − Xi��

�x − Xi�
, �x − Xi� � xc

exp�− �xc�
xc

, �x − Xi� � xc.� �2�

A quantity xc is the cutoff parameter and it is chosen to have
the value for which the pseudopotential reproduces the ion-
ization energy of Cu; � is the screening factor in the
Thomas-Fermi approximation. We assume that each well
gives only one state to the conduction band and therefore the
Fermi level, EF, is defined in the middle of the conduction
band. Finally a constant electric field E is applied along the
wire and the total Hamiltonian of the system under the elec-
trostatic perturbation has a form

H = H0 + eEx , �3�

where −e is the electron charge.
The energy spectrum of the finite system, which is de-

scribed by Hamiltonian �1� forms the energy bands. The
structure of these energy bands strongly depends on the ar-
rangement of potential wells. When a periodic system is sub-
jected to the electric field, the eigenstates of Hamiltonian �3�
form so-called homogeneous Wannier-Stark ladders.13,54 This
situation is presented in Fig. 1�a�. In the aperiodic structures
generated by the Fibonacci and Thue-Morse order, the eigen-
states of Hamiltonian �3� form more complex energy spectra
of the conduction band as it is shown in Figs. 1�b� and 1�c�.

In these cases, the electronic states tend to group into
subbands. The energy widths of these subbands are much
smaller than the width of the conduction band for the peri-
odic system and strongly depend on the values of electric
field and number of wells in the systems. As a result, the
aperiodic systems form the inhomogeneous Wannier-Stark
ladders. From these results we conclude that the effect of
inhomogeneous Wannier-Stark ladders originates from the
interplay between aperiodic order and the electric field on the
electronic states. A closer inspection of the inhomogeneous

Wannier-Stark ladders reveals the occurrence of changes in
energy levels inclinations in the electric field. These changes
result from the repulsion between neighboring electronic
states and the anticrossings55 are observed between them for
some values of the electric field as it is shown in Fig. 2.

These nontrivial properties of the inhomogeneous
Wannier-Stark ladders suggest that the correlated position
and momentum behavior of electronic states play an impor-
tant role in the region of anticrossings. Therefore the nature
of these electronic states is analyzed by the phase-space
methods. Here, we restrict ourselves to the detailed analysis
of the states in the vicinity of the band bottom but we also
present briefly some results for the states in the middle of the
conduction band.
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FIG. 1. Energies of states in the conduction band for N=100
wells as a function of the electric field for �a� periodic, �b� Fi-
bonacci, and �c� Thue-Morse sequence.
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FIG. 2. Energies calculated for 	�a� and �b�
 the Fibonacci se-
quence and 	�c� and �d�
 Thue-Morse sequence. �a� and �c� show
states at the Fermi level �EF� and directly below and above the
Fermi level �EF−1 and EF+1, respectively�. �b� and �d� show states at
the bottom of the conduction band. Arrows point to the
anticrossings.
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Within the phase-space approach, the electronic states
may be represented by the Wigner distribution function. For
an electron in the pure state the Wigner distribution function
has the form33–35

fn�x,k� =� dx��x − 1
2

x��n���nx +
1

2
�x��eikx�. �4�

It should be noted that the Wigner distribution function is a
bilinear combination of the electron wave function and there-
fore contains interference information. By means of the
Wigner distribution function we can evaluate the expectation
value of any Hermitian quantum-mechanical operator A in
the state n using the formula33,35

�A�n =� dxdkA�x,k�fn�x,k� , �5�

where A�x ,k� is the Wigner representation of quantum-
mechanical operator A given by

A�x,k� =� dx��x −
1

2
x�Ax +

1

2
x��eikx�. �6�

Because the Wigner distribution function can take negative
values in some subregions of the phase space it cannot be
interpreted as the classical distribution function in the phase
space. The negative part of the Wigner distribution function
is responsible for quantum correlations between spatially
separated pieces of the electronic state.56 It stems from the
fact that the information from the off-diagonal terms in Eq.
�4� represented by x��0 variable is transferred to the Wigner
distribution function via the momentum k. These properties
characteristic for the Wigner distribution function may be
utilized as an indicator of nonclassicality of electronic
states.57,58

III. RESULTS AND DISCUSSION

In the present considerations we assume that the aperiodic
systems generated by the Fibonacci and Thue-Morse se-
quences are limited by the infinite wells. The energy spectra
were calculated for weak electric fields using the parameters
of the conduction electron in copper. In our calculations we
consider chains of different lengths �e.g., 30, 50, or 100 po-
tential wells�. Here we present the results for 100 wells con-
taining all characteristic properties of the obtained results.
All values are given in atomic units �= �e�=me=1.

In the first step we determine the Wigner distribution
functions for some of pure states and investigate their
changes due to the electric field. Figure 3 shows the Wigner
distribution functions for the two lowest electronic states in
the Fibonacci chain in the vicinity of the first anticrossing
that is pointed to by the arrow in Fig. 2�b�.

Initially, both electronic states which are represented by
the Wigner distribution functions f0�x ,k� and f1�x ,k� occupy
different regions of the phase space. Increasing the electric
field shifts the states in opposite directions so that the dis-
tance between them decreases. Finally, in the region of anti-
crossing, the Wigner distribution functions occupy the same

region of the phase space and it leads to overlapping of these
functions as shown in Figs. 3�b� and 3�e�. In this case we
may express the electronic states by the linear superposition
of individual states: ���=a0��0�+a1��1�, where �a0�2+ �a1�2
=1. Using the definition given by Eq. �4� we obtain expres-
sion for the Wigner distribution function of the electronic
state in the form

f�x,k� = �a0�2f0�x,k� + �a1�2f1�x,k�

+ 2R�a0a1
�� dx��x − x�

2
�1���0x +

x�

2
��eikx�� .

�7�

The first two terms correspond to individual electronic states
and the last term represents the mixture part which results
from the bilinearity of the Wigner distribution function. This
type of term is often termed the quantum interference.59,60

Quantitative analysis of the transition between electronic
states ��n� and ��m� may be based on the product of their
Wigner distribution functions fn�x ,k� and fm�x ,k� integrated
over the phase space,59–61 namely,

Pnm = 2�� dxdkfn�x,k�fm�x,k� . �8�

The results of calculations of the overlapping integral given
by Eq. �8� for the three lowest states in the Fibonacci chain
are shown in Fig. 4. The maximum values of the overlapping
integrals in both cases correspond to the electric field values
at which the anticrossings between the appropriate states are
observed. After a further increase in the electric field the
quantum interference term disappears because the distance
between states becomes larger and finally both states are well
separated in the phase space which means that the overlap-
ping integrals tend to zero. A similar situation is observed for
the electronic states in the Thue-Morse chain, for example, in
case of the Wigner functions shown in Fig. 5.
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FIG. 3. The Wigner function for the system based on the Fi-
bonacci sequence. �a�–�c� n=0 and �d�–�f� n=1. Electric field, from
left to right, is equal to 1.9, 2.2, and 2.5�10−6 a.u.
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A more complex situation is presented in Fig. 6 where the
evolution of the Wigner distribution functions for three quan-
tum states in the vicinity of the middle of the conduction
band is shown as a function of the electric field. In this case
the energy spectrum �see Fig. 2� exhibits two anticrossings
located close to each other. Each of these anticrossings mixes
only two neighboring electronic states, therefore this process
can be explained by the previous analysis. As it is presented
in Figs. 3, 5, and 6 quantum states in the aperiodic chains
under the fixed boundary conditions localize in limited areas
of the phase space. The extents of these areas depend on the
assumed distribution of the potential wells �based on Fi-
bonacci or Thue-Morse sequence� and the number of quan-
tum state.

One of the possibilities of measuring the degree of local-
ization is to use the IPR parameter calculated in-phase space,
defined by46,47

IPRn =
1

2�
� dxdk	gn�x,k;1/2�
2, �9�

where gn�x ,k ;1 /2� is the Husimi function. The Husimi func-
tion is an example of the non-negative nonclassical distribu-
tion functions, which can be obtained by the convolution of
the Wigner distribution function and a window function62

gn�x,k;�xk� =� dx�dk�W�x − x�,k − k�;�xk�fn�x�,k�� ,

�10�

where W�x−x� ,k−k� ;�xk� is a window function with reso-
lution �xk. In particular, the Husimi function is obtained if
we choose the window function as a Gaussian function with
the resolution corresponding to the minimum resulting from
the uncertainty principle ��xk=1 /2�.

IPR can be used to study the influence of the electric field
on localization, as shown in Fig. 7. For the ground state in
the Fibonacci chain 	see Fig. 7�b�
 it was found that after
IPR reaches the value of 0.13, further increase in the electric
field to 2�10−6 a.u. does not change the localization. In a
similar way, for the first excited-state IPR stabilizes initially
at 0.08 for the fields larger than 0.7�10−6 a.u. Then, when
the electric field is between 2 and 2.5�10−6 a.u., we ob-
serve that the energy levels values plotted versus the electric
field change their gradient 	see Fig. 2�b�
. This behavior is
connected with the anticrossing taking place between the
mentioned values of the electric field. In the phase space, the
shape of the states changes, as well as the occupied area.
Both states are shifted and the degree of localization changes
significantly. As a consequence, the first excited state local-
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FIG. 4. The transition probability between the states n and n
+1 at the bottom of the conduction band in the system based on the
Fibonacci sequence; �a� n=0 and �b� n=1.

FIG. 5. The Wigner function for the system based on the Thue-
Morse sequence. �a� and �b� EF; �c� and �d� EF+1. Electric field: �a�
and �c� 0.98�10−6 a.u.; �b� and �d� 0.99�10−6 a.u.

FIG. 6. The Wigner function for the system based on the Fi-
bonacci sequence. �a�–�c� EF−1, �d�–�f� EF, and �g�–�i� EF+1. Elec-
tric field, from left to right, 1.8, 1.85, and 1.9�10−6 a.u.
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izes in the region of the phase space previously occupied by
the ground state and vice versa. The expectation values of
the position and squared momentum presented in Figs. 8 and
9 were calculated for these states. The results confirm that
the electric field shifts the states only at the points of anti-
crossings.

In case of the Thue-Morse sequence the observed behav-
ior is slightly different. When the electric field is applied,
localization of the two lowest states starts to increase very
quickly and the states are shifted. Then, the degree of local-
ization falls down and finally settles at a constant level. Also
the expectation values of position and momentum do not
undergo any further changes when the electric fields are in-
creased. Similar characteristics of the ground state and the
first excited state mean that increasing the electric field sepa-
rates energies of the states, as shown in Fig. 2�d�.

Figures 7�a� and 7�c� present changes in localization of
the states from the middle of the band. The changes are very

sharp and are observed for the electric field values at which
the plot of energy of the state against the electric field alters
its gradient. Modification of the phase-space areas occupied
by the states observed at the anticrossings, together with the
change in IPR values, are caused by the decreasing of the
energy between the states. For that reason we expect the
quantum effects to have a greater impact on the analyzed
states, notably the quantum interference between them. Ap-
pearance of that kind of effect should be accompanied by an
increase in the negative part of the Wigner function, which is
responsible for the quantum interference.

To investigate this phenomenon we split up the Wigner
distribution function into two parts, namely,

fn�x,k� = fn
+�x,k� + fn

−�x,k� , �11�

where fn
+�x ,k� and fn

−�x ,k� correspond to the positive part and
the negative part of the Wigner distribution function, respec-
tively.

The measure of the nonclassical nature of an electronic
state ��n� is defined by the formula57,58

	n = 1 −
In

+ − In
−

In
+ + In

− , �12�

where In
+ and In

− are the moduli of the integrals of the posi-
tive part and the negative part of the Wigner distribution
function, respectively. Influence of the electric field on the 	n
parameter is shown in Fig. 10.

In the Fibonacci chain the nonclassical character consid-
erably decreases �to about 0.52� immediately after turning
the electric field on. Then its value does not change until the
anticrossing takes place in the energy spectrum, where the 	n
parameter rises as a result of the increasing Wigner function
negative part for both states. For a further increase in electric
field the nonclassical nature decreases.

For the ground state in the Thue-Morse chain a monotonic
decrease in the parameter 	n is observed. It can be explained
on the basis of large separation in the phase space between
the ground state and the excited states.

States placed in the middle of the band also exhibit jumps
of the nonclassical behavior at the electric fields at which the
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anticrossings are observed. Here, however, the widths of an-
ticrossings are very small and the numerical accuracy does
not allow to illustrate the peaks of nonclassicality parameter
but only to show the values below and above anticrossings.

Additionally we calculate the standard deviations of posi-
tion and momentum variables that are defined by expres-
sions: 
n

2�x�= �x2�n− �x�n
2 and 
n

2�k�= �k2�n− �k�n
2, respectively,

applying Eq. �5� to find the relevant quantities from the
Wigner function fn�x ,k�. The acquaintance of these devia-
tions allows one to calculate the uncertainty product

n�x�
n�k� as a function of the electric field. Figure 11 shows
results for the uncertainty product for the two lowest states in
both aperiodic chains. We may see that the electric field pro-
duces rapid changes in the uncertainty product around the
anticrossings for both states. This behavior of the uncertainty
product can be explained by the highly nonclassical features

of the Wigner distribution function corresponding to the
quantum state in the region of anticrossing where the quan-
tum interference phenomena play important role. On the
other hand the uncertainty product allows one to distinguish
between pseudoclassical and nonclassical states. It results
from the fact that the uncertainty product is equal to 1/2 for
the coherent states, which are recognized as the states closest
to classical ones. Hence the nonclassical states may be char-
acterized by the uncertainty product greater than 1/2. As it
presented in Fig. 11, the uncertainty product is usually
greater than one which means that the discussed states are
nonclassical.

IV. CONCLUDING REMARKS

We have studied the influence of the homogeneous elec-
tric field on the energy spectrum of the finite one-
dimensional aperiodic systems generated by the Fibonacci
and Thue-Morse sequences. We have shown that the homo-
geneous electric field modifies the energy spectrum of aperi-
odic systems and leads to the formation of the subbands. The
appearance of subbands is a consequence of the attraction
between energy levels for some value of the electric field.
The anticrossings are observed for these values of the elec-
tric field.

We have applied the phase-space method based on the
Wigner distribution function to analyze the region of anti-
crossings for the lowest electronic states in both aperiodic
systems. The discussion of the electronic states in the middle
of conduction band is also included. This formulation allows
us to investigate the nonclassical properties of the electronic
states and their influence on the transitions between them.
We have shown that the nonclassical properties of electronic
states of the aperiodic systems under the homogeneous elec-
tric field are most profound in the regions of anticrossings.
The increase in the nonclassical parameter in these regions is
a consequence of the increasing role of the negative part of
the Wigner distribution function and it is correlated with the
changes in the localization properties of electronic states and
the dynamical variables. Finally, we have used the uncer-
tainty product of momentum and position variables as a
simple measure of nonclassicality of the electronic state. We
have found that this product as a function of the electric field
is also correlated with the nonclassical properties of elec-
tronic states in the aperiodic systems. In the paper we have
paid attention to the aperiodic systems in the limit of low
homogeneous electric field. The limit of strong electric field
and dynamical aspect of the problem will be included in
forthcoming publications.
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