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In recent work, generalized gradient approximations �GGAs� have been constructed from the energy density
of the Airy gas for exchange but not for correlation. We report the random-phase approximation �RPA�
conventional correlation energy density of the Airy gas, the simplest edge electron gas, in which the auxiliary
noninteracting electrons experience a linear potential. By fitting the Airy-gas RPA exchange-correlation energy
density and making an accurate short-range correction to RPA, we propose a simple beyond RPA GGA density
functional �“ARPA+”� for the exchange-correlation energy. Our functional, tested for jellium surfaces, atoms,
molecules, and solids, improves mildly over the local spin-density approximation for atomization energies and
lattice constants without much worsening the already good surface exchange-correlation energies.
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I. INTRODUCTION

In Kohn-Sham1 �KS� density-functional theory, the
ground-state density, and energy of interacting electrons in a
scalar external potential v�r� are computed efficiently via a
self-consistent calculation for an auxiliary system of nonin-
teracting electrons in a scalar effective potential vef f�r�.
Once the exchange-correlation �xc� energy as a functional of
the electron density has been approximated, its functional
derivative provides the exchange-correlation contribution to
vef f�r�. By itself, the deviation of vef f�r� from the constant
chemical potential determines the electron density and thus
the exchange-correlation energy. Typical approximations are
designed to be exact for a reference system, most often the
uniform electron gas in which the auxiliary noninteracting
electrons see a constant or uniform vef f. Sometimes addi-
tional exact constraints or fits to experiment are also built
into the approximation. Recently Kohn and Mattsson2 have
proposed as a more realistic reference system, the edge elec-
tron gas, in which vef f�r� varies more or less linearly near the
edge surface of the density. While the uniform gas could be
�and is� a good reference for a bulk solid, the edge electron
gas could be at least as good for a bulk solid and better for
solid surfaces, molecules, and atoms, which have regions
where the electron-density evanesces.

The edge surface of any electron system is defined2 by
vef f�r�=�, where vef f�r� is the exact KS �Ref. 1� effective
potential and � is the chemical potential. Outside this clas-
sical turning surface, all noninteracting electrons tunnel into
a barrier. The simplest example of an edge electron gas is the
Airy gas, where any electron feels a linear effective
potential2 and thus the normalized one-particle eigenfunc-
tions are proportional to the Airy function. The Airy gas has
not only a surface-like region but also a region of high and
slowly varying �Thomas-Fermi-type� electron density where
the local-density approximation �with uniform-gas input� is
accurate2,3 for the noninteracting kinetic, exchange, and cor-
relation energy densities.

The Airy gas has appeared before in density-functional
theory: �1� the effective finite-linear-potential model gives
remarkably good results for the jellium surface problem,
where the orbitals of this model are approximated with plane

waves inside the bulk, Airy functions near the surface, and
exponential functions far in the vacuum.4–6 �2� Baltin7 con-
structed a generalized gradient approximation �GGA� for the
orbital kinetic energy from the Airy-gas kinetic energy den-
sity but his approximation does not recover the second-order
gradient expansion for the kinetic energy density8,9 and is
poor for atoms and molecules.10,11 However, the kinetic en-
ergy density of the Airy gas11 can still be a starting point for
construction of GGA kinetic energy functionals that can be
more accurate for atoms, molecules, jellium clusters, and jel-
lium surfaces.11,12 The trick is to fit a GGA plus a �2n term
integrating to zero to the Airy-gas kinetic energy density.

The exchange energy density of the Airy gas2 was
fitted13,14 with a function dependent on the density and its
gradient. Thus, Vitos et al.13 developed a GGA exchange
energy functional �LAG or local Airy-gas GGA� that was
used with the local spin-density approximation �LSDA� cor-
relation energy. This xc energy functional gives results for
atoms very close to, but better than, the LSDA ones, and its
accuracy for atomization energy of diatomic molecules is
similar to that of the Perdew-Burke-Ernzerhof or PBE GGA
�Ref. 15� while for bulk systems the results of LAG GGA are
close to the PBEsol GGA16 and to experimental values.
However, the jellium xc surface energies of LAG are far too
low �lower even than those of the PBE GGA�. Armiento and
Mattsson14,17 proposed an xc energy functional �AM05
GGA� using a better fit for the Airy-gas exchange energy
density and a correlation energy functional constructed such
that the AM05 xc jellium surface energies fit the RPA+ �Ref.
18� values �random phase approximation or RPA plus a GGA
short-range correction�. AM05 is also based on the sub-
system functional approach,19 which permits an interpolation
between a uniform-gas reference for the bulk of a solid and
an Airy-gas reference for the surface. �Since the Airy-gas
reference system by itself provides such an interpolation, we
make no further interpolation here.� AM05 slightly improves
the accuracy of LAG GGA for bulk systems.

Because the correlation energy density of the Airy gas
was unknown, the LAG GGA and AM05 GGA used in their
construction only the Airy-gas exchange energy density. In
this paper we compute the correlation energy density of the
Airy gas in the RPA and fit it to a GGA �Airy-gas RPA or
ARPA GGA�. As in Refs. 13 and 14, our fit is made without
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regard to exact constraints on Exc�n↑ ,n↓�. The Airy gas is a
system of delocalized electrons where the self-interaction
correction has no effect and where the GGA correction18 to
the integrated RPA energy should be accurate. Our func-
tional, including this GGA correction to RPA, will be called
ARPA+.

Unlike energies, energy densities of nonuniform systems
are not unique. It is not clear to us that the conventional
choice for the exchange-correlation energy density �made in
Refs. 13 and 14 and here� is optimal. It is not our intention
here to either endorse or criticize this choice but simply to
see what GGA is obtained from the Airy-gas reference sys-
tem within a consistent implementation for correlation as
well as exchange.

AM05, PBEsol, and ARPA+ are of special interest as
candidates for a “GGA for solids” providing better lattice
constants and surface energies than standard GGA’s such as
PBE, possibly at the cost of a worsened description of atoms
and molecules. There have been several recent papers com-
menting on or testing for solids the LAG, AM05, and PBEsol
GGAs.20–24

Our paper is organized as follows. In Sec. II, we propose
a simple model for the Airy gas. In Sec. III, we construct the
ARPA+GGA xc energy functional from our Airy-gas model.
In Sec. IV we test the ARPA+GGA for atoms, molecules,
jellium surfaces, and bulk solids. In Sec. V, we summarize
our conclusions.

II. AIRY-GAS MODEL

The simplest example of an edge electron gas is the Airy
gas that is translationally invariant in the plane of the surface
�z=0� and has the effective potential2,25

vef f�z� = �− Fz , − � � z � L �F � 0�
� , z � L �L/l → �� � . �1�

Here F= �dvef f�z� /dz� is the slope of the effective potential
and the characteristic length scale

l = �2F�−1/3 �2�

is approximately the edge region thickness.2 �Unless other-
wise stated, atomic units are used throughout, i.e., e2=�
=me=1.�

The KS orbitals are � j,k�
�r�=� j�z� 1

	A
eik�r�, where k� and r�

are the wave vector and the position vector parallel to the
plane of the surface, A is the cross-sectional area, and the
orthonormal eigenfunctions � j�z� satisfy the equation


−
1

2

d2

dz2 − Fz − 	 j�� j�z� = 0 �3�

with the boundary conditions

� j�− �� = � j�L� = 0. �4�

They are given by the Airy functions

� j�z� = aAi
−
z

l
−

	 j

	
� , �5�

where 	= �F2 /2�1/3 is the Airy gas characteristic energy scale,
a is the normalization constant, and 	 j is the jth eigenvalue

calculated from the boundary condition � j�L�=0. The Airy-
gas density is

n�z� = �
j

occ

� j
2�z��	 j�/
 . �6�

We recall that all three-dimensional states with energy up to
�=0 are occupied. Thus the Airy gas is completely deter-
mined by the length l and the energy 	.

In the limit L / l→�, the normalization constant is2

a =

1/2

�Ll�1/4 , �7�

and the eigenvalues are2

	 j = − j
 l

L
�1/2


	 . �8�

So, the density of the Airy gas is

n�z� = l−3n0���, � = z/l , �9�

where

n0��� =
1

2



0

�

Ai2��� − ����d��. �10�

Let us consider a model for the Airy gas that is described
by Eqs. �1�–�6� but instead of choosing L / l→� we take
L / l=20 for computational convenience. Such a system has
19 occupied orbitals � j�z� and can accurately describe the
Airy gas. The normalization constants of Eq. �5� and the
eigenvalues 	 j are computed numerically. Such an approach
is similar to jellium slabs that are described by a finite num-
ber of occupied orbitals in the z direction and that can accu-
rately predict the surface energies of semi-infinite jellium
surfaces.26

We select three values F=0.1, F=0.5, and F=1 for the
slope of the effective potential. The accuracy of the model
does not depend on the F value. In Fig. 1 we show the
densities of the Airy gas and of our Airy-gas model for the
chosen values of the slope F. We see the exact Airy-gas
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FIG. 1. Electron density �electrons /bohr3� of the Airy gas and of
our model versus z �bohr� for several slopes of the effective poten-
tial �F=0.1 making l=1.710, F=0.5 making l=1.000, and F=1
making l=0.793�. The edge is at z=0.
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densities and the modeled ones cannot be distinguished until
z�L=20· l where the densities of our model have oscilla-
tions until they vanish.

Important ingredients of any GGA functional are the den-
sity n�r� and the reduced density gradient

s�r� = ��n�r��/�2kF�r�n�r�� , �11�

where kF�r�= �3
2n�r��1/3 is the Fermi wave vector. �The
dimensionless density gradient s�r� measures the variation in
the density over a Fermi wavelength �F=2
 /kF.� In Fig. 2
we compare the reduced gradients of our model and of the
exact Airy gas. Up to s=2, the model nicely matches the
exact Airy gas and it is accurate for any value of s. �We note
that s values bigger than 3 are found in the tail of an atom or
molecule, where the electron density is negligible. We also
note that in most bulk solids the maximum24 value of the
reduced gradient is smaller than 2.� Figures 1 and 2 demon-
strate that our model is accurate and thus we can use it for
the calculation of the Airy-gas correlation energy.

III. RPA CORRELATION ENERGY DENSITY
OF THE AIRY GAS AND THE CONSTRUCTION

OF THE ARPA+GGA

The conventional xc energy density at a point is n	xc,
where n is the local electron density and 	xc is the conven-
tional xc energy per particle. Let us consider the spin-
unpolarized Airy-gas model with the edge plane at z=0. Us-
ing its translational invariance in a plane perpendicular to the
z axis and the so-called adiabatic-connection fluctuation-
dissipation theorem,26–29 the exact expression for the con-
ventional xc energy per particle at point z is26–28

	xc�z� =
1

2
 dq�

�2
�2 dź v�z, ź,q���−
1


n�z�

 
0

1

d�
0

�

d����z, ź;q�,i�� − ��z − ź�� , �12�

where q� is the wave vector parallel to the surface, and ��

and v are the two-dimensional Fourier transforms of the in-
teracting density response function at the coupling strength �
and of the Coulomb potential, respectively. The substitution
of �� with the noninteracting density response function �0

into Eq. �12� yields the exact 	x�z� �expressible in terms of
occupied orbitals only, although �0 also requires the unoccu-
pied orbitals�. The density response function obeys the
screening integral Dyson-type equation30

���r,r�,�� = �0�r,r�,�� + dr1dr2�0�r,r1,��

 �v��r1,r2� + fxc
� �n��r1,r2,������r2,r�,�� ,

�13�

where v��r1 ,r2�=� / �r1−r2� and fxc
� �n��r1 ,r2 ,��

=�vxc
� �n��r1 ,�� /�n�r2 ,�� is the exact xc kernel. Here vxc

� �n�
is the exact frequency-dependent xc potential at coupling
strength �. Obviously, the exact xc kernel is unknown and it
has to be approximated. Approximations of the xc kernel are
usually constructed from the uniform electron gas31–33 and
have not been tested sufficiently for nonuniform systems.
When fxc

� �n��r ,r� ;�� is taken to be zero, Eq. �13� reduces to
the RPA. The RPA xc hole density is exact at large interelec-
tronic separations such that it can correctly describe the xc
hole density of an electron far outside of a jellium surface34

and its on-top hole is finite and well described by the LSDA-
RPA �Ref. 18� on-top hole in the case of a jellium surface.34

Equations �12� and �13� can be generalized35 for systems
with any relative spin polarization

� =
n↑ − n↓

n↑ + n↓
, �14�

where n↑ and n↓ are the spin densities, n↑+n↓=n. Thus for
the Airy-gas model, we choose to calculate the RPA correla-
tion energy per particle at point z, from Eqs. �12� and �13�,
and to add the RPA+ short-range correction,

Exc
RPA+ = Exc

RPA + �Exc
GGA − Exc

GGA-RPA� , �15�

where Exc
GGA is the PBE GGA �Ref. 15� xc energy and

Exc
GGA-RPA is the PBE-RPA GGA xc energy.18 The exchange

contribution and the long-range correlation contribution can-
cel out of the bracketed term in Eq. �15�, leaving only short-
range correlation. Because the self-interaction correction is
not important for the Airy gas, Eq. �15� will give nearly the
exact correlation energy of the Airy gas.

For the numerical evaluation of Eqs. �12� and �13�, we
follow the method described in Refs. 26 and 36 but instead
of using the double-cosine and single-cosine representations
of the density response function and the density, respectively,
we use a grid on the z axis for ���z , ź ;q� , i�� and n�z�. We
find that the first 50 unoccupied orbitals � j�z� are enough for
an accurate calculation. �Our grid on the z axis can accu-
rately describe the occupied and the first 50 unoccupied
orbitals37�.

The exchange energy for a spin-polarized system may be
evaluated from the spin-unpolarized version using the spin-
scaling relation,38
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FIG. 2. Reduced gradient s�z� versus z, of the Airy gas and our
model, for several slopes of the effective potential �F=0.1, 0.5, and
1.� The edge is at z=0.
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Ex�n↑,n↓� =
1

2
�Ex�2n↑� + Ex�2n↓�� , �16�

and thus we only need to consider the spin-unpolarized case.
We fit the exchange energy per particle of the Airy-gas
model, using the nonlinear least-square Levenberg-
Marquardt method39 with the following expression:

	x
A�n�r�� = 	x

LSDA�n�r��Fx
A�s�r�� , �17�

where 	x
LSDA=−3kF /4
 and the enhancement factor is

Fx
A =

a1sa2

�1 + a3sa2�a4
+

1 − a5sa6 + a7sa8

1 + a9sa10
, �18�

where a1=0.041106, a2=2.626712, a3=0.092070, and a4
=0.657946 are the parameters found in Ref. 13 and a5
=133.983631, a6=3.217063, a7=136.707378, a8=3.223476,
a9=2.675484, and a10=3.473804 are parameters found from
our fitting procedure. Equation �17� recovers the correct
LSDA for the uniform electron gas and fits well the Airy-gas
exchange energy per particle for s�20. �Values of s bigger
than 20 are found only when the density is negligible. We
recall that the local Airy approximation or LAA GGA of Ref.
14 is a better fit than LAG or 	x

A far outside the edge.�
In Fig. 3 we show �	x−	x

LSDA� /	x versus the reduced gra-
dient s for several approximations. The Airy-gas curve as
well as our Airy-gas model curve have a negative region
around s�0.5 that was not taken into account by the LAG
GGA and AM05 GGA. We find this fine feature only because
we plot �	x−	x

LSDA� /	x instead of 	x. �This feature can also be
seen in the inset of Fig. 1 of Ref. 14 but it was not taken into
account in the construction of AM05.� The second term on
the right-hand side of Eq. �18� models the exact behavior at
small reduced gradients, whereas the first term on the right-
hand side of Eq. �18� has the same form as the parametriza-
tion proposed in Ref. 13. We observe that our fit �Eqs. �17�
and �18�� is very close to the exact Airy-gas model as well as
to the exact Airy-gas exchange energy per particle.

We fit the RPA correlation energy per particle of the Airy
gas of any spin polarization with the following expression,
using again the nonlinear least-square Levenberg-Marquardt
method39

	c
ARPA�rs,�,sc� = 	c

LSDA-RPA�rs,��Fc�sc� , �19�

where rs is the local Wigner-Seitz radius �n=3 / �4
rs
3�

=kF
3 /3
2�, � is the relative spin polarization of Eq. �14�,

	c
LSDA-RPA is the RPA correlation energy per particle of the

uniform electron gas �see Ref. 40�, and

sc�r� = ���n�r��/�2�3
2�1/3n�r�7.9/6� �20�

with �= ��1+��2/3+ �1−��2/3� /2 being a spin-scaling factor.
The correlation enhancement factor is

Fc =
1 + b1sc

3 + b2sc
4

1 + b3sc
3 + b4sc

4 �21�

with b1=1.01453936, b2=0.3255243, b3=0.941597104, and
b4=0.587664306. Equation �21� is a simple Padé approxima-
tion that recovers the RPA behavior of the uniform electron
gas when sc=0. All the parameters were found by the fitting
procedure and not by constraints on the integrated correla-
tion energy �which would suggest15 an exponent of 7/6 and
the appearance of � in the denominator of Eq. �20� and a
quadratic term in the small-gradient expansion of Eq. �21��.
The irrelevance of some standard constraints may be related
to the absence41 of a second-order gradient expansion for the
conventional correlation energy density. Given F, 	c

RPA is a
function of z, and sc is a monotonic �hence invertible� func-
tion of z, so 	c

RPA can be expressed as a function of sc. Since
there is a one-to-one correspondence between the 	c

RPA and
our 	c

ARPA, we can do the fitting. The fitting was done for sc
between 0 and 20.

In Figs. 4 and 5 we show �	c−	c
LSDA-RPA� /	c versus sc for

the spin-unpolarized Airy-gas model ��=0� and fully spin-
polarized Airy-gas model ��=1�, respectively, for the slopes
of the effective potential used in Figs. 1 and 2 �F=0.1, 0.5,
and 1�. We note that our numerical calculation is accurate for
sc� �0.3, see Ref. 37. We see in both figures that the nu-
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merical RPA correlation energy density does not depend
much on the slope value F when plotted against sc, motivat-
ing our definition of sc in Eq. �20� and making the
fit of the RPA correlation energy per particle independent
of the F value42 �see Eqs. �19� and �21��. For sc�0.5 the
ARPA of Eq. �19� is close to exact even if it does not match
well the detailed numerical behavior, as it does in the region
0.5�sc�10.

Overall we consider

	xc
ARPA = 	x

A + 	c
ARPA �22�

an xc GGA functional that fits very well the Airy-gas RPA xc
energy density. Thus making the RPA+ short-range correc-
tion �see Eq. �15�� to ARPA GGA, we propose the following
GGA xc functional �ARPA+GGA� constructed from the
Airy gas

	xc
ARPA+ = 	xc

ARPA + �	c
PBE − 	c

PBE-RPA� . �23�

The nonlocality of a GGA is displayed by the enhance-
ment factor43,44

Fxc
GGA =

	xc
GGA�n↑,n↓,�n↑,�n↓�

	x
unif�n�

, �24�

	x
unif�n� being the exchange energy per particle of a spin-

unpolarized uniform electron gas. For a spin-unpolarized
system in the high-density limit �rs→0�, the exchange en-
ergy is dominant and Eq. �24� defines the exchange enhance-
ment factor Fx

GGA=	x
GGA�n↑ ,n↓ ,�n↑ ,�n↓� /	x

unif�n�. Figures 6
and 7 show the enhancement factor of ARPA+ compared to
PBEsol as a function of the reduced gradient s, for several
values of rs, in the spin-unpolarized case and the fully spin-
polarized case, respectively. In both figures, the ARPA+ and
PBEsol enhancement factors agree well at small gradients
�for s�0.5� but for s�0.5 ARPA+ shows more exchange-
correlation nonlocality than PBEsol at low density, and less
at high density.

Figures 8 and 9 show a comparison between the ARPA
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+GGA and AM05 GGA enhancement factors for the spin-
unpolarized and fully spin-polarized cases. Up to s=0.5,
Fxc

ARPA+�rs ,� ,s� and Fxc
AM05�rs ,� ,s� agree very well. For s

�0.5, Fxc
ARPA+�rs ,� ,s� shows slightly more nonlocality than

Fxc
AM05�rs ,� ,s� and, even if this difference is small, it has

noticeable effects for the lattice constants of bulk solids.
Overall, our ARPA+ confirms the AM05 construction for
correlation.

IV. TESTS OF THE ARPA+GGA
xc ENERGY FUNCTIONAL

In this section we test our functionals for jellium surfaces,
atoms, molecules, and bulk solids. The calculations use the
spin-scaling relation of Eq. �16�.

A. Jellium surfaces

In Fig. 10 we show 	xc
RPA given by Eq. �12�, 	xc

ARPA given
by Eq. �22�, and 	xc

PBE-RPA of Ref. 18 for two thick jellium

slabs of bulk parameters rs=2.07 and rs=4. We use accurate
LSDA orbitals and densities as in Refs. 26, 45, and 46.
ARPA fits well the exact RPA until s�20, showing that the
Airy gas and the jellium surfaces are very close related, as
expected.

In Table I we report the ARPA and ARPA+ jellium sur-
face exchange and xc energies. The �x

ARPA+ are close to but
worse than �x

LAG. The �xc
ARPA are between �xc

RPA and �xc
PBE-RPA

for rs� �3 but lower than both others for rs� �4. The
�xc

ARPA+ are reasonably close to �xc
LSDA and �xc

DMC �see Ref. 48�
but are surprisingly lower and less accurate than �xc

LSDA.

B. Spherical atoms

In Table II we calculate the ARPA+ exchange and corre-
lation energies of several atoms and ions. We use spin-
restricted analytic Hartree-Fock orbitals51 and densities. �The
difference between Hartree-Fock orbitals and Kohn-Sham

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 0.5 1 1.5 2 2.5 3

F
x
c(

r s
,ζ

=
1

,s
)

s

ζ=1

rs=1
rs=2
rs=5

rs=20

FIG. 9. Comparison of Fxc
ARPA+�rs ,�=1,s� �shown with thin

lines� and Fxc
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FIG. 10. RPA exchange-correlation energy �hartree� per particle
	xc at position z versus z /�F at surfaces of two jellium slabs. The
bulk parameters are rs=2.07 and rs=4. Both jellium slabs have the
width d=3.2�F. The edges of the positive background are at z=0.
The differences at large z, emphasized here by plotting 	xc instead
of n	xc, are not important for the surface energy.

TABLE I. Jellium surface exchange and exchange-correlation
energies �erg /cm2� for LSDA, PBE, and ARPA+ in and beyond the
random-phase approximation. We also show the jellium surface ex-
change and exchange-correlation energies beyond RPA for LAG
GGA, AM05 GGA, PBEsol GGA, and TPSS meta-GGA of Ref. 47.
The exact values of �x

exact and �xc
RPA are from Ref. 26 and the fixed-

node diffusion Monte Carlo �DMC� �xc
DMC values are interpolations

and extrapolations of the estimates of Ref. 48 �see Table 2 of Ref.
49�. To interpolate or extrapolate rs we recommend Eq. �15� of Ref.
50. �1 hartree /bohr2=1.557106 erg /cm2�.

rs 2 3 4 6

�x
LSDA 3036 669 222 43.6

�x
PBE 2436 465 128 11.8

�x
PBEsol 2666 540 162 22.9

�x
TPSS 2553 498 141 15.4

�x
LAG 2908 619 198 34.3

�x
LAA 2896 615 196 33.6

�x
AM05 2934 627 201 35.4

�x
ARPA+ 2941 626 199 34.6

�x
exact 2624 526 157 22

�xc
LSD-RPA 3403 781 269 56

�xc
PBE-RPA 3318 760 262 55

�xc
ARPA 3366 764 260 53

�xc
RPA 3467 801 278 58

�xc
LSDA 3354 764 261 53

�xc
PBE 3265 741 252 52

�xc
PBEsol 3374 774 267 56

�xc
TPSS 3380 772 266 55

�xc
LAG 3226 714 237 43.7

�xc
AM05 3414 782 270 56.7

�xc
ARPA+ 3313 745 250 50

�xc
RPA+ 3413 781 268 54

�xc
DMC 3392�50 768�10 261�8 52.5� . . .
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orbitals is small for atoms.� For every atom and ion of Table
II, ARPA+GGA improves the LSDA results but it is still a
poor approximation in comparison with GGA’s constructed
for atoms and molecules, such as PBE GGA.3,15

In Table III we show the xc contribution to the valence-
shell removal energy �a quantity that can be accurately mea-
sured experimentally44� of three atoms �Li, Be, and Ne�. We
observe that the ARPA+ systematically improves the LSDA
results, competing in accuracy with the PBE GGA.

C. Atomization energies of molecules

The AE6 test set53 of atomization energies of molecules
has only six molecules �SiH4, SiO, S2, C3H4, C2H2O2, and
C4H8� and was constructed to reproduce the errors of density
functionals for larger molecular sets, providing a quick but
representative evaluation of the accuracy of density function-
als for molecules. In Table IV we show the errors �in kcal/
mol� of the AE6 atomization energies for ARPA+GGA,
ARPA GGA, PBE GGA, PBEsol GGA, and AM05 GGA.
The errors given by ARPA+GGA and ARPA GGA are prac-
tically the same, in accord with the work of Ref. 18, and
show that the RPA+ short-range correction does not have an
important effect on the atomization energies of molecules.

Although our GGA short-range correction to RPA is impor-
tant for total energies, it tends to cancel out of energy differ-
ences for processes in which the electron number remains
unchanged �as in Tables I and IV but not Tables II and III�.
The accuracy of the ARPA+ for the AE6 test is close to that
of PBEsol with both reducing the LSDA error by more than
a factor of 2.

While our ARPA overbinds molecules �and this overbind-
ing is only slightly reduced in ARPA+�, the full RPA appar-
ently underbinds molecules.55 Thus, even at the RPA level,
the Airy-gas xc energy density does not seem to transfer very
accurately to molecules: much better atomization energies
are predicted by standard functionals such as the PBE
GGA15 or the TPSS meta-GGA.47 GGA overbinding of mol-
ecules typically goes together with GGA underestimation of
the magnitude of the exchange-correlation energy of an
atom, which we found for LSDA and ARPA+ but not so
much for PBE in Table II.

D. Equilibrium lattice constants of solids

In Table V we test the ARPA+GGA for a simple metal
�Na�, a semiconductor �Si�, a transition metal �Cu�, and an
ionic solid �NaCl�. The ARPA+GGA lattice constants are
longer than the PBEsol ones, but shorter than the PBE val-
ues, except for NaCl where ARPA+ is close to PBE. These
trends are plausible from the enhancement factors plotted in
Figs. 6 and 7, and the maximum s values reported in Ref. 24.
These calculations also suggest that the correct second-order
gradient expansion for exchange,57 employed in the con-
struction of the PBEsol GGA, is the most promising path
toward an accurate and nonempirical GGA for solids.

The GAUSSIAN03 code that we use gives lattice constants
that are on average a little too long.24 The LSDA lattice
constants calculated with the more accurate WIEN2K code

TABLE II. Exchange and correlation energies �in hartrees� of several spherical atoms and ions with
spin-restricted Hartree-Fock orbitals and densities �Ref. 51�. Exact correlation energies are from Ref. 52. PBE
GGA, not shown in the table, has the mean absolute errors �MAEs�: 0.0476 for exchange and 0.01563 for
correlation. �See also Table 5 of Ref. 44.�

Ex
LSDA Ex

ARPA+ Ex
HF Ec

LSDA Ec
ARPA+ Ec

exact

H −0.268 −0.280 −0.313 −0.0222 −0.0199 0

He −0.884 −0.925 −1.026 −0.1125 −0.1030 −0.0420

Li+ −1.421 −1.486 −1.652 −0.1346 −0.1233 −0.0435

Be2+ −1.957 −2.047 −2.277 −0.1504 −0.1378 −0.0443

Li −1.538 −1.603 −1.781 −0.1508 −0.1378 −0.0453

Be+ −2.168 −2.261 −2.507 −0.1727 −0.1578 −0.0474

Be −2.312 −2.408 −2.667 −0.2240 −0.2058 −0.0943

B+ −3.036 −3.157 −3.492 −0.2520 −0.2317 −0.1113

Ne6+ −6.634 −6.886 −7.594 −0.3336 −0.3069 −0.1799

N −5.893 −6.047 −6.596 −0.4273 −0.4016 −0.1883

Ne −11.033 −11.220 −12.109 −0.7428 −0.7084 −0.3905

Ar −27.863 −28.118 −30.190 −1.4242 −1.3723 −0.7222

MAE 0.600 0.481 0.1865 0.1664

TABLE III. Change in xc energy �hartree� of an atom due to
removal of a shell of valence electrons ��Exc=Exc

atom−Exc
ion�. The

calculation is based on the exchange and correlation energies listed
in Table II of this work and in Table VI of Ref. 44.

�Exc
LSDA �Exc

ARPA+ �Exc
PBE �Exc

exact

Li→Li+ −0.133 −0.132 −0.138 −0.131

Be→Be+2 −0.429 −0.430 −0.438 −0.440

Ne→Ne+6 −4.808 −4.737 −4.793 −4.726
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are:58 Na 4.047, Si 5.407, Cu 3.522, and NaCl 5.465. Thus,
extensive and more accurate lattice constants calculations
need to be performed for our ARPA+.

V. CONCLUSIONS

In this paper we construct the RPA correlation energy
density of the Airy gas, using an accurate Airy-gas model
that has only 19 occupied orbitals. This approach can be
generalized to other physical systems, such as a more sophis-
ticated edge electron gas that can include curvature correc-
tions �arising from nonlinearity of vef f�z��.

We have constructed the ARPA GGA that accurately fits
the RPA xc energy density of the Airy gas and we have
corrected its short-range part in the framework of the RPA
+ 18 approach, developing the ARPA+GGA entirely without
empiricism. Because of the delocalization of the electrons in
the Airy gas, our ARPA+GGA has nearly the correct Airy-
gas correlation energy. Via Figs. 8 and 9, our ARPA+ con-
firms the AM05 hypothesis14 for the correlation functional
compatible with Airy-gas GGA exchange.13,14

By testing the ARPA+GGA for jellium surfaces, atoms,
molecules, and bulk solids, we observe that the xc energy

density of the Airy gas can be transferred successfully to a
very similar system such as the jellium surface but less suc-
cessfully to a very different system such as a bulk solid, an
atom, or a molecule. However, the ARPA+GGA mildly im-
proves the LSDA results for lattice constants and atomization
energies, without much worsening the already good surface
exchange-correlation energies.

We would have liked to replace the RPA+ method by the
more sophisticated inhomogeneous Singwi-Tosi-Land-
Sjőlander �ISTLS� �Refs. 49 and 59� but were not able to
achieve sufficiently accurate numerical results for the corre-
lation energy densities thereof. The future use of ISTLS
could refine our input and provide an energy density �not just
an integrated energy� for the short-range correction to RPA.
Other possible future refinements could include the use of
different reference systems for the bulk and surface of a
solid,14,19 replacing the Airy gas by a more sophisticated ex-
ample of the edge electron gas, or replacing the GGA func-
tional form by the meta-GGA.47 We suspect21,54 that the
meta-GGA form is needed to achieve simultaneous high ac-
curacy for atoms, molecules, and solids near equilibrium. In
fact the TPSS meta-GGA47,62 is already close to being such a
general-purpose semilocal functional and a revised TPSS
�Ref. 54� with improved lattice constants may be even closer.

TABLE IV. The errors �kcal/mole� of the atomization energies of the AE6 set of molecules. We use the
6–311+G�3df ,2p� basis set in the GAUSSIAN03 code. The AM05 atomization energies of the AE6 set of
molecules were calculated in Ref. 54, using the spin-polarized version of AM05 given in Ref. 17. The LSDA
mean error �ME� is 77.3 kcal/mole and its MAE is 77.3 kcal/mole �Ref. 16�. The TPSS meta-GGA of Ref. 47
gives ME=4.2 kcal /mole, and MAE=6.0 kcal /mole. The AE6 mean atomization energy is 517 kcal/mole.
�1 hartree=627.5 kcal /mole.� �For ARPA+ and ARPA, we used PBEsol densities.�

PBE ARPA+ ARPA PBEsol AM05

SiH4 −9.2 10.1 9.9 1.3 7.6

SiO 3.6 11.2 12.3 12.9 13.5

S2 13.1 18.4 19.2 21.9 21.6

C3H4 16.4 46.0 50.6 45.1 48.1

C2H2O2 31.8 60.1 65.7 64.7 66.6

C4H8 18.7 70.6 78.7 69.6 75.0

ME 12.4 36.1 39.4 35.9 38.7

MAE 15.5 36.1 39.4 35.9 38.7

TABLE V. Lattice constants �in Å� calculated with the GAUSSIAN03 code as in Ref. 16 and compared to
experimental values corrected to the static-lattice limit �Refs. 16 and 56�. �For ARPA+, we used PBEsol
densities.�

Solid LSDA PBE PBEsol ARPA+ Exper.

Na 4.049 4.199 4.159 4.207 4.210

Si 5.410 5.479 5.442 5.470 5.423

Cu 3.530 3.635 3.578 3.605 3.596

NaCl 5.471 5.696 5.611 5.716 5.580

ME −0.087 0.050 −0.005 0.045

MAE 0.087 0.056 0.030 0.049
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We note however that there are two formally unsatisfac-
tory aspects of using the exchange-correlation energy density
of a nonuniform system as a reference for the construction of
density functionals: �1� except in the uniform electron gas,
the energy density is neither observable nor unique since any
function integrating to zero can be added to it with no physi-
cal consequence. Here, as in Refs. 13, 14, 41, 60, and 61, we
have chosen the conventional62 gauge for the energy density
but other choices should be explored. �2� While the inte-
grated exchange energy for a slowly varying density is ex-
pressible in terms of the GGA ingredients n and �n, the
conventional exchange energy density in this limit is not so
expressible, having a Laplacian term �2n2/3 which integrates
to zero but has a divergent coefficient.19,63 As a result, the
Airy-gas GGA cannot predict accurate exchange energies for
slowly varying electron densities �e.g., the jellium surface
exchange energy� while more standardly constructed GGAs-
like PBEsol can do so16 �our Table I�. The Airy-gas GGA can

at best work for the jellium surface by error cancellation
between exchange and correlation, which is possible for typi-
cal valence-electron densities but not under uniform density
scaling to the high-density limit where exchange dominates.

The GGA constructed here has no clear practical advan-
tage over already published ones. Our purpose is not to ad-
vocate its use but to show what is obtained from the Airy-gas
reference system within a consistent implementation for cor-
relation as well as exchange.
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