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We study in detail out-of-plane losses of photonic crystal membranes located at optical distance above a
substrate by using approximate and rigorous methods. We reveal a resonance mechanism in the air gap,
separating membrane and substrate being responsible for a nonmonotonic loss dependence on wavelength and
gap width. We show that by taking advantage of this effect and by carefully adjusting the gap width, the losses
can be even lesser than those for an isolated membrane.
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I. INTRODUCTION

Photonic crystals �PhCs� with their ability to control the
light propagation to a large extent have attracted a great deal
of interest in the past decade. With the advances in semicon-
ductor microstructuring technology driven by microelectron-
ics, the fabrication of integrated optical circuits and PhCs in
semiconductors has reached a rather mature level. PhC ge-
ometries particularly well adapted to this wafer-based tech-
nology are slab based,1 i.e., the vertical light confinement is
achieved in a slab waveguide utilizing total internal reflec-
tion �TIR�. Recently, there was some emphasis on nonlinear
interactions in semiconductor PhCs, as the Kerr effect,
carrier-induced index changes, or thermo-optic effects.2–6

The recent advances in fabricating high-index contrast mi-
crostructures in lithium niobate7–12 �LiNbO3� made slab-
based PhCs available in this material system with a large
quadratic nonlinearity. This renewed attention toward qua-
dratically nonlinear interactions in two-dimensional �2D�
PhCs led to recent theoretical as well as experimental inves-
tigations of optical parametric interactions13–17 and the
electro-optic tunability of the linear properties.11,18,19 Particu-
larly interesting is the feasibility of fabricating periodically
patterned thin membranes of lithium niobate12 which pro-
vides the benefits associated with the strong vertical guid-
ance. However, since the membrane is usually produced by
underetching of a thicker wafer, it is usually suspended over
a substrate of the same material, separated from it via an air
gap of a certain width.

Since the strength of nonlinear effects depends on the
magnitude of the electric field, the control of losses plays a
critical role for nonlinear PhCs. One feature of slab-based
PhCs is the radiation loss to the substrate for operation inside
the lightcone,1,20 even in ideal structures. In a symmetric
homogeneous slab waveguide, the fundamental TE and TM
waveguide modes have no cut off, i.e., they are truly guided
by TIR �they are outside the lightcone of the surrounding
medium� and lossless for all frequencies �in absorptionless
media�. However, if this membrane is brought into optical
proximity to a �virtually infinitely� thick substrate of the
same material, light can tunnel through the respective air gap
and the waveguide modes become leaky leading to propaga-
tion losses. This loss monotonically increases with decreas-
ing distance to the substrate.

For the Bloch modes of the PhC slab the situation is dif-
ferent. Due to interaction with lattice vectors from the in-
plane reciprocal lattice, the original wave vector of the truly
guided waveguide mode may be backfolded to much smaller
wavevectors inside the lightcone whose associated plane
waves violate the TIR condition. This leads to radiative �out-
of-plane� losses of the respective Bloch modes, even without
the close proximity of a substrate. On the other hand, these
radiative parts can be backreflected by a properly placed sub-
strate, which was already utilized for reducing the losses in
PhC slabs.21–24 To enhance the reflectivity, layered substrates
exhibiting Bragg reflection were used leading to a kind of
antiresonant reflecting optical waveguide25 in the vertical di-
rection. However, the frequency dependence of the propaga-
tion losses and the actual dependence on the air-gap width
were not yet systematically investigated and thus no optimi-
zation strategy has been derived. In layered semiconductor
heterostructures though, where the index contrast between
consecutive layers is small, the design of the complete ver-
tical layer system was systematically studied26 to obtain an
optimal confinement strength in the guiding layer for mini-
mum radiation losses. But the mechanisms employed there
are completely different from our approach using a fixed
membrane height and a reflecting substrate, as they rely on
the fact that a flatter mode profile in a thick core layer may
reduce the radiation loss.

In this contribution, we present an approximate method
for obtaining the out-of-plane propagation losses in PhC
slabs from standard numerical methods and check its validity
against well-known results. Then, using this scheme we in-
vestigate the dependence of the loss spectrum on the air-gap
width between a LiNbO3 membrane and the LiNbO3 sub-
strate because this structure is readily available with current
technology and the width of the gap is a technologically
critical point. Depending on the actual PhC structure, we
optimize the thickness of the air gap for loss minimization.

Different methods for obtaining the loss spectrum for
propagation of butt-coupled light in PhCs were proposed.
The finite-difference time-domain �FDTD� method,27 one of
the most popular methods for simulating light propagation in
photonic devices, has been widely used to obtain transmis-
sion spectra.28–34 For that purpose, the spectrally resolved
fluxes of the time-averaged Poynting vector at the output and
the input are set in relation to each other. To obtain the pure
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propagation loss spectrum without parasitic Fabry-Pérot
ripples caused by reflections at the end of the computational
window, different means of terminating it were proposed.35,36

However, for slow light, which is an important aspect of
using PhC waveguides, avoiding reflections becomes in-
creasingly difficult. Furthermore, isolating a particular mode
of a multimode waveguide is relatively complicated as the
excitation must match the modal cross section over a wide
spectral range. One multistep solution for obtaining losses
for higher-order modes at a previously fixed frequency with
the FDTD method is described in Ref. 31, where the com-
plete field of a multimode excitation is projected onto the
�previously determined� fields of the individual modes at this
frequency for different propagation lengths.

A method where these problems do not arise is the Fourier
modal method, where the complex Bloch vector in propaga-
tion direction for all individual waveguide modes is obtained
for a given frequency.37 As the imaginary part of this Bloch
vector describes the attenuation of the Bloch mode in propa-
gation direction, it is a direct measure for the propagation
losses. However, this method requires the solution of a large
generalized eigenvalue problem. Another method that calcu-
lates the complex Bloch vector based on finite differences is
given in Ref. 38. A very efficient perturbative method based
on the expansion of the fields by means of the modes of the
unstructured slab waveguide was proposed in Ref. 39. It cal-
culates the band structure, i.e., the complex frequency for a
given real Bloch vector of PhC slabs at low computational
costs. Also, standard methods, such as the finite-element
method �FEM� �Ref. 40� or the finite-difference frequency-
domain method,41 give the complex frequency for a fixed
real Bloch vector instead of a complex component of the
Bloch vector for a real frequency. The formula for calculat-
ing the propagation losses from the complex eigenfrequency
in PhCs �Refs. 42–45� was originally used for laser
cavities,46,47 where the cavity was assumed to be a longitu-
dinally homogeneous waveguide. However, there is no
proper derivation for periodic structures. Therefore, it is the
aim of this paper to introduce a perturbation approach that
allows us to readily obtain the imaginary part of the Bloch
vector in a given direction from this complex frequency and
to subsequently evaluate and minimize the propagation
losses.

The rest of the paper is structured as follows. In Sec. II
the perturbation approach for obtaining the propagation loss
is presented. The radiation-induced losses for a W1 wave-
guide in a silicon membrane are calculated and verified by
means of previously published results. In Sec. III we formu-
late an antiresonance condition for obtaining maximum back
reflection of radiation leaving the membrane. Using the dis-
persion relation of a W1 waveguide in a LiNbO3 membrane,
we propose frequency regions of lowest radiation losses for
different gap widths. In Sec. IV the loss spectra for a W1
waveguide in a LiNbO3 membrane are calculated by means
of the presented perturbation method in dependence on the
air-gap width. These are compared to the results obtained
from the antiresonance condition. Finally we conclude the
paper.

II. PERTURBATION THEORY FOR CALCULATION
OF PROPAGATION LOSSES

The subject of the following analysis are the eigenmodes
of a 2D or one-dimensional periodic photonic crystal slab,1

where the guidance in the vertical direction �z� is provided
by TIR of a slab waveguide structure. Using the Bloch theo-
rem, the eigenmodes of this system can be written in the time
domain as

E�r,t� =
1

2
enk�r�exp�ık · r�2��exp�− ı�nt� + c.c., �1a�

H�r,t� =
1

2
hnk�r�exp�ık · r�2��exp�− ı�nt� + c.c., �1b�

where enk�r� and hnk�r� are the Bloch amplitudes which are
periodic on the 2D lattice and decay �or possibly leak� into
the z direction, k= �k� ,k�� and r�2�= �r� ,r�� are the 2D Bloch
vector and 2D position in the plane of periodicity, respec-
tively, where � denotes the component in the direction �en-
ergy transport� of propagation and � the component perpen-
dicular to this direction, and n is the band index, i.e., counts
the eigenmodes for fixed k. Due to the missing periodicity in
the vertical direction �z, direction of radiation� no Bloch vec-
tor component can be defined here.

We are interested in the regime inside the lightcone
where, due to the unavoidable coupling to radiation modes
�exceptions due to symmetries may occur48�, no truly guided
modes exist. Instead, the modes can be described in the
leaky-mode picture, where the only modification to Eqs. �1�
is the necessary introduction of complex eigenvalues. Differ-
ent formulations are possible in this case. We deal with the
two most common formulations in the following denoted by
the superscripts “I” and “II.” The first formulation considers
a real 2D Bloch vector k and solves for the complex eigen-
frequency �n=�n�− ı�n /2 with �n� and �n both being real and
positive. As already mentioned, different computational
methods allow for obtaining the eigenvalues �n�k� and the
modal fields. A physical realization would be a cavity of the
size of one unit cell �UC� with the appropriate 2D Bloch
boundary conditions that is uniformly excited and where the
stored energy decays in time proportional to exp�−�nt�. The
second formulation starts from a fixed real frequency and
one real component k� of the Bloch vector and yields an
eigenvalue problem for the complex second component of
the Bloch vector k� =k�+ ı�n /2 �k� and �n are real, and �n is
positive� in Eqs. �1�. Physically this corresponds to a homo-
geneous �Bloch periodic in one dimension only� continuous-
wave �CW� excitation at one facet of the PhC slab along the
� direction, where the guided power decays along the propa-
gation in � direction proportional to exp�−�nr��.

The goal of the perturbation theory derived below is to
obtain a relation between �n and �n which, e.g., permits us to
determine the propagation losses from the complex eigenfre-
quency analysis in a truly Bloch periodic unit cell. In the
case of 2D periodic boundaries, the same amount of energy
W is stored at any moment in the individual unit cells in the
2D plane while the fields homogeneously radiate into the
cladding and/or substrate. Due to this radiative energy loss
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per unit cell given by the flux of the time-averaged Poynting
vector through the top �At� and bottom �Ab� surfaces of one
unit cell

−
dW

dt
= �

At�Ab

dASI · n , �2�

the stored amount of energy decreases exponentially in time,
W�t�=W�0�exp�−�nt�. In Eq. �2�, SI= �E�t��H�t�� is the
time-averaged Poynting vector, where E�t� und H�t� are the
real fields in time domain and n is the �position-dependent�
unit vector normal to the surface pointing away from the
structure. Denoting these complex modal fields �Bloch
modes� by enk

I �r� and hnk
I �r�, we obtain SI=Re�enk

I

� �hnk
I ���exp�−�nt� /2. The superscript I indicates here the

fields in the first formulation, which are 2D Bloch periodic
and decay exponentially in time. The fields enk

I and hnk
I , with

the corresponding complex frequency �n�k�, result from
standard eigenvalue solvers imposing Bloch periodic bound-
ary conditions on the unit cell and open boundaries at the
appropriate faces and solving for the complex eigenfre-
quency.

On the other hand, if a certain Bloch mode is excited with
a CW source at one end of the PhC, the temporal behavior of
the complete field is fixed and nondecaying. Thus the trans-
verse field distribution is a Bloch periodic one �k� is real�.
Since losses still occur due to radiation into the substrate
and/or cladding, the field amplitude decays with increasing
distance from the excitation. The power

Prad�r�� = �
At�Ab

dASII · n �3�

radiated by one unit cell �extension a� in propagation direc-
tion� at position r� leads to an equivalent decrease in the
guided power

P�r�� = �
A�

dASII · n �4�

upon propagation to the next unit cell. Here A� is the unit-cell
cross section �surface normal in direction ��. The superscript
II reminds us that these are the fields obtained for a true CW
time dependence which are �spatially� decaying along r�.
Due to the exponential decay of the fields, the guided power
behaves along propagation as P�ma��= P�0�exp�−m�na��
with �n being the �yet unknown� loss coefficient and m a
positive integer. The energy balance for propagation along
one period a� in propagation direction is now Prad�r��
= P�r���1−exp�−�na���. For �na� �1, we further obtain

Prad�r�� 	 �na�P�r�� . �5�

In order to establish a relation between these two physi-
cally different settings and the respective decay constants �n
and �n, we assume that the complex Bloch fields �enk

I ,hnk
I �

and �enk
II ,hnk

II � do not differ substantially meaning that the
radiated powers per unit cell �right-hand side of Eqs. �2� and
�3�� are equal. Hence, together with Eq. �5� we obtain
�na�P�r� =0�=�nW�t=0�. The relation between the power
guided in a certain direction �here �� averaged over one unit

cell with period a� in the propagation direction and the total
electromagnetic energy in this unit cell is given by the group
velocity in the respective direction49

vg� =

1

2
�

UC
d3r Re�enk�r� � hnk

� �r���

1

4
�

UC
d3r��0��r�
enk�r�
2 + �0
hnk�r�
2�

. �6�

From Ref. 50 the numerator is a�P�r� =0�. The denominator
is W�t=0�. With the previous assumption that the Bloch am-
plitudes in both formulations do not substantially differ, we
finally obtain

�n =
1

vg�

�n =
2

vg�

Im �n�k� , �7�

or, using the definition of the quality factor Qn=�n� /�n of a
cavity, �n=�n� /Qnvg�.

In practice, however, the mode solver provides the com-
plete modal fields enk�r� and hnk�r�, and usually Eq. �6� is
directly used to compute the group velocity instead of calcu-
lating the first derivative ��� /�k� of the dispersion relation.
This also means that the propagation losses can be obtained
by exclusively solving the eigenvalue problem for one Bloch
vector alone. We used a commercial FEM solver �COMSOL
Multiphysics by COMSOL AB, http://www.comsol.com/� to
calculate the complex eigenfrequencies for one unit cell with
periodic boundary conditions in the plane and perfectly
matched layer �PML� boundary conditions in the vertical di-
rection in order to allow the radiation to leave the finite com-
putational domain without reflection. For the case of PhC
line defect waveguides, where only periodicity in one dimen-
sion is left, we used PML boundaries also in the in-plane
direction perpendicular to the waveguide. In order to reduce
the computational cost, we utilized the mirror symmetry of
the waveguide system with respect to the plane y=0. For the
pure membrane also the mirror symmetry around z=0 can be
exploited gaining another factor of 2.

Now we are going to evaluate the performance of this
approximation in calculating the loss spectrum and compar-
ing it with the results of Ref. 43. To this end we use the same
sample, namely, a W1 waveguide in a silicon PhC mem-
brane, as shown in Fig. 1. Line-defect PhC waveguides are
primary components of PhC circuits, since they allow for
unusual optical properties such as tuning of the dispersion to
a wide extent.51–53 With the current fabrication technology,
air hole structures in a dielectric background are most com-
monly experimentally investigated. Such periodic structures
favor TE bandgaps in genuine 2D systems and bandgaps for
TE-like light in PhC membranes.1 For the fundamental mode
of the slab waveguide TE-like means here that the �vectorial�
electric field is even with respect to the mirror-symmetry
plane z=0 in the center of the membrane. For higher-order
slab modes, this parity of TE-like and TM-like can change.48

Since we are only interested in thin slabs which are single
mode in the frequency range of interest, higher-order slab
modes can be disregarded here. In the following, we will
focus on a hexagonal lattice of circular air holes because it
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usually yields the largest bandgaps �for TE-like light�.
Hence, we restrict the following analysis to TE-like light. A
W1 defect waveguide is introduced by omitting one row of
holes in �K direction.

A major issue with these waveguides is lightcone radia-
tion losses, also referred to as intrinsic diffraction losses.
This applies even to ideal structures �no roughness and truly
periodic�. In the following, we calculate the dispersion rela-
tion and the losses of a prototypical system investigated in
Ref. 43. The results are compared to those obtained with the
guided-mode expansion �GME� method introduced in this
reference.

The structure investigated is a W1 waveguide in a pat-
terned silicon membrane �without substrate� with a dielectric
constant �=12 and a thickness d=0.3a, where a is the lattice
constant of the hexagonal air hole lattice and r=0.36a is the
hole radius. For the infinite purely periodic PhC membrane,
this leads to a photonic bandgap for TE-like modes in the
frequency region 0.326	��a /2
c	0.456, where due to the
relatively small thickness d	� /7 the vertical confinement is
weak.

We utilize the mirror symmetries in the vertical �z� and in
the transverse horizontal �y direction� to reduce the size of
the simulated structure by a factor of 4. Bloch periodic
boundary conditions are used in waveguide �x� direction and
PML boundaries in the y and z directions.

The dispersion relation and the attenuation length L
=1 /�n obtained for this membrane are shown in Fig. 2. Only
the modes which are odd with respect to the mirror plane y
=0 are shown. In the following, we call modes with this
symmetry simply odd modes. The coincidence with the re-
sults obtained by the GME method can clearly be seen in
comparing them with those shown in Figs. 1 and 2�c� in Ref.
43.

III. LOSS DEPENDENCE ON THE AIR-GAP WIDTH

Air suspended PhC membranes are usually fabricated us-
ing undercutting techniques. However, usually the substrate
below the membrane cannot be completely removed because
the membrane needs mechanical support. For certain sys-
tems, e.g., lithium niobate membranes, the width of the re-
sulting air gap between the membrane and the substrate of

the same dielectric is a technologically critical issue. Since
vertical guidance in the slab waveguide is provided by TIR
�high-index membrane�, it is clear that even for unstructured
membranes there is no ideal confinement if an extended
high-index substrate is located in close proximity to the
waveguide. In the resulting air gap, the waves are still eva-
nescent but are of radiating nature in the substrate. Hence,
the air gap is merely a tunneling barrier for the light which
allows for energy transport off the waveguide. These
quasiguided modes can be conveniently described in the
leaky-mode picture, where radiation losses lead to a complex
propagation constant. Since no resonances are possible for
evanescent waves in the air gap, the losses of the fundamen-
tal mode of the unstructured waveguide monotonically in-
crease with decreasing air-gap width.

On the other hand, in the periodically structured mem-
brane, intrinsically guided modes of the unstructured slab
can couple via reciprocal-lattice vectors to radiation modes
of the free space �lightcone region�. In contrast to the decay-
ing evanescent fields, this radiation traverses the air gap
without attenuation, is partially reflected at the substrate in-
terface, and is partially penetrating into the substrate, where
it is ultimately lost. Due to its oscillating nature in the air
gap, however, resonance features, depending on the ratio of
oscillation period and gap width, are expected. Hence, for a
given wavelength, the dependence of the loss on the air-gap
width should be nonmonotonic. Similar to a Fabry-Pérot cav-
ity, the best transmission of the radiation through the gap is
expected for a gap width corresponding to multiples of

 /kz=�z /2 ��z is the wavelength of the oscillations in the z
direction�, whereas odd multiples of �z /4 should give maxi-
mum reflection and, hence, minimum radiation losses of the
PhC component. This physical mechanism was utilized in
earlier designs22–24 but not systematically investigated.

In the following, we explore in detail the influence of the
�anti�resonant reflection mechanism by calculating the losses
of a W1 waveguide in a realistic lithium niobate PhC varying
the air-gap width. First we estimate the air-gap width for
achieving antiresonance, which should eventually lead to
minimum PhC slab losses. Resonant coupling of a Bloch
mode with Bloch vector k from the first Brillouin zone �BZ�
to radiation in the air region with three-dimensional wave
vector �k+G ,kz� occurs for frequencies for which a

FIG. 1. �Color online� A W1 waveguide in a PhC membrane
suspended at a finite distance over a dielectric substrate and the
coordinate system used.
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W1 waveguide decribed in the text. Here and in the following, the
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reciprocal-lattice vector G exists, such that the free space
dispersion relation

���

c
�2

�gap = �k + G�2 + kz
2 �8�

is fulfilled. Obviously, this can only happen for frequencies
above the gap light line ��� 
k
c /�gap. The condition for
antiresonance is kzd=m
 /2 with m being an odd integer,
whereas, for resonance m is even. d is the air-gap width.
Finally we obtain

d

a
=

m

4

1

2�gap − �K + G̃�2
, �9�

where again we have resonance if m is even and antireso-
nance if m is odd. Here �gap is the dielectric function of the
gap region �usually 1 for air�, K=ka /2
 the normalized

Bloch vector, G̃=Ga /2
 the normalized reciprocal-lattice
vector, and =��a /2
c=a /� the normalized �real part of
the� frequency.

We assume a membrane of a normalized width h /a
=0.8333 and a hole radius of the hexagonal lattice of r /a
=0.3167. We approximate the uniaxial medium as disper-
sionless and isotropic with �=4.888521 because the small
shifts in the dispersion relation caused by the birefringence
are beyond the scope of our investigation. However, when a
definite design for phase-sensitive effects is needed, the bi-
refringence and material dispersion can be easily taken into
account.17 The W1 waveguide is investigated because of its
large practical importance. The dispersion relation obtained
from FEM calculations is shown in Fig. 3. From calculations
for different air-gap widths, we find that the vertical asym-
metry introduced by placing the substrate as close as d /a
=0.6 to the membrane leads to relative changes of the real
part of the frequency eigenvalue of at most 0.03% compared
to the pure membrane case. This is in contrast to a layered
PhC film system, where a high-index layer is directly depos-
ited on a substrate of lower index.54 Hence the result for the
pure membrane can be used in the cases with a �not too
close� substrate as well, without introducing a significant er-
ror. Furthermore, in the graphical presentation virtually no
differences will be apparent between the dispersion relations
for different gap widths. Now, according to Eq. �9� the nor-

malized antiresonance width of lowest order �m=1� and for
G=0 can be calculated as a function of the operating fre-
quency. It is depicted in Fig. 3. The normalized vertical de-
cay length is given by

L

a
=

1

a�z
=

1

2


1

�K + G̃�2 − 2�gap

�10�

for evanescent �in z direction� plane-wave components 
K
+G̃
��gap of the field outside the lightcone. Here �z is
the exponential decay constant describing the vertical damp-
ing of the field �exp�−�zz� in the air region. The decay
length, weighted by the fraction of the respective plane-wave
component of the field, is a measure for the losses induced
by nonresonant tunneling into the substrate. To investigate
the interplay of these two effects �tunneling and radiation
through the air gap�, we deal both with the isolated mem-
brane �d=�� and three selected air-gap widths d /a
=0.6,0.8,1.2 marked by symbols in Fig. 3 and correspond-
ing to the antiresonance frequencies =0.449,0.411,0.389,
respectively. Obviously, as long as the waveguide mode has
a substantial fraction of K components in the first BZ K
� �−0.5,0.5�ex, the associated radiation to the substrate
should be best reflected around these given frequencies. Here
ex is the unit vector in x direction �corresponding to the di-
rection of the line defect, �K�. On the other hand, for K
components in higher-order BZs leading to evanescent decay
�positive argument of the square root in Eq. �10�� obviously
the largest frequency yields the fastest decay and, hence, the
weakest energy transport into the substrate via tunneling.

IV. LOSS SPECTRA FOR LINE DEFECT
WAVEGUIDES

To verify the conclusions for the loss dependence on the
air-gap width drawn in the previous section, the losses ob-
tained from FDTD transmission calculations of a W1 wave-
guide of length 68a are depicted in Fig. 4. The PhC cladding
on both sides of the line defect comprised ten rows of holes
�in y direction�. The source for creating the incident field is a
Gaussian pulse with an asymmetric �elliptical� transverse
profile. These exact loss results are compared to the ones
obtained from the frequency eigenvalues via the approximate
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widths. Left: FDTD transmission calculations; right: approximate
model based on FEM eigenmode calculations.
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Formula �7� �see Fig. 4�. The frequency eigenvalues are de-
rived from FEM calculations in the unit cell. Obviously, here
is an excellent agreement between the rigorous and the ap-
proximate method.

It can be seen that the different loss curves intersect,
which is a signature of the nonmonotonic and wavelength-
dependent loss dependence on the air-gap width. In the fre-
quency region around =0.39, the loss for the pure mem-
brane without substrate is significantly larger than for air-gap
widths d=0.8a and d=1.2a. This becomes evident because
for d=1.2a, the antiresonance frequency is =0.389 �see
Fig. 3� leading to a maximum reduction in the loss due to
reflection at the substrate interface. For d=0.8a, this fre-
quency is 0.411 still reducing the loss at =0.39 because the
antiresonances are spectrally relatively broad. Therefore at
=0.411, the case d=0.8a has the minimum losses in full
coincidence with our expectations outlined in the previous
section. Finally, for d=0.6a with an antiresonance frequency
of 0.449, the loss is at least smaller than that for d=0.8a in
the frequency range around 0.44. However, there is no fre-
quency interval where the losses are minimal for d=0.6a.
This is due to the second loss mechanism, the nonresonant
evanescent tunneling through the air-gap, which is strongest
in this case �see the vertical decay length L shown in Fig. 3�.

However, it should be mentioned that the radiation leaves
the system unreflected in the half space above the membrane
due to the missing interface leading to unavoidable losses.
Hence, the losses cannot go below a certain finite limit
caused by that radiation. On the other side, there are obvi-
ously no losses related to evanescent field tunneling into this
area. Thus even for modes comprising only radiative K vec-
tor components, at most, half of the radiation losses can be
avoided by carefully adjusting the substrate.

In conclusion, for frequencies inside the lightcone, the
case d=0.8a exhibits globally the lowest losses, even lower
than the isolated membrane. This is due to the particular field
structure of the waveguide modes with evanescent as well as
radiative parts in the air gap and their different behavior with
respect to the substrate.

The situation changes in a broader waveguide, e.g., a W3.
There we anticipate a less pronounced resonance effect be-
cause the interaction of the field with the periodic structure is
weaker and a smaller fraction of the K components is ex-
pected to be inside the lightcone. Hence, the width depen-
dence of the losses should follow the monotonic behavior for
slab waveguides much more. To investigate the interplay be-
tween evanescent and radiative waves in such a wider wave-
guide, we calculated the propagation losses for the funda-
mental mode in a W3 waveguide for different air-gap widths
from the frequency eigenvalues obtained with the FEM by
means of the approximate method. The dispersion relation
�comprising the branches denoted by the number 1� and the
losses are shown in Fig. 5.

One obvious feature is the low transmission around 
=0.425, which is in stark contrast to the W1 waveguide. This
strong transmission reduction is not related to the two loss
mechanisms discussed previously. It is rather evoked by the
existence of a so-called ministop band �MSB� �Ref. 55–57�
�see Fig. 5, left� that arises as a result of avoided crossing of
the fundamental index guided mode with a gap guided51,57

higher-order mode in the dispersion relation. In this fre-
quency range the guided mode is rejected from the W3
waveguide. As expected, the effect of the reflecting substrate
is much less pronounced leading to a monotonic loss depen-
dence on the air-gap width. For d=0.6a, the loss is substan-
tially increased compared to all other widths for all frequen-
cies. Due to the larger decay length at frequencies around
=0.39, the tunneling losses prevail. Obviously, for the W3
waveguide the conclusion can be drawn that for the funda-
mental mode a larger air-gap width always reduces the
losses, although increasing the width to more than 1.2a does
not significantly help. Because of their experimental rel-
evance, we also investigate the losses of the higher-order
modes as they are also usually excited, in particular, if they
exhibit the same transverse symmetry as the fundamental
mode. In Fig. 6, the loss of the higher-order odd mode �com-
prising the branches denoted by the number 2 in the left part
of Fig. 5� is shown for different air-gap widths. The situation
here resembles more the one of the W1 waveguide because
the interaction of this broader mode with the periodic struc-
ture becomes larger again and, aside from the occurring
larger MSB, out-of-plane losses increase, as already experi-
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FIG. 5. �Color online� Left: Dispersion relation of the modes of
interest; right: Propagation losses for the fundamental mode of a
W3 waveguide as a function of the frequency and for different
air-gap widths. Different lines correspond to Fig. 4. The gray region
in the right graph corresponds to the MSB where the fundamental
mode does not exist and, hence, the loss is undefined.
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FIG. 6. �Color online� Propagation losses of the higher-order
odd mode of the W3 waveguide as a function of the frequency and
for diffrent air-gap widths. The different lines correspond to the
legend given in Fig. 4. The gray region corresponds to the MSB
where this mode does not exist and, hence, the loss is undefined.

ILIEW et al. PHYSICAL REVIEW B 80, 035123 �2009�

035123-6



mentally observed.58 This leads, after a certain propagation
distance, to an effective single-mode behavior as the higher-
order modes suffer significantly larger losses.

V. CONCLUSIONS

We have shown that by carefully adjusting the air gap
between a PhC membrane hosting a W1 waveguide and the
substrate, the out-of-plane losses can be substantially re-
duced even below those of a free-standing membrane. The
physical reason is that these losses are evoked by two effects,
namely, the tunneling into the substrate and the radiation of
backfolded modes into the substrate. In the PhC-substrate
system, the latter effect can be almost suppressed by taking
advantage of the broadband Fabry-Pérot antiresonance con-
dition. The optimization of the structure can be performed by
using an approximate method which is based on the
complex-frequency eigenvalues obtained from FEM calcula-
tions with Bloch periodic in-plane boundary conditions. The

results have been double checked against those obtained by
using the rigorous FDTD method where excellent agreement
could be shown. The method has been applied to the practi-
cally and technologically relevant system of a lithium nio-
bate PhC slab suspended over a lithium niobate substrate.
The reduction effect is less pronounced for wider
waveguides where the tunneling losses are pivotal. The loss
reduction mechanism is not restricted to PhC waveguides.
Instead it may become relevant in designing devices utilizing
unusual dispersion and diffraction phenomena in 2D periodic
PhC membranes or high-Q microresonators in lithium nio-
bate PhC membranes for miniaturized frequency converters.
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