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Multipole decomposition of LDA +U energy and its application to actinide compounds
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A general reformulation of the exchange energy of 5f shell is applied in the analysis of the magnetic
structure of various actinides compounds in the framework of LDA + U method. The calculations are performed
in a convenient scheme with essentially only one free parameter, the screening length. The results are analyzed
in terms of different polarization channels due to different multipoles. Generally it is found that the spin-orbital
polarization is dominating. This can be viewed as a strong enhancement of the spin-orbit coupling in these
systems. This leads to a drastic decrease in spin polarization in accordance with experiments. The calculations
are able to correctly differentiate magnetic and nonmagnetic Pu system. Finally, in all magnetic systems an
unusual multipolar order is observed, whose polarization energy is often larger in magnitude than the one of

spin polarization.
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I. INTRODUCTION

The magnetism of actinide systems shows a very rich va-
riety of magnetic properties.! There are variations from itin-
erant magnetic systems to systems showing characteristics of
localized magnetism. In the border between these extremes
one have the so-called heavy fermions, which show many
peculiar and anomalous properties, one of which is the co-
existence of superconductivity and magnetism.? One aspect
that makes the magnetism of the actinides unique is the pres-
ence of strong spin-orbit coupling (SOC) together with
strong exchange interactions for the 5f electrons, which are
the ones responsible for the magnetism.

From a theoretical point of view, a standard density-
functional approach, either in the local-density approxima-
tion (LDA) or generalized gradient approximation (GGA) ,
describes quite well the equilibrium properties of at least
metallic systems. However, these functionals are known to
underestimate the orbital moments which are induced by the
relatively strong SOC.3= This can be remedied by allowing
for the so-called orbital polarization,5 responsible for Hund’s
second rule in atomic physics, either through adding an ap-
propriate orbital depending term to the Hamiltonian or by
adopting the so-called LDA+U approach.®8 In the latter
method a screened Hartree-Fock (HF) interaction is included
among the 5f states only.

There is a drastic difference between the itinerant magne-
tism of a 3d shell and that of the 5f shell. In the former the
orbital degrees of freedom are quenched due to the process
of hopping between different atoms while in the latter case
the stronger SOC unquenches them again. Magnetic ordering
is relatively abundant among actinide systems due to the
strong exchange interactions but generally the spin moments
are strongly reduced compared to a fully spin-polarized
value, which sometimes is ascribed to crystal-field effects
and other times to hybridization.

This paper will focus on the role of the local screened
exchange interactions and it will aim to convincingly argue
that these interactions, together with an appreciable SOC in-
teraction, are responsible for the reduced spin polarizations
as well as for a large orbital moment. This is analyzed in
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terms of tensor moment polarizations of the 5f shell. First we
describe the method we employ, the LDA+ U method in its
most general form with a minimum of free parameters--one.
This is accomplished by using screened Slater parameters
together with an interpolating optimal double-counting (DC)
term.” This last degree of freedom can be chosen to be, for
instance, the lowest Slater integral U, which is used as a
varying parameter. This general LDA+U scheme has been
implemented within the state-of-the-art full-potential aug-
mented plane-wave plus local orbitals (FP-APW+lo)
method'®!" in the ELK code.'? This linearized augmented
plane-wave method is one of the most accurate scheme to
treat the complicated behavior of 5f electrons in
actinides.'®>!# Second, we present an analysis method for the
resulting ground state. This analysis is based on an exact
multipole decomposition of the density matrix as well as of
the HF exchange energy. We have tested the generality of the
method by considering actinides systems with different de-
gree of localization of their 5f electrons; the itinerant fea-
tures in U compounds, the more localized behavior in Pu
compounds and finally the intermediate one in Np-based ma-
terials. The calculations show reasonable comparison with
experiments as well to other beyond LDA calculations. By
applying our tensor-moment decomposition, we observe sev-
eral clear trends regarding the favored polarizations in these
actinide systems. For instance it is clear that the Hund’s rules
break down in the sense that other channels are more signifi-
cant than the spin polarization.

II. METHOD

A. A General Form of LDA +U Method

In the most general version of LDA+U (Refs. 6, 7, and
15) a HF correction to the energy enters with the form

1
Eq=3 > pullablgled) - (ab|gldc)]ppas (1)
abed

where p,;, is one element of the density matrix with dimen-
sion D=2(2€+1), which acts as an occupation matrix and a,
b, ¢, and d are single-electron states.The interaction term is
of the form
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(ablgled) = f YD 2)g(r) (D, (2)d(1)d(2) (2)

with  one-electron states a and wave function
%(1):Rg(rl)Yema(Ql)Xsu(l), where the relevant quantum
numbers, m and s, are the magnetic quantum number and
spin component, respectively. The interaction can be ex-
panded in a series,

o

g(rin) = 2 gi(ry, ) Pylcos 6y,), (3)
k=0

where the Legendre function P, in turn can be expanded by
the use of the addition theorem for spherical harmonics,

A4

P (cos 6),) =
il 12) 2+ 1

k
2 Y, (Q)Y,(Qy). 4)
q=—k

B. Calculation of Slater integrals through a Yukawa
potential

The radial part of the interaction is then contained in the
Slater integrals

F(k)=fd’”lV%R%(Vl)gk(f”lJ”2)R%("2)r§d"2~ (5)

For a f shell there are four independent parameters, F 0=y,
F®, F® and F. It is very unpractical to stay with these
four parameters. A common practice within LDA+ U or HF
calculations®!>1¢ is to have the screened Slater parameters
determined by the choice of two linear combinations of pa-
rameters, U and J, and by fixing two ratios, A;=F®/F® and
A,=F©/F® TIn the present work we will instead follow the
ideas of Norman'!” and calculate the Slater parameters di-
rectly from a screened Coulomb interaction in the form of a
Yukawa potential g(r;,r,)=e12/r,. Then

gi(rirs\) == 2k + DNj(inr )R (inrs),  (6)

where j, is a spherical Bessel function, hfcl) is a spherical
Hankel function of the first kind and r_ and r- are, respec-
tively, the smaller and the larger radius entering in the double
integral in Eq. (5). This type of approach has two advan-
tages; it determines the ratio between the different Slater
parameters in a more realistic way than by choosing U and J
individually, and there is only one independent parameter,
the screening length A.

Since in APW+1o basis set R,(r, ) is energy dependent,
we decided to use the energy € at the center of the band of
the localized shell €. We set the atomic muffin-tin (MT) ra-
dius to a value large enough such that the integrals in Eq. (5)
are well converged. In the upper part of Fig. 1 we plot the
calculated Slater parameters for US. These values are in per-
fect agreement with ones calculated for the ion U*" by
Norman'” with the same screened potential. In the lower part
of Fig. 1 we compare the Slater integrals ratios A; and A,
obtained for US with the fixed ratios commonly used in most
LDA+U studies.®!8 There is a good agreement only at small
values of the screening length. For A\=0.5 a.u.”! there start
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FIG. 1. (Color online) Upper panel: Slater parameters F©) (full
black line), F® (red line with squares), F*) (green line with dia-
monds), F© (blue line with circles), and parameter J 10 times
(dashed black line) as function of screening length N of the Yukawa
potential in US. Lower panel: comparison of Slater parameters ra-
tios A;=F*/F® (red lines) and A,=F©®/F® (black lines) calcu-
lated by a screened Yukawa potential (full line with squares for A;
and full line with circles for A,) with the fixed ones in Refs. 6 and
18 (full line for A, and dashed line for A,) and in Refs. 16 and 17
(dashed-dotted line for A; and dotted line for A,). The radial wave
function used for the calculation of Slater integrals in Eq. (5) cor-
responds to the energy at the center of 5f band and the MT radius of
U is Ryp=2.79 a.u.

to be a significative difference that turns out to be relevant in
the calculation of US magnetic moments. If the F¥) are cal-
culated individually with Egs. (5) and (6), the spin moment
(M) and orbital moment (M) show a more dramatic
variation as a function of U (or \) than ones determined by
fixing A; and A, (see Fig. 2). This fact indicates how relevant
the individual determination of every Slater integral might be
in many systems. Finally, we verified that one can reproduce
the LDA moments in the limit of large screening length
(F% —0 for A\ —), i.e., by slowly changing the parameter A
one increases the localization of the 5f electrons from the
LSDA limit in a continuos way.

A parameter-free method to screen the Slater parameter
has been suggested by Brooks,'® where the screening param-
eter \ is identified as the Thomas-Fermi screening, which
depends on the local-charge density. A more appropiate but
time-consuming scheme to calculate the Slater parameters
from the screened Coulomb potential is within the random-
phase approximation (RPA), as it has been recently accom-
plished by Solovyev et al.?

C. Calculation of LDA +U potential

The contribution to the orbital potential from the
LDA+U correction is defined as

Vij= 55EHF =2 [algliby - (jalg|bi)]pas- (7)
(% ab

Ji

We note that the potential so defined is the complex conju-
gate of the one sometimes stated in literature. The correct
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FIG. 2. (Color online) Spin (upper panel) and orbital magnetic
moment (lower panel) of US, a=10.36 a.u., calculated with LDA
+SOC+ U approach and INT DC (see DC corrections in the method
section). We compare the results obtained by calculating the F )
with a screened Yukawa potential (full black line and screening
length in the upper axis) with ones obtained by fixing the ratios A,
and A, to ones of Refs. 6 and 18 (dashed red line) and to ones of
Refs. 16 and 17 (dashed-dotted blue line). In the fixed ratios calcu-
lations we fixed the parameter /=0.46 eV to one in Ref. 16. The
MT radii of U and S are set, respectively, to Ryp=2.79 a.u. and
Rf,lT=2.13 a.u.. The parameter R&T|é+ﬁ|m3x, governing the num-
ber of plane waves in the APW+1lo method, is chosen to be 9.76.
The Brillouin zone (BZ) is sampled with 1728 k points uniformly
spaced.

definition becomes crucial to evaluate off-diagonal spin
terms in all calculations in which the coordinate system is
not rotated to the local one, i.e., in all calculations in which
the density matrix is not diagonal.

D. Double-counting corrections

A major obstacle in the LDA+U approach is that the
electron-electron interaction has already been included in
LDA potential, thus a simple addition of the orbital-
dependent HF potential would lead to DC terms. One may
want to individuate those terms in the LDA potential that
correspond to the interaction already considered in the HF
Hamiltonian and subtract them. A direct connection between
the two formalisms is not possible and in addition it would
not be useful. In fact LDA approximation treats very accu-
rately spatial variations of the exchange-correlation potential
but it neglects the orbital dependence of the Coulomb inter-
action. Thus the best recipe would be to identify the mean-
field part of the HF potential and subtract it, leaving only an
orbital-dependent correction to the mean-field-type LDA po-
tential. Czyzyk and Sawatzky?! suggested a prescription that
is exact in the case of uniform occupancies [around mean-
field (AMF)] and that would be realistic for weakly corre-
lated systems, however not exact because of the presence of
the crystalline field. The AMF correction is implemented by
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redefining a new density matrix without the charge n and the
magnetization #i contributions,

n=Tr p, (8)
n="Tr ap, )

in the following way
ﬁah:pub_(gabn'i'&ab'rﬁ)/D' (10)

The AMF double-counting corrected LDA+U energy and
potential terms become in our formalism

] ~ ~
Eqiitae = 2 Pacl(ablgled) = (ablglde)]pps, (1)
abed

VM= v, - X [(alglib) - (jalglbi)) (8, + Gy - 1)/D
ab

= > [(jalgliby - (jalg|bi)]p,p- (12)

ab

For strongly correlated systems it exists another prescrip-
tion for the DC, the fully localized limit (FLL),® that would
correspond to subtract the average effect for a localized state,
with integer occupation number. The most general expres-
sions for energy and potential are

EE = 0Un(n - 1) = 2Jn(n/2 = 1) = Jrii - i}/4,  (13)

U2n-1) Jn-1) Jii- &
— — O+

i
2 2 ' 2

LL
Vit =Vy

(14)

Most of LDA + U calculations use one of these approaches
while the real occupation numbers lie somewhere between
the two limits. Petukhov et al.” proposed a linear interpola-
tion (INT DC) between these two limits;

Eppge= aEp s+ (1= a)ERME, (15)

VINT = QWL 1 (1 = @) VA, (16)

in which the parameter « is a material-dependent constant
determined in a self-consistent (SC) way following a con-
strained DFT philosophy. In our formalism the expression of
a in Ref. 9 is generalized to take into account the off-
diagonal spin terms of the density matrix,

D Tr p*
2 (17)

="
Dn—-n-—m

where n and m are defined, respectively, in Eq. (8) and Egq.
9).

In the present study we prefer to use the INT DC ap-
proach for two reasons. First, it reduces one further free pa-
rameter. The results do depend on the choice of DC but if we
stay consequently with the INT DC this degree of freedom is
gone since we can in principle treat both more itinerant and
more localized system. Second, it turns out that the use of the
INT DC is very important to reproduce the correct magnetic
structure of monopnictides Pu compounds. In Fig. 3 we com-
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FIG. 3. (Color online) Spin My, (red lines) and orbital My,
(blue lines) magnetic moments of paramagnetic PuS (full line with
squares for M, full line with circles for M), a=10.46 a.u., and
ferromagnetic PuP (dashed line for Mg, dashed-dotted line for
M), a=10.49 a.u., as function of U for different types of DC.
The Slater parameters are calculated SC by using a Yukawa poten-
tial with screening length \ reported in the upper axis. For AMF DC
the moments vanish in both compounds at U=2.0 eV, for FLL DC
both compounds stay magnetic for all values of U. Only for the INT
DC there is a range of U (U=3.5 eV) for which we obtain the
experimental magnetic structure of both compounds (Ref. 1); PuS
becomes nonmagnetic while PuP stays magnetic. The green lines
refer to the 5f charge of PuS (full line with triangles) and PuP
(dotted line). The black lines refer to INT DC factor « of PuS (full
line) and PuP (dashed-two-dots line). The MT radii of Pu and S(P)
are set, respectively, to Rbv:=2.82 a.u. and Rﬁ}¥)=2.15 a.u.; the

basis set cut off REvr|G+K| ey is set to be 9.1. The integration in
the BZ is performed with 1728 with k points uniformly spaced.

pare M, and M, calculated for the paramagnet PuS (Ref.
1) with ones calculated for the ferromagnet PuP.! For AMF
type of DC, M, and M, of both compounds decrease dra-
matically until they disappear at U~2.0 eV. Instead, by us-
ing FLL DC, M, and M, decrease significantly but they
never disappear for any value of U. Finally, only by using the
INT type of DC, we find a range of values for U (U
=3.5 eV) in which PuS is nonmagnetic and PuP is mag-
netic.

In conclusion we have implemented the LDA + U method
in the most general form, taking into account the off-
diagonal spin terms of the density matrix and the correct
definition of the potential for those terms. By using the in-
terpolated DC of Petukhov et al.” and by calculating SC the
F®s with a Yukawa potential, our LDA+U approach has
only one free parameter left, i.e., the screening length \ or if
preferable U.
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E. Multipole representation of LDA+U energy

The formalism up to now is standard and have been used
several times before, although some studies have neglected
the spin-mixing terms in Eq. (1). Within this formalism the
density matrix plays a crucial role. In the following we will
decompose this fairly large matrix into the most important
and physical relevant terms. We will find that this decompo-
sition largely simplifies the analysis, as well as it gives many
new insights into the magnetism of the actinides, where the
SOC has a crucial contribution. The interaction term in Eq.
(1) have been studied in detail, for example by Slater,?
Racah,?>-?° Condon, and Shortly.”” By expanding the inter-
action in spherical harmonics and by making use of the
Wigner 3j symbols? the interaction can be expressed as

20k
<ab|g|0d>=6s s 5sbsd(2€+ 1)22 E (— 1)ma+mb+‘1
o k=0 g=—k
(€k€>2(€ k €>(k<€ k€)
X F ) '
000/ \=-my —gq m —-my, q my

(18)

The spin dependence is given by the two delta functions of
the spin quantum numbers of states a, b, ¢, and d. The radial
dependence is confined in the Slater integrals F*) and the
Wigner 3; symbols take care of the angular part of the inte-
gral. We now introduce a multipole momentum tensor w*

defined as the expectation values of a tensor operator vX,

wh=Tr v%p, (19)

¢ k ¢
vy = (mylvylm,) = (- 1)5"””< )nbl, (20)
x m,

—my

(20)!

=\r’/(2€—k)!(2€+k+1)!’ @)

Mgk

where the tensor component index x runs from —k to k. The
spin-independent part of the HF energy (the Hartree term)
can be rewritten as

Qe+ 12 2({5 k¢

2”‘”‘0 00

2
- ) FOwk. wk (22)
2 k=0

In order to take care of the spin dependence we may intro-
duce a double tensor

wf‘f =Tr v];tgp, (23)
s s

=(- 1)5‘%( P )n;l, (24)
=Sy Y Sa

where the index y runs from —p to p. It is easy to verify that
w=wk._ Then the exchange energy can also be written as a
function of the tensor components rather than the density
matrix (see the Appendix),
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2¢ 2¢
204+ 1)%(2k; + 1
EX:_EF(k)E M(—l

k=0 k=0 4

¢k €\e € k|«
X kip . wkip 25
<OOO>{€€k}p§OW Wi, @)

where the {...} symbol is the Wigner 6; symbol. Notice that
the Wigner 3 symbols are defined such that the contribution
from odd k vanish so only Slater parameters of even k are
needed. This type of expression was derived by Racah.”
However, since it was derived for atomic configurations
only, it has not been fully realized that it is as valid for
noninteger occupations.

k2
) ni,

F. The coupling of indices—irreducible spherical tensor

It is useful to introduce the irreducible spherical tensors
w " from the double tensors w*” for two reasons. First, the
double tensors are not true spherical tensors and, second, in
the presence of SOC the spin and orbital degrees of freedom
are not longer decoupled. The three-index tensors w<’’ is
deﬁnekd through a coupling of the indices of the double ten-
sor w*,

. 3 k r p
Wi =g, 2 (=) y( . _y)wﬁfw (26)

xay

where the index r runs from |k—p| to |[k+p| and where the
normalization factor n,,. is given, as in Ref. 28, by

~g{(g_2“)!(g—2b)!(g—2c)!]”2
Nape =1
(g+1)!
g!!
X(g‘ZG)! '(g—=2b)! !(g—2¢c)!!

with g=a+b+c.

These tensor moments have a very nice feature, they are
proportional to the moment expansions of the charge (k even
and p=0), spin magnetization (k even and p=1), current (k
odd and p=0), and spin-current (k odd and p=1) densities.
For instance, w' gives the total charge, w”'! gives the spin
moment, and w'°! is proportional to the orbital moment.?®

The exchange energy Ey of the shell € in terms of the
irreducible spherical tensor moments is now

EX:—EF(k)E
k k

(27)

(2€+ 1)k, +1)(2r+1)

1pr !
(- 1)"llnk1pr|2”€kl<o 0 0> {6 ¢ "}
ewhrr . whier (28)

It is convenient to rewrite Eq. (28) in a simplified form,

Ex= 2 EY' = 2 Ky ,Warr - whvr, (29)
kypr kypr

where
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€+ 1)k + D2r+1)
Kklpr__ 2 ) le.

><<€ k €>2 ¢ € k 20
000/ |¢€ € k) (30)

In Eq. (29) the exchange energy of the shell € is expressed
as a sum of independent terms involving different spherical
tensors. We will refer to these terms as different exchange
channels.

One of the most important types of polarization is the
so-called spin polarization (SP), often referred to as Stoner
exchange or Hund’s first rule, which corresponds to a polar-
ization of channel 011. Since w'''-w®''=mZ .~ we get that
the SP energy Egp is given by

(_ 1)k1|’1k1pr|2n£2’k1

spm’

1{U-J
Egp=EM = Koy ym?, =——( +J> 31
SP X Ollmspm 4 2€+ spm ( )
Hence, the so-called Stoner parameter I, defined by
ESP=—}11m§pin, is given by
= Y=r (32)
T 20+1

as it is already known. In this expressions we have adopted
the convention to use certain linear combinations of the
Slater parameters, the “Hubbard” parameters, U=F ©) and J,
that for d and f electrons is given by, respectively,

1
Ji= —(F? + FY), (33)
14
2 F® 50
F=—FP4 — 4+ —F0O, (34)
45 33 1287

In our multipole expansion in Eq. (29) it is also included an
exact formulation of the orbital polarization (OP) exchange
energy Egp,

+ Ky ow!10 wiio,

(35)

_ 101, 110 _ 101 101
Eop=Ey +Ey =Kigw W

m2 . . .
where Ky =3K;,o and WIOI-Wlm:e%"’. This expression is a

sum of two terms, one that breaks the time-reversal
symmetry,> 101 (OP odd), and a second one that does not,
110 (OP even). Consequently 101 is associated with the pres-
ence of an orbital moment while 110 is compatible with a
nonmagnetic solution.’® Finally, the prefactor K, has a
simple expression in terms of Racah parameters;'® this is for
d and for f electrons, respectively,

E°+21E?
Ko ==~ (36)
9E° + 297E°
K{m:— T (37)
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III. RESULTS

In this section we shall apply our method to calculate the
magnetic structure of some metallic U, Np, and Pu com-
pounds, for which the behavior of 5f electrons varies from
itinerant to more localized.

A. Application to US

We selected US as a prototype system to compare the
results obtained by calculating the F® through a screened
Yukawa potential with other common procedures,®!® in
which U and J are provided as inputs and the ratios
A =F®/F® and A,=F©/F? are fixed. US shows a ferro-
magnetic order with T-=178 K and a strong anisotropy
along [111] direction.’!*> Many experiments have proven 5f
electrons of US to be itinerant.>*3% Neutron scattering ex-
periments have measured the 5f total moment to be 1.7up
(Ref. 36) while measurements of the magnetization in the
bulk have shown that the total moment per f.u. is 1.55uz.>’
On the theoretical side there have been many investigations
of magnetic properties of US, making this system a good
benchmark case for our method. Recent LDA calculation
with SOC correction seem to underestimate the orbital
moment® while orbital polarization® and Hartree-Fock tight-
binding calculations reproduce the correct size of M,.'® We
have investigated the magnetic and electronic structure of
this compound using our optimized LDA+SOC+ U method
and its multipole decomposition. As anticipated in the
method section, we compared the behavior of magnetic mo-
ments obtained by calculating F® through a Yukawa poten-
tial [M:;“kawa()\) and MOYr‘gkawa()\)] with ones determined by
fixing the ratios A; and A,. In the fixed ratios calculations,
first, we fixed the value of J to 0.46 eV (Ref. 16) for any
values of \ (Fig. 2), second, we varied J as function of \ to
the value J(\) determined by the screened calculation (Fig.
4). If the F® are determined individually, M;;”kawa()\) and
MDYr‘gkaW“()\) change dramatically as function of N (or U),
while the moments are much more constant by fixing A;, A,,
and J. If then J is varied to J(\), and only A; and A, are kept
constant, the moments vary in a similar way to M:L”kawa()\)
and MOYr‘gkawa()\). This is because in the latter case the values
of F® become fairly similar to ones calculated with the
screened potential, as we show in Table 1.

Let us now analyze the decomposition in multipoles of
the HF-Ey energy in Eq. (29), that we report in Fig. 5. We
found three main contributions: the SP term 011, the OP even
term 110, and finally the high multipole of #i(7) 615. For
small U the SP 011 is the dominant contribution until it starts
to decrease rapidly. At U~0.8 eV the OP-even 110 crosses
011 and it becomes the largest term. Such a term has been
detected in all our LDA+SOC+U calculations on actinides
and it has been found responsible for the vanishing of mag-
netic moments in 8-Pu, both in a LDA+U investigation® as
well as in a dynamical mean-field theory (DMFT) study.*’
Finally, at U=~1.0 eV the 615 contribution becomes the
largest. Few other terms are present but they are much
smaller than the others; 101, OP-odd term, that refers to the
Ey associated to the presence of an orbital moment, 211 and
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FIG. 4. (Color online) Spin (upper panel) and orbital magnetic
moment (lower panel) of US, a=10.36 a.u., calculated with LDA
+SOC+U approach. We compare the results obtained by calculat-
ing the F® with a screened Yukawa potential (full black line and
screening lenght in the upper axis) with ones obtained by fixing the
ratios A;=F%/F® and A,=F©/F® (o ones of Refs. 6 and 18
(dashed red line) and to ones of Refs. 16 and 17 (dashed-dotted blue
line). In the fixed ratios calculations we varied J to the one deter-
mined by Yukawa potential at every different screening length,
J(\). Other calculation details are the same as the ones reported in
Fig. 2.

413, related to the multipoles of the ri(F), 505, corresponding
to an high multipole of the current density.

B. Application to Np compounds

The 5f electrons in Np compounds are expected to have
intermediate features between the itinerant behavior in U
compounds and the more localized behavior in Pu com-
pounds. We calculated the electronic and magnetic structure
of two Np compounds, NpN and NpSb. NpN is reported to
be a ferromagnet with easy axis along [111] direction,
T-=87 K and a total magnetic moment of 1.4uz,' NpSb is
reported to be an antiferromagnet in AFM-3k structure and
easy axis along [111] direction with a total moment of
2.5up."! In Figs. 6 and 7 we plot Mg, and M, as functions of
the parameter U and the corresponding screening length A.
Both compounds are magnetic for all values of A. In the
same figures we also report the different multipole compo-
nents of Ey as defined in Eq. (29). For 0=U=<1.5 eV the SP
011 term dominates in both compounds. For U=1.5 eV,
110 and 615 become the largest terms. In both materials
there is also a significant OP-odd 101 that is related to the
presence of an orbital moment. Finally, in NpN we observe a
significant 211 contribution that corresponds to an high mul-
tipole of #7i(7). We note that the relevant channels in these Np
compounds are similar to ones present in US, however the
110 term is larger and the 615 term is slightly smaller.

C. Application to Pu compounds

We have investigated the magnetic structure of some Pu
compounds belonging to the actinides monopnictides, whose
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TABLE 1. Comparison of Slater integrals of US and U** calculated with different methods. The fixed
ratios A; and A, are from Refs. 6 and 18; in those calculations the parameters U and J are provided as input
equal to ones calculated with Yukawa potential for A\=1.6 a.u.”!. The Slater integrals of US are evaluated
using the 5f radial functions with an energy corresponding to the center of the band. The MT of U is 2.79 a.u.

Method FO F® F® F© J
Present work US A=1.6 au”! 3.114 6.128 5.110 4.060 0.585
Present work US Fixed A| and A, 3.114 6.973 4.659 3.446 0.585
Ref. 17 U+ A=1.6 au.™! 3.309 6.377 5.281 4.185 0.606
Refs. 38 and 39 U* Experiment 232.6 6.440 5.296 3.441 0.580

5f electrons are expected to have more localized features
compared to Np and U compounds. These materials have the
fcc NaCl crystal structure and the determination of their
magnetic structure has been object of many experimental
studies.! PuS, PuSe, and PuTe, are paramagnets like 6-Pu;
PuSb, PuP, and PuAs are ferromagnets; PuBi is an antiferro-
magnet. We have found that the use of the INT DC is essen-
tial to correctly reproduce the magnetic structure of those
compounds. In addition we reproduced the nonmagnetic
ground state of the high-T',. superconductor PuCoGas and we
analyzed it through the multipole decomposition of Ey in Eq.
(29). We already discussed in the method section the ability
of INT DC to correctly describe the magnetic structure of
two prototype Pu compounds, the paramagnet PuS, and the
ferromagnet PuP (see Fig. 3). The results of a similar calcu-
lation for the ferromagnets PuAs and PuSb, for the antifer-
romagnet PuBi, and for the paramagnets PuSe and PuTe are
summarized in Table II. By using the INT type of DC, M,
and M, decrease significantly faster for nonmagnetic com-
pounds until they disappear, while for magnetic compounds
the moments decrease slower and do not disappear.

Let us now discuss the decomposition in multipoles of the
HF Ey. Again we will refer to the two prototype materials

-1
A (au. )
oo 5.7 3.9 3.1 2.6 22
(Y_ A 1 A A A 1 A
02F -
~~
>
L 04} .
>
M —a011
60—o101 |
ek Jo—0 110 3
0.6 511
X615
M 1 M 1 M 1 M 1 M
0385 0.4 0.8 1.2 1.6 2
U (eV)

FIG. 5. (Color online) Relevant exchange energy channels in
Eq. (29), Efg‘p’, of US calculated with LDA+SOC+ U method and
INT DC. The Slater parameters are calculated SC by using a
screened Yukawa potential with screening length N reported in the
upper axis. Other calculation details are reported in Fig. 2.

PuS and PuP calculated with INT DC. In both compounds
the dominant term is SP 011 for 0=U=<1.5 eV. With in-
creasing U the OP-even term 110 starts to increase and it
soon becomes the dominant contribution for U= 1.5 eV. In
PuS the OP-even 110 term completely takes over the SP 011
contribution, as we already found in the case of 8-Pu.*® Also
in PuP the 011 channel decreases, however it does not be-
come zero and few other significant channels are opened.
The most relevant one (after 110) is the 615 contribution that
is related to a high multipole of 7(7). However, the 615 term
is lower than one present in magnetic U and Np compounds,
while 110 channel is clearly larger. This mechanism is
clearly shown in Figs. 3 and 8, where we compare the mag-
netic moment and HF-Ey contributions of PuS, nonmagnetic,
and PuP, ferromagnetic, as function of the parameter U and
corresponding screening length A.

Finally, we applied our one-parameter LDA + U method to
the superconducor PuCoGas. Previous LDA+ U calculations

FIG. 6. (Color online) Upper panel: spin (red line with squares)
and orbital (blue line with circles) moment of ferromagnetic NpN,
a=9.25 a.u.. Lower panel: relevant exchange energy channels in
Eq. (29), EXP", of NpN calculated with LDA+SOC+U approach
and INT DC. The Slater parameters are calculated SC by using a
screened Yukawa potential with screening length N reported in the
upper axis. The MT radii of Np and N are set, respectively, to
RYP=2.60 a.u. and RY;=1.80 a.u.; the parameter RN G +K|pay i
set to 9.4. The integration in the BZ is performed with 1728 k points
uniformly spaced.
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FIG. 7. (Color online) Upper panel: spin (red line with squares)
and orbital (blue line with circles) moment of NpSb in
AFM-3k structure, a=11.82 a.u.. Lower panel: relevant exchange
energy channels in Eq. (29), Eé‘(”’ ", of NpSb calculated with
LDA+SOC+U and INT DC. The Slater parameters are calculated
SC by using a screened Yukawa potential with screening length A\
reported in the upper axis. The MT radii of Np and Sb are set,
respectively, to RII:],IPT=2.95 a.u. and RISV})T=2.65 a.u.; the parameter
RYP|G +K|pay is set to be 9.2. The integration in the BZ is
performed with 1728 & points uniformly spaced.

of this compound have stabilized a nonmagnetic solution
with AMF type of DC, U=3 eV and J=0.6 eV, and fixed A,
and A,.*!" We also stabilized a nonmagnetic solution for
U=3.2 eV, corresponding to A=1.79 a.u.”!, (see Fig. 9 and
Table II). In the Ey multipole decomposition the OP-even
110 term, that corresponds to an enhancement of SOC inter-
action, is again the dominant one and it takes over the whole
SP 011 contribution once the system becomes nonmagnetic.
This mechanism is completely analogous to the one present
in the others paramagnetic Pu monopnictides we calculated
in this work and in 8-Pu.’

IV. CONCLUSIONS

The purposes of this paper are twofold. First, we advocate
an approach to LDA+ U calculations that reduces the number
of free parameters in a well-defined way. This involves the
use of screened Yukawa potential to describe the HF interac-
tion within an atomic shell with a single parameter. In addi-
tion we argue to systematically use the INT approach to DC,
which takes away the ever existing choice between AMF or
FLL, especially since the results depend on the choice of
DC. This approach ought to facilitate fast and systematic
LDA+U calculations. The results of which would be com-
parable between different computations, without having to
dwell on the used values of, e.g., J.

Second, we present a method, the decomposition in tensor
moments of the density matrix, that facilitates the analyses of
the results from an LDA+U calculation. This is an exact
approach which gives both the different polarization chan-

PHYSICAL REVIEW B 80, 035121 (2009)

TABLE II. Table of screening length \ used to determine Slater
integrals through a screened Yukawa potential in LDA+SOC+U
calculations of Pu compounds with INT type of DC. We report the
smallest value of U and corresponding screening length A that are
necessary to obtain vanishing magnetic moments (less than 0.1ug
for both M, and M) in nonmagnetic Pu compounds. For the first
three nonmagnetic compounds PuX, with X=S,Se,Te, we consid-
ered the corresponding ferromagnetic compounds PuY, with Y
=P,As,Sb, where X and Y are chosen to be neighbors elements in
the periodic table. We then report the magnetic moments of PuY
using the same value of U that makes the corresponding compound
PuX nonmagnetic. For the antiferromagnet PuBi we used the same
value of U of PuSb. We also write down the INT DC interpolation
factor « that is determined SC. Values of experimental magnetic
moments are from Ref. 1.

Paramagnets
U A
[eV] [auw"'] @«
PuS 32 1.74 0.75
PuSe 3.6 1.57 0.79
PuTe 4.1 1.38 0.83
6-Pu 3.7 1.51 0.78

PuCoGajs 32 1.79 0.69

Ferromagnets
U A M spin M orb M tot M [e())(tp
eVl [aw™] [upl [ws] [msl [ms]l @
PuP 32 1.76 1.60 -152 0.08 0.75 0.82
PuAs 3.6 1.60 1.67 -154 0.13 0.64 0.86
PuSb 4.1 1.40 1.57 -1.47 0.1 0.67 09
Antiferromagnets
U A M K M orb M tot M fstp

[Vl [aw™] [us]l [ws]l [ws] [wp] @

PuBi 4.1 1.42 1.38

-1.29 0.09 0.50 0.89

nels as well as the corresponding Hartree and exchange en-
ergies.

Finally, we apply these combined approaches to a few
metallic actinide systems whose 5f electrons show different
degrees of localization; from the itinerant features in US to
the more localized behavior in Pu compounds and the inter-
mediate one of Np-based materials. The results show that our
one-parameter approach catches the ground-state properties
of these system, such as spin and orbital moments. Here it is
worth mentioning that an even better agreement with experi-
ments can be obtained by tweaking the individual Slater pa-
rameters differently for the different systems. But that would
rather reduce than increase the physical understanding of
these systems.

Most importantly, our results signal that these systems are
not as well understood as believed. For instance, Hund’s
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FIG. 8. (Color online) Relevant exchange energy channels in
Eq. (29), Ef(“” ", for paramagnetic PuS, a=10.46 a.u., and ferromag-
netic PuP, a=10.49 a.u., as function of U for INT DC. The Slater
parameters are calculated SC by using a Yukawa potential with
screening lenght N\ reported in the upper axis. Other calculation
details are reported in Fig. 3.

-1

A (au. )
oo 3.7 2.4 1.8 1.4 1.2
' 1 1 ' 1 ' 1 '
4‘\\\ 1!
/.?n 2- \-$-\'- L - - ._
= P ~ {0500

E, (eV)
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FIG. 9. (Color online) Upper panel: spin (dashed red line) and
orbital (dashed-dotted blue line) magnetic moments of high-7,. su-
perconductor PuCoGas, a=7.84 a.u and ¢=12.57 a.u., calculated
with LDA+SOC+U and INT DC, as function of parameter U. The
interpolation factor « is plotted with a dotted black line. The Slater
parameters are calculated SC by using a Yukawa potential with
screening lenght A reported in the upper axis. We used an AFM-1k
structure with q=(0,0,1/2). Lower panel: relevant exchange en-
ergy channels in Eq. (29), E;”’ ", of PuCoGas. The MT radii of Pu,
Co, and Ga are set, respectively, to R$T=2.7 a.u. and
R:G2=2.2 a.u.. The parameter Rhwr|G+K|pqy is set to 9.5. The in-
tegration in the BZ is performed with 576 k points uniformly
spaced.
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rules are far away from fulfilled since the SP does not play
the dominant role as always assumed. On one hand the LDA
calculations show large SP which leads to an overestimation
of the spin moments. On the other hand, when including the
HF interaction of the LDA+ U functional, another polariza-
tion channel dominates, the one of spin-orbital currents, the
OP-even 110 channel. The tensor moment associated with
such channel, w'!° is even close to the saturation limit of
_%Wooo for all systems considered. Large values of this ten-
sor moment are in good accordance with the rising number
of experiments that point to large w'' for actinide
systems.*>~* This fact corresponds to a large enhancement of
SOC in all these systems by the HF-exchange interaction.
The SP 011 channel, however, decreases drastically, and in
some Pu compounds even disappears. Instead, to some sur-
prise, a third polarization plays an important role, the 615
channel; this corresponds to an high multipole of the magne-
tization density.
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APPENDIX

The transformation Eq. (23) can be reversed through or-
thogonality relations of the Wigner 3j symbols. Hence, the
density matrix p can be expanded in the double tensors wii,

¢ k€
Pac = E (Zk, + 1)nlki(— 1)m(—{7< )2 (2pl + 1)
kpx; —Mhe A a’ py;
s 1 s D
Xng, (= 1)‘”«““( P )wﬁ{fﬁ. (A1)
' —Sc Vi Sa .

When this form, together with Eq. (18), are inserted in the
exchange part of Eq. (1), we get an expression where the
complications essentially arise from the orbital summations
in the factor

0- S (-1)q(€ k e)(e k e)

mmym mgq —me Xy Mg/ \—my, —qg Ny
( ¢ k, € )( ¢k e)

>< b
—Mmg Xp Mp/ \=my q M

where the indeces on k and x stem from the two different
density-matrix expansions. The spin dependence of the ex-
change energy is simpler due to the Kronecker delta symbols
in Eq. (18), i.e., the relevant factor becomes

(A2)
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5= 3 (—1)#%( '

SaSpSeSq —Sc

S 1)“%-%( o

SaSp —Sa — V1

=(=D"12p + 17, .0
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K S py S
) (Ssasd( ) 6.3‘17‘?0
Sa —Sqa Y2 Sp

s)(s P2 s)
Sp/ \=Sq Y2 Sp

PPy Y17V, (A3)

by use of orthogonality relations. To simplify Q we start with an identity for the Wigner 6; symbols, see, e.g., Ref. 18, and we

{€ ¢ k1}<€ ¢k )= S e

reshuffle a little,

€ € k

mp —m. —X; mgmgq

( m
X
d

Then we multiply by

(€
my

and we sum over m,;, and m,, by obtaining

¢ € k 2(6 ¢ k1><€ ¢
¢ € k mgm, Ny =M =Xy ) \my, —m,

= (—1)k1+’<+xl+q< t K 6)(
—my Xy m,/\—

mambmcmdq

k ¢ ¢ k ¢ { Kk €
. (A4)
k, )
. X2

kK e\ € Kk €\ € Kk ¢
. (A5)
a —4 M —m. Xy nmy —m, q my

On the left-hand side we use an orthogonality relation for the Wigner 3j symbols and on the right-hand side we identify Q

from Eq. (A2),

t € k
{ 1 }(zkl #7848, = (- DIRIRQ, (A6)

€ € k

The phase factors of Egs. (A3) and (A6) are then used to form the scalar product of the double tensors in the final form of

exchange energy, Eq. (25) as

whiPL . wkipn = E (-1

X9

*1+1y, k1P, k1P A7
R (A7)
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