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Transport properties of an interacting triple quantum dot system coupled to three leads in a triangular
geometry have been studied in the Kondo regime. Applying mean-field finite-U slave boson and embedded
cluster approximations to the calculation of transport properties unveils a set of rich features associated to the
high symmetry of this system. Results using both calculation techniques yield excellent overall agreement and
provide additional insights into the physical behavior of this interesting geometry. In the case when just two
current leads are connected to the three-dot system, interference effects between degenerate molecular orbitals
are found to strongly affect the overall conductance. An S=1 Kondo effect is also shown to appear for the
perfect equilateral triangle symmetry. The introduction of a third current lead results in an “amplitude leakage”
phenomenon, akin to that appearing in beam splitters, which alters the interference effects and the overall
conductance through the system.
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I. INTRODUCTION

One of the most important and exciting aspects of mo-
lecular physics nowadays is the study of electronic transport
properties of natural and/or fabricated structures at the nano-
scopic scale. In nature, molecules can couple to the external
environment �electron reservoirs� through extended orbitals,
which permit conduction electrons to hop in and out of the
molecule. Fabricated molecules can be made by coupled
quantum dots �QDs� with discrete energy levels.1–3 Depend-
ing upon the strength of the coupling between the QDs, they
can behave as a molecule with extended orbitals, which can
further couple to external electron reservoirs. The confine-
ment of electrons inside this artificial “molecule” produces
strong Coulomb interactions,4 which may give rise under
suitable conditions to Kondo physics for temperatures below
a characteristic crossover temperature, the Kondo tempera-
ture, TK.5–7 In the simplest picture of this regime, for T
�TK, the system forms a singlet state created by the screen-
ing of the localized spin by the conduction electrons in the
external reservoir. Since its first observation in QDs in 1998,8

the attention generated by the Kondo effect in these struc-
tures has led to an explosion in experiments and theory. For
example, multiple QD systems have become platforms for
the theoretical and experimental development of sophisti-
cated arrangements in order to access the rich phenomenol-
ogy of the Kondo problem including non-Fermi-liquid be-
havior and quantum critical points.9

In this paper, we study the transport properties of a triple
quantum dot �TQD� system in the “molecular regime” �with
strong interdot couplings; see Fig. 1�a�� in two distinct situ-
ations: First, just two QDs are attached to independent elec-
tron reservoirs. Second, each QD is connected to an indepen-
dent electron reservoir. In the latter case, we focus our
attention on the conductance of the system through two of

the three terminals �the same two used to measure conduc-
tance in the first case�. We are particularly interested in un-
derstanding interference effects, especially the role played by
the third lead in the propagation of electrons along the dif-
ferent trajectories.

Despite significant advances in the understanding of
Kondo physics in double10–14 and triple15–21 QD structures
made in the last few years, there are still important aspects of
the problem which deserve to be studied in detail. For ex-
ample, based on a suggestion by Zarand et al.,22 one may ask
if an SU�4� Kondo regime may be experimentally attained in
a TQD geometry. In addition, the unprecedented control of
parameters in these multidot structures opens the possibility
of observing quantum critical points and their associated
non-Fermi-liquid ground states. Although many of these
have been theoretically identified, the very demanding ex-
perimental constraints required have resulted in only a few
successful experimental realizations.9 Further motivation to
study TQD systems comes from the proposal by Saraga and
Loss23 that these structures could be used to produce spa-
tially separated currents of spin-entangled electrons. Experi-
mentally, however, only few groups have reported work in
these systems.24–26 Most of these studies have been in the
Coulomb blockade regime and one of the works reports that
a TQD device can act as a molecular rectifier.24

Žitko and Bonča19 have recently studied theoretically a
TQD system connected in series to two leads. They have
found that for a certain range of interdot hopping parameters
the system crosses over from a Fermi-liquid to a non-Fermi-
liquid regime in a wide interval of temperatures. In a subse-
quent paper,20 using the numerical renormalization group
�NRG�, these authors analyze a large number of phases for a
system similar to the one we discuss in this paper. Notice,
nevertheless, that there are important differences between
their system and ours: the majority of the phases analyzed in
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detail in Ref. 20 use a Kondo Hamiltonian for the dots. In
that case, a crossover was predicted between the two-
impurity and the two-channel Kondo-model non-Fermi-
liquid fixed points. Their analysis of Anderson-impurity QDs
brings their work closer to ours. However, they restrict their
study mainly to regimes where the interdot hoppings are con-
siderably smaller than the coupling to the leads, which is
exactly the opposite regime we treat in our work. In addition,
they only analyze results close to half-filling, while we con-
sider all fillings. Finally, and more importantly, they did not
analyze the very important influence of the third contact,
which is one of the important results of the work we report
here.

The physics of this arrangement of QDs has also been the
subject of other theoretical works.17,27–32 In particular, a situ-
ation where the system may present interesting, but rather
complicated behavior, is in the fully symmetric case, i.e.,
when all interdot hoppings are the same and each QD is
equally connected to an independent conducting band �in
that case, the system has equilateral triangle symmetry�. It is
reasonable then, if the interdot hoppings are much smaller
than the intradot Coulomb repulsion, to expect the TQD sys-
tem to present a spin-frustrated regime, as antiferromagnetic
arrangement between electrons sitting in different QDs is not
possible. Indeed, through the use of conformal field theory
and NRG calculations, Ingersent et al. were able to charac-
terize a unique, stable, frustration-induced non-Fermi-liquid
phase for a three-impurity Kondo model.27,33 It should be
noted that this is not the regime treated in the current work.
Here, we concentrate in the regime where the interdot hop-
pings are of the same order of magnitude as the intradot
Coulomb repulsion, and always larger than the coupling to
the leads �the molecular regime�.

Considering this rich theoretical context, it is important
for our objectives to be clearly spelled out. They are three-
fold: first, since it is important from an experimental point of
view to analyze the charge fluctuations in the QDs as a func-
tion of the gate potential, and as most of the previous work
mentioned above uses the Kondo model to represent the
QDs, we will model the system using the Anderson impurity
model to describe each quantum dot. Second, we carefully
analyze the conductance vs gate potential results in a regime
where the interdot couplings are larger than the coupling to
the leads, i.e., in the molecular regime. Although this regime
excludes other interesting phases in this system analyzed
before,20 we believe that the molecular regime can be experi-

mentally more accessible and therefore very relevant. Third,
we analyze in detail the effects created by the introduction of
a third electron reservoir, which is connected to the “free”
QD, i.e., the QD which is not connected to either of the
reservoirs used to measure the conductance.

We study this system by calculating the appropriate
propagators to obtain the charge, the local density of states
�LDOS� at the dots, and the conductance using two different
approaches: a finite-U slave boson formalism developed in
the mean-field approximation �FUSBMF�,34 and the embed-
ded cluster approximation �ECA�,35,36 where one diagonal-
izes a small cluster containing the dots and then embeds it
into the leads through a Dyson equation. These two com-
pletely different approaches provide a similar description of
the physics of the TQD structure. Note that some of the
results shown here were obtained using a recent variant of
the ECA method, the logarithmic-discretization embedded
cluster approximation �LDECA�.37 In this variant, the nonin-
teracting electron band is discretized logarithmically �a la
NRG�, which leads to much faster convergence with cluster
size. The band discretization provided by LDECA is neces-
sary in two circumstances: �i� when finite-size effects pre-
clude ECA from converging to the correct ground state, or
when that convergence is too slow; and �ii� when one wants
to calculate quantitatively accurate LDOS. We will clearly
indicate when either method �ECA or LDECA� is used.

This paper is organized as follows: in Sec. II, we specify
the model used to represent the TQD and we briefly describe
the numerical methods used �FUSBMF, ECA, and LDECA�.
The results obtained for the case where the TQD is coupled
to two reservoirs are discussed in Sec. III. The change in the
transport properties caused by the introduction of a third lead
attached to the TQD is discussed in Sec. IV. Finally, in Sec.
V, we present the conclusions.

II. TQD MODEL AND NUMERICAL METHODS

The TQD system studied in this work is schematically
represented in Fig. 1�a�. The full Hamiltonian can be written
as

H = HQDs + Hleads + HQDs-leads, �1�

where HQDs describes the isolated TQD system, Hleads the
two �or three� independent leads, and HQDs-leads establishes
the contacts between the dots and the leads. Explicitly, we
have

HQDs = �
i=A,B,C

�

Vgidi�
† di� + U �

i=A,B,C
ni↑ni↓

+ �
�

�t3�dA�
† dB� + dB�

† dC�� + t4dA�
† dC� + H.c.� ,

�2�

where di�
† �di�� creates �annihilates� an electron with spin � in

the ith QD and energy controlled by the gate potential Vgi,
ni�=di�

† di� is the occupation number operator, and U is the
Coulomb repulsion energy for double occupancy in a QD.
The leads, modeled as semi-infinite chains, are represented
by the Hamiltonian
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FIG. 1. �Color online� �a� Schematic representation of triple
quantum dot system coupled to leads. As indicated by the arrows,
we will calculate the conductance between the left �l� and right �r�
contacts. �b� Energy diagram �in units of t3� for the molecular or-
bitals �as defined in Eq. �5�� as function of t4 / t3.
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Hleads = t �
i=1

�=L,R,P

�

�

�ci��
† c�i�+1�� + H.c.� , �3�

where ci��
† �ci��� creates �annihilates� an electron with spin �

in the ith site of the �th lead, and t is the kinetic hopping
between first neighbor sites. Finally, the contacts between the
QDs and the leads are established by the Hamiltonian

HQDs-leads = �
�

�t1�dA�
† c1L� + dC�

† c1R�� + t2dB�
† c1P� + H.c.� ,

�4�

where c1����=L ,R , P� annihilates an electron in the first site
of the �th lead. Note also that for all cases studied here, a
left↔ right symmetry applies.38

In order to gain some intuitive understanding of the TQD
system, let us consider the noninteracting case first. Let us
further assume that t1= t2=0, so that the QDs are completely
disconnected from the current leads. This is the “atomic
limit” of the model and can be solved exactly. In that case,
the Hamiltonian eigenvalues are �Vgi=Vg�,

E1 = Vg +
t4

2
−

1

2
�t4

2 + 8t3
2, �5a�

E2 = Vg − t4, �5b�

E3 = Vg +
t4

2
+

1

2
�t4

2 + 8t3
2. �5c�

The un-normalized states are given by ��A ,B ,C��,

��1� = 	1,−
t4

2t3
−

1

2t3

�t4
2 + 8t3

2,1
 , �6a�

��2� = �− 1,0,1� , �6b�

��3� = 	1,−
t4

2t3
+

1

2t3

�t4
2 + 8t3

2,1
 . �6c�

Borrowing the terminology from molecular physics, orbit-
als ��1�, ��2�, and ��3� will be denoted as bonding, nonbond-
ing, and antibonding from now on. For the particular case of
t4= t3� t�, E1=E2=Vg− t�, and E3=Vg+2t�, the system has a
doubly degenerate state. In this case, the eigenvalues E1, E2,
and E3 correspond, respectively, to the orbitals

��1� =
1
�6

�1,− 2,1� , �7a�

��2� =
1
�2

�− 1,0,1� , �7b�

��3� =
1

�3
�1,1,1� . �7c�

The degeneracy results from the symmetry of the system. In
group theory language, it is associated to a two-dimensional
irreducible representation of the C3v symmetry group. Note
that, obviously, each orbital is also SU�2� symmetric, there-
fore, at zero field they are doubly degenerate regarding the
spin orientation. For the full interacting Hamiltonian, these
orbitals hybridize with the conduction electron band, renor-
malizing the eigenvalues. Although this is a simplified pic-
ture, it helps to understand the transport properties of the
system. We will show that the degenerate orbitals have an
important influence in the conductance of the interacting
case.

In the interacting case, we are mainly interested in the
Kondo regime and will study in detail how the symmetry
�with its associated degeneracy� affects the transport proper-
ties. As mentioned above, the system is analyzed applying
the FUSBMF, ECA, and LDECA methods. All three methods
allow the calculation of the Green’s functions. We can easily
calculate the charge at each dot and the total conductance of
the system, which are respectively given by

�ni�� =
− 1

�


−�

�

Im�Gii
�����f���d� �8�

and

GT = 4�2t1
4�R�	F��L�	F��GLR�	F��2, �9�

where Gii
� is the local Green’s function of the QDs, f��� is

the Fermi function, �L�R��	F� is the density of states of the
left �right� lead’s first site, and GLR�	F� is the fully interact-
ing Green’s function that propagates an electron from the left
to the right lead, all calculated at the Fermi energy 	F. The
expression for the conductance can be derived from the
Keldysh formalism39 and is equivalent to the Landauer-
Büttiker formula for the noninteracting case.

A. Finite-U slave boson mean-field approximation

In the FUSBMF approach,34 one enlarges the Hilbert
space by introducing a set of slave boson operators êi, p̂i�,

and d̂i �i=A ,B ,C�, and replace the creation �di�
† � and annihi-

lation �di�� operators in the Hamiltonian by di�
† ẑi�

† and ẑi�di�,
respectively. Following Kotliar and Rukenstein,34 the opera-
tor ẑ takes the form

ẑi� = �1 − d̂i
†d̂i − p̂i�

† p̂i��1/2�êi
†p̂i� + p̂i�̄

† d̂i��1 − êi
†êi − p̂i�̄

† p̂i�̄�1/2.

�10�

Notice that the bosonic operators d̂i and êi do not carry spin
index. The enlarged Hilbert space is then restricted to the
physically meaningful subspace by imposing the constraints

P̂i = êi
†êi + �

�

p̂i�
† p̂i� + d̂i

†d̂i − 1 = 0 �11�

and
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Q̂i� = di�
† di� − p̂i�

† p̂i� − d̂i
†d̂i = 0. �12�

These constraints are enforced by introducing them into the
Hamiltonian through Lagrange multipliers 
i

�1� and 
i�
�2�. The

constraints �Eq. �11� force the dots to have empty, single, or
double occupancy only and Eq. �12� relates the boson to the
fermion occupancy. In the mean-field approximation, the bo-

son operators êi, p̂i�, and d̂i �and the corresponding Hermit-
ian conjugates� are replaced by their thermodynamical ex-
pectation values ei��êi�= �êi

†�, pi���p̂i��= �p̂i�
† �, and di

��d̂i�= �d̂i
†�. These expectation values, plus the Lagrange

multipliers, constitute a set of parameters to be determined
by minimizing the total energy �H�. In principle, a set of
seven self-consistent parameters are needed for each dot. Al-
though our system has three dots �which would require a
total of 21 parameters�, we take advantage of the symmetry
of the configuration, since QDs A and C are symmetric with
respect to B. Note that this symmetry imposes no additional
constraint on the parameter values. In contrast with a previ-
ous implementation of this method,17 our approach allows
for a more complete and versatile description of the system
in terms of its structural parameters. In particular, it can de-
scribe the transition from nonsymmetrical to highly sym-
metrical regimes as the interdot parameters are changed.

In the mean-field approximation, we can obtain self-
consistent expressions for the Green’s functions. Then, using
Eqs. �8� and �9�, we can calculate the charge at each dot and
the conductance. We note that all the calculations with
FUSBMF are implemented on the individual QD basis, while
ECA and LDECA utilize the molecular basis.

B. Embedded cluster approximation

The ECA method35,36 relies on the numerical determina-
tion of the ground state of a cluster with open boundary
conditions. In the following, we briefly sketch details of the
method.

The ECA method tackles the impurity problem in three
steps. First, the infinite system is naturally cut into two parts:
one part C �the cluster� contains the interacting region plus
as many noninteracting sites of the leads as possible, and a
second part R �the “rest”�, consisting of semi-infinite chains
positioned at left and right in relation to the cluster C. The
number of sites in C is denoted by NED. Second, Green’s
functions for both parts are computed independently: current
implementations of ECA utilize the Lanczos method40 to cal-
culate the interacting Green’s function of the interacting re-
gion, while those of the part R, being noninteracting, can be
computed exactly as well. In a final step, the artificially dis-
connected parts are reconnected by means of a Dyson equa-
tion, which dresses the interacting region’s Green’s function.
This step, the actual embedding, is crucial for capturing the
many-body physics associated with the Kondo effect. More-
over, although the clusters that can be solved exactly by
means of a Lanczos routine are rather small, being of the
order of NED�12 sites only, the embedding step successfully
compensates for that by dressing the cluster Green’s function
and effectively extending the many-body correlations, in-
duced by the presence of the impurity, into the semi-infinite

chains R. Obviously, strongly correlated regimes which de-
pend on extremely low energy scales will be difficult to treat
with the embedding procedure, although, as mentioned
above, great progress has been made lately in this respect by
introducing a logarithmic discretization procedure into the
algorithm.37

We now provide further detail on these steps. The Hamil-
tonians of the left and right semi-infinite, tight-binding
chains, i.e., the noninteracting R part, are described by

Hsc−L = t �
l=0,�

−�

�cl�
† cl−1� + H.c.� ,

Hsc−R = t �
l=NED+1,�

�

�cl�
† cl+1� + H.c.� , �13�

where in this notation, the sites labeled by i=1, . . . ,NED are
inside the cluster C. The semi-infinite chains are connected
to the cluster by the following term:

Hhy = V�c1�
† c0� + cNED�

† cNED+1�� + H.c., �14�

where V= t is the hopping in the broken link, connecting
parts R and C, used in the embedding procedure. The
Green’s functions for the cluster C and for the semi-infinite
chains are calculated at zero temperature. Fixing the number
of particles m and the z-axis projection of the total spin, Stotal

z ,
the ground state and the one-body propagators between all

the clusters’ sites are calculated. For example, gij
�m,Stotal

z �, the
undressed Green’s function for the cluster, propagates a par-
ticle between sites i and j inside the cluster. For the nonin-
teracting, semi-infinite chains, the Green’s functions g0

L and
gNED+1

R at the sites 0 and NED+1, located at the extreme ends
of the semi-infinite chains, at left and right to the cluster, can
be easily calculated as well.

The Dyson equation to calculate the dressed Green’s func-

tion matrix elements Gi,j
�m,Stotal

z � can therefore be written as

Gi,j
�m,Stotal

z � = gi,j
�m,Stotal

z � + gi,1
�m,Stotal

z �VG0,j
�m,Stotal

z � + gi,NED

�m,Stotal
z �VGNED+1,j

�m,Stotal
z �,

�15�

G0,j
�m,Stotal

z � = g0
LVG1,j

�m,Stotal
z �, �16a�

GNED+1,j
�m,Stotal

z � = gNED+1
R VGNED,j

�m,Stotal
z �, �16b�

where V, as mentioned above, is defined according to Hhy.
Equations �15� and �16� correspond to a chain approxima-
tion, where a locator-propagator diagrammatic expansion is
used.41,42 Note that ECA is exact in the case of U=0.

As mentioned before, the calculation of the propagator

gi,j
�m,Stotal

z � requires that fixed quantum numbers m and Stotal
z be

used. However, after the embedding procedure, these quan-
tum numbers are not good quantum numbers for the cluster
anymore. Therefore, we have to incorporate processes into
the ECA method that allow for charge fluctuations in the
cluster C. To accommodate this requirement, different imple-
mentations of ECA have been devised, either by including
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different spin mixing strategies35,43 or by moving the Fermi
energy of the leads.44

The spin mixing proceeds as follows. First, a cluster
Green’s function with mixed charge is defined through

gi,j
�m+p,pStotal

z � = �1 − p�gi,j
�m,0� + pgi,j

�m+1,Stotal
z �, �17�

where p takes values between 0 and 1, and we are assuming
that m is even, in which case, the corresponding Stotal

z =0. In
addition, note that for the cluster with charge m+1, Stotal

z

takes values �1 /2. The matrix element gi,j
�m+p,pStotal

z � corre-
sponds to a situation where the charge in the cluster is be-
tween m and m+1. The total charge in the cluster, before
embedding, can be easily calculated as

qpStotal
z

�p� = �1 − p�m + p�m + 1� = m + p . �18�

Using Eqs. �15� and �16�, the dressed Green’s function

ĜT
�m+p,pStotal

z � is obtained, and from this result, the charge in the
cluster can be calculated:

QpStotal
z

�p� =
− 1

�


−�

EF

Im��
i

Gi,i
�m+p,pStotal

z �����d� , �19�

where EF is the Fermi level. The value of p is calculated
self-consistently, satisfying

QpStotal
z

�p� = qpStotal
z

�p� . �20�

If there is spin reversal symmetry, e.g., no magnetic field is
applied, one can calculate the total Green’s function as

Gi,j
T �p� =

1

2 �
Stotal

z =�1/2

Gi,j
�m+p,pStotal

z �, �21�

where p satisfies Eq. �20�. Note that the propagator used in
Eq. �9�, GLR, can be obtained from the equation above by
choosing “i” as the first site in the left lead and “j” as the first
site in the right lead.

It is also important to emphasize that the charge fluctua-
tions taken into account by Eq. �17� are the ones between the
cluster and the rest of the system and not just the ones at the
interacting region described by Hint. The latter ones involve a
very localized neighborhood of the dot and as a consequence
are typically already well described on isolated clusters only.
Finally, it is noteworthy to point out that the self-consistent
solution for the charge mixing parameter p is either 0 or 1 in
the Kondo regime, and in particular at the particle-hole sym-
metric point Vg=−U /2 �when analyzing a single-QD prob-
lem�. Therefore, deep into the Kondo regime �i.e., at the
particle-hole symmetric point�, no charge mixing takes place
at all and very little charge mixing occurs in a window of
gate potential around the particle-hole symmetric point. The
parameter p will start to take a finite value �note that 0� p
�1� as the gate potential drives the system into the mixed-
valence regime. The purpose of the charge mixing is thus
mainly to smooth out the transition from an N electron to an
N�1 electron ground state, which for the bare cluster is a
crossover between ground states with different number of
particles.

As mentioned above, some of the calculations were done
using the LDECA method, which is an important extension
of ECA. In it, to obtain a better description of the low energy
physics of the system, the noninteracting band is logarithmi-
cally discretized. All the procedure described above remains
the same, but the band discretization allows a much faster
convergence to the Kondo regime with cluster size. A full
description of LDECA can be found in Ref. 37.

C. Numerical results

In order to study the conductance as a function of the
parameters of the system, we use the leads’ hopping coupling
t as the energy unit �t=1� and set the Fermi energy to zero
�	F=0�. All the results will be shown for zero temperature. In
the strong interdot coupling regime, i.e., t3 , t4 t1 , t2, the in-
dividual QDs levels mix into three molecular orbitals which
are coupled to the leads. The energy of these orbitals can be
controlled by gating the local energy states and by varying
the hopping matrix elements ratio t4 / t3 �see Fig. 1�b��. Their
widths depend upon the coupling to the conduction bands,
i.e., t1 and t2. In order to study the contribution of each
individual orbital to the conductance, we make them suffi-
ciently far apart from each other. To do so, we take t3
 t1 , t2. In particular, in Sec. III, we set t1=0.45, t2=0.0, t3
=0.5, and U=1.0 �which are the same parameters used in
Ref. 17�, and in Sec. IV we set t1=0.2, 0.0� t2�0.2, t3
=0.4, and U=0.5.45 In Sec. III, we vary t4 to manipulate the
symmetry of the system �0.0� t4 / t3�1.0�. In Sec. IV, be-
sides the same variation in t4 as in Sec. III, we also analyze
what is the effect of varying t2 �0.0� t2 / t1�1.0�; i.e., we
verify what is the effect of adding a third lead �connected to
QD B, see Fig. 1�a�� to the TQD system.

III. TQD CONNECTED TO TWO LEADS (t2=0)

A. TQD in series (t4=0)

Initially, taking advantage of the flexibility of the numeri-
cal methods used, we analyze the conductance when the
three QDs are aligned in series �t4=0� and coupled to two
leads only �i.e., we make t2=0�. Figure 2 shows the conduc-
tance as a function of the gate potential Vg=VgA=VgB=VgC.
In panel �a�, for t4=0 ��red� “�” signs indicate FUSBMF
results and �blue� solid dots display LDECA results�, the
three molecular orbitals are equally separated by an energy
value proportional to t3. As will be shown below, this origi-
nates from three Kondo peaks �occurring at different Vg val-
ues� associated to each molecular orbital.

The t4=0 case corresponds to the molecular regime re-
ported in Ref. 15 �with, as mentioned above, t3 t1�. For t4
�0, the system transforms into a triangular configuration,
which can be compared to the system studied in Ref. 17. In
the first case �t4=0, panel �a� in Fig. 2�, the three peaks in the
conductance occur at gate potential values where there is a
change in the occupation of the different molecular orbitals.
When the bonding orbital hosts one electron �for Vg /U
=0.5�, the system is in the Kondo regime and the character-
istic Abrikosov-Suhl resonance of this regime creates a path
for the electrons to cross from the left �L� to the right �R�
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lead �this will be more clearly demonstrated in Fig. 3�d��.
Decreasing Vg, we find a valley corresponding to the accom-
modation of a second electron in the bonding state, creating
a singlet that destroys the Kondo effect. The middle peak
corresponds to the presence of a third electron in the system,
now sitting in the nonbonding state, since the bonding state
is full. Again, the conductance peak reflects the Kondo reso-
nance at the Fermi level due to an unpaired electron that is
antiferromagnetically correlated with the conduction elec-
trons �see Fig. 3�b� and discussion below�. The following
valley and the third peak are a consequence of the suppres-
sion of the Kondo effect due to double occupation of the
nonbonding orbital and the unpaired electron in the anti-
bonding orbital, respectively. Finally, the final drop in the
conductance results from the destruction of the Kondo effect
due to the sixth electron entering into the system. The elec-
tron occupancies at the conductance valleys are indicated in
panel �a�.

B. LDECA LDOS results for molecular orbitals (t4=0)

Before analyzing the effect of introducing a finite t4, we
want to show LDOS results at the particle-hole symmetric
point �Vg=−U /2� �Figs. 3�a� and 3�b�� and at Vg=U /2 �Figs.
3�c� and 3�d�� for the t4=0.0 curve in Fig. 2�a�. In the upper
left panel in Fig. 3, we have the LDOS for each QD for Vg
=−U /2. As expected, QDs A and C have the same LDOS
�dark �black� solid curve�, and the peak at �=0 is indicative
that they participate in a Kondo effect. Indeed, a clear Kondo

peak can be seen at the Fermi energy EF ��=0.0� for QDs A
and C, while the LDOS for QD B has a gap at EF �dashed
�red� curve in panel �a��. This will be important later on to
understand the results when the upper lead �P� is coupled to
QD B �for finite t2�. The LDOS for the appropriate orbital
states for this configuration �t4=0.0 and Vg=−U /2� is shown
in the lower left panel. The bonding orbital �gray �green�
solid curve� has most of its LDOS below EF indicating that it
is already almost fully occupied. In contrast, the antibonding
orbital has, at this particular gate potential, most of its LDOS
above EF and is therefore almost completely empty. The non-
bonding orbital �which is an antisymmetrical combination of
QDs A and C, only, see Eq. �6b�� displays a Kondo peak at
EF, which is responsible for the unitary conductance seen for
t4=0 in Fig. 2�a� at Vg=−U /2. As to the rightmost peak in
Fig. 2�a�, notice, as can be seen in the upper right panel in
Fig. 3�c�, that all three QDs participate in the Kondo effect
for Vg=U /2. In the lower right panel, one sees the LDOS for
the orbital states, now indicating that the bonding state has a
Kondo peak, while the other two orbitals are nearly empty.46

The inset shows details of the Kondo peak, for the bonding
orbital, including the shorter peaks associated to 	 and 	
+U, indicated by vertical arrows.

In view of the LDOS results in Fig. 3, it is important to
note that we are not being very rigorous when using the
terms “Kondo peak,” “Kondo state,” “Kondo regime,” and
so on, to refer to the results presented in this section. As
mentioned above, and repeated below, the current regime is
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FIG. 2. �Color online� Conductance as function of gate poten-
tial, Vg=VgA=VgB=VgC, for various values of t4, as indicated in the
panels. �Blue� solid dots indicate LDECA results for clusters with
11 sites; �red� � signs are FUSBMF results. Notice in panel �a�,
where t4=0, that the number of electrons in the TQD system is
indicated for each one of the valleys, where the Kondo effect is
absent. The structure evolves from three to two peaks as the system
goes from three dots in series �t4=0.0, panel �a��, to isosceles �t4

� t3=0.5, panels �b� and �c��, and finally to equilateral triangle sym-
metry �t4= t3, panel �d��. For all panels, U=1.0, t1=0.45, t2=0.0,
and t3=0.5. The very small discrepancy between LDECA and
FUSBMF in panel �d� comes from a finite-size effect in the LDECA
results.
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FIG. 3. �Color online� LDOS results using LDECA �nine sites�
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�green� curve� is almost fully occupied �most of its LDOS is below
the Fermi energy� and the antibonding orbital �dashed �red� curve�
is almost empty �most of its LDOS is above the Fermi energy�. In
�d�, it is now the bonding state that has a Kondo resonance, while
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inset shows a more detailed view of the Kondo peak for the bonding
orbital, where the small LDOS peaks for the 	 and 	+U states are
indicated by arrows.
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more akin to a crossover from strict intermediate valence to
strict Kondo regime. The use of the word Kondo here has
therefore to be taken with a certain degree of caution and the
understanding of its ambiguous meaning.

C. Finite t4 and interference effects (t4É t3)

Now, as t4 increases from 0 to 0.5 �panels �b� to �d� in Fig.
2�, the bonding and nonbonding energies become closer to
each other �see Eq. �5��, and finally, become degenerate for
t4= t3=0.5 �see Fig. 1�b��, when the system possesses an
equilateral triangle symmetry. Note that the peaks in the con-
ductance curves shown in Fig. 2, corresponding to the bond-
ing �rightmost peak� and nonbonding �central peak� orbitals,
merge into each other and the conductance decreases as t4
→ t3. As shown above in Fig. 3, the LDOS of the molecular
orbitals provides a clearer picture of the Kondo effect than
the LDOS of each QD. For example, when t4=0, the right-
most conductance peak in Fig. 2�a� can be directly associated
to the Kondo peak in Fig. 3�d� �light �green� solid curve�. As
mentioned above, the molecular orbitals provide a natural
description of the Kondo effect when the intradot hoppings
are larger than the coupling to the leads.

In the same manner that the LDOS for each molecular
orbital provides important insight into the conductance
through the TQD system, one can define a “partial” conduc-
tance Gi through each molecular orbital “i” �i=1,2 ,3� in the
following way �full details are given in Ref. 47�:

Gi =
e2

h
�t2g̃ltli��	F��2�GiR�	F��2, �22�

where g̃l is the Green’s function in the first site of the left
contact, tli is the coupling of the left lead with orbital ��i�,
and GiR is the dressed Green’s function that moves an elec-
tron from ��i� �where i=1,2 ,3� to the first site in the right
contact. For t4� t3 and Vg values such that mostly molecular
orbitals i=1,2 are involved in the transport of charge �i.e.,
−0.5�Vg /U�0.5, in panels �c� and �d� in Fig. 2�, the total
conductance GT can be approximated by the equation

GT � G12 = G1 + G2 + 2�G1G2 cos ��12, �23�

where

i��12 = log�G1R

G2R

�G2R�
�G1R�� �24�

defines the phase difference between a path that goes through
orbital ��1� and a path that goes through orbital ��2�. In the
case where all three orbitals are contributing, a simple exten-
sion of these equations should be used and it gives results
exactly equal to the ones shown in Fig. 2. We should note
that the Gi functions have a characteristic “width” given by
the coupling to the leads �and the weight of the orbital at the
connecting dot�, as well as a position dependence on Vg, as
the energy of each orbital shifts with respect to the Fermi
energy.

Equation �23� shows that when there is no energy overlap
between ��1� and ��2� �therefore, no overlap between G1 and
G2�, which occurs when the corresponding orbitals are well

separated in energy, the last interference term is zero, inde-
pendently of the value of the phase difference. This is essen-
tially the case for the conductance results for t4=0 in Fig.
2�a�. In this case, a simple sum of the partial conductances Gi
through each molecular orbital is very similar �not shown� to
the total conductance �and more so as the level separation
increases for larger values of t3 / t1�. However, as shown next
�see Fig. 4�, once the molecular orbital levels start to overlap,
the partial conductances Gi are no longer simply related to
the total conductance, as the last term in Eq. �23� now plays
a role, and its effect will obviously depend on the value of
��12. Therefore, the calculation of the partial conductances,
and the phase difference of the corresponding Green’s func-
tions, provides us with information about possible interfer-
ence effects, as shown next. However, a word of caution is
necessary. Since the simple addition of the partial conduc-
tances does not reproduce the total conductance when there
is overlap between the molecular levels, we will not discuss
the details of the Gi’s, as they do not, by themselves, de-
scribe an experimentally observable quantity. Obviously,
when there is no overlap, as is the case for t3� t1 and t4=0
�see Sec. IV�, the partial conductance of each orbital is iden-
tical to the total conductance.

Figure 4 shows, in the main panel, LDECA partial con-
ductances G1 �short-dashed �green� line� and G2 �thick solid
�red� line�, for molecular orbitals ��1� and ��2�, respectively,
the total conductance GT �long-dashed �magenta� line�,
which takes in account all three orbitals, and G12 �thin solid
�blue� line�, as obtained through Eq. �23�, where just orbitals
��1� and ��2� are taken in account. The reason why G12 and
GT are so similar is because orbital ��3� is at a considerably
higher energy in relation to the degenerate orbitals and there-
fore its contribution to the conductance for gate potential
values around Vg=0.5U is minimal. The phase difference
��12 �in units of ��, as a function of gate potential, is shown
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FIG. 4. �Color online� Detail of the conductance �calculated
with LDECA—11 sites� around the degenerate states ��1� and ��2�:
G1 �short dash �green� curve� and G2 �thick solid �red� curve�, as
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the total conductance �involving all molecular orbitals� GT �long
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difference between electrons propagating through molecular orbit-
als ��1� and ��2�. See text for details.
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in the inset. Note that the dip in the total conductance is
related to a Vg value where both partial conductances have
the same value and ��12=� �see inset�.48

The conductance features described in Fig. 2 are quite
different from the results reported by the authors in Ref. 17.
Although their system is the same as ours �and the param-
eters are the same�, the authors of Ref. 17 consider, for sim-
plicity, a regime where the total molecular region is de-
scribed by a single level impurity, which allowed them to
reduce the number of bosons in the FUSBMF approximation.
However, as our results show, the details of the internal
structure of the molecule are essential to determine its trans-
port properties. Notice that as t4 increases, not only the peaks
shift their positions but, as previously mentioned, also the
structure of the peaks changes.

Panels �c� and �d� in Fig. 2 display slight quantitative
discrepancies between LDECA and FUSBMF results al-
though the overall qualitative agreement between the two
techniques is quite good. These discrepancies stem from
finite-size effects in the LDECA results.49 LDECA calcula-
tions for increasingly larger exactly diagonalized clusters
�not shown� indicate that the LDECA results gradually ap-
proach those from FUSBMF. This convergence becomes
slower as TK decreases, but the LDECA and FUSBMF quali-
tatively agree for all regimes we checked.

Note that in the limit of strong coupling between dots A
and C �t4� t3, and for U2t4�, a two-stage Kondo regime
�TSK� should be expected �at half-filling�.12,37 In this regime,
dot B is weakly coupled to the band through the Kondo
resonances of quantum dots A and C, producing a second
Kondo stage, with an exponentially smaller characteristic en-
ergy TTSK�TK. This special regime will be analyzed in a
future work.

D. S=1 Kondo effect (t4= t3)

In addition to interference, the degeneracy �caused by
symmetry� has an additional effect: it causes the two degen-
erate orbitals �when occupied by one electron each� to de-
velop a ferromagnetic correlation.50 Indeed, when the struc-
ture reaches the equilateral triangle symmetry �i.e., t4= t3
=0.5�, the two degenerate molecular orbitals are charged si-
multaneously. In this case, due to the Kondo correlation, the
first two electrons enter in the system with parallel spins and
the system presents an S=1 Kondo effect. This can be quan-
titatively appreciated by calculating the total spin for the
three QDs as a function of gate potential, as well as the
individual occupancy of each of the three molecular orbitals.
This is shown by the LDECA results in Fig. 5, where, to-
gether with the total conductance �long dash �magenta�
curve�, the charge occupancy for each of the molecular or-
bitals is shown �thin solid �purple� curve for orbital ��1�,
dot-dashed �black� curve for orbital ��2�, and short dash
�blue� curve for orbital ��3��, and the total spin in the three
QDs �thick solid �green� curve�. Notice that the occupancy
dependence with Vg for the two degenerate orbitals is not
identical because they couple differently to the leads �orbital
��2� couples more strongly than ��1��. As mentioned above,
the maximum in the value of the total spin �ST�0.7, see

thick solid �green� curve� occurs when there is approximately
one electron51 in each of the degenerate orbitals, which
couple through an effective ferromagnetic interaction.50

�Note that a value of S=1 will not be obtained for such large
ratios of hopping over Coulomb repulsion.� This spin con-
figuration reduces the ground-state energy by Kondo corre-
lating the total S=1 spin with the conduction electrons. In
this region of gate potential, the system is in the Kondo
regime, which provides a way for the electrons at the Fermi
level to cross from QD A to QD C. However, having two
interfering channels at their disposal, constructed from the
two degenerate orbitals, the conductance �long dash �ma-
genta� curve� possesses a very clear Fano-type antiresonance.
For lower gate potential values �Vg�−1.75�, only orbital
��3� is involved in electron transport and therefore the con-
ductance has the usual Lorentzian shape, with maximum
value G0, and ST�0.4.

E. Deeper into Kondo and molecular regimes

As mentioned above, the parameters in this section were
chosen to match those in Ref. 17. As expected, and clearly
demonstrated by the LDOS’s in Fig. 3, the TQD system for
these parameters seems to be closer to the intermediate va-
lence regime than to the Kondo regime. Also, based on the
fact that t1� t3, one may question if the molecular orbitals
are really the most appropriate description of the single elec-
tron properties of the system. In view of that, in Sec. IV,
where the effect of introducing a third lead will be analyzed,
the parameters will be changed so that the system will be
deeper into the Kondo regime �with a larger U /� than in the
current section�. To accomplish that, we will choose U=0.5
and t1=0.2. In addition, in the next section, we will choose
t3=0.4 �with 0� t4� t3�, which brings the system more ef-
fectively into the molecular regime �as t3 / t1=2�. To illustrate
both points, Fig. 6 shows the same LDOS results as in Fig. 3,
but now for the new parameter set. It is apparent that the
Kondo peaks for the new parameters are more well defined.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
V

g
/ U

0

0.2

0.4

0.6

0.8

1

G
T
,

<
n>

,
<

S T
>

U= 1
t
1
= 0.45

t
2
= 0.0

t
3
= t

4
= 0.5

LDECA
G

T
S

T
n

1
n

2
n

3

FIG. 5. �Color online� LDECA results �11 sites� for conductance
�long dash �magenta� curve� same parameters as in Fig. 4. Charge
per spin for each orbital ���1�, thin solid �purple�, ��2�, dot-dash
�black�, and ��3�, short dash �blue��, and total spin �thick solid
�green��, as a function of gate potential. Note that the total spin ST

is defined as �S�1+S�2�2�S�T
2 =ST�ST+1�, where a value of ST=1 in-

dicates a triplet. Note that S� i= ��i��S�A+S�B+S�C���i�, for i=1,2.

VERNEK et al. PHYSICAL REVIEW B 80, 035119 �2009�

035119-8



For example, compare the dark solid �black� curves in panel
�b� of both figures, which display the Kondo peak for the
nonbonding orbital ���2��. The peak in Fig. 6�b� clearly
shows a sharper structure at the Fermi energy than the one in
Fig. 3�b� indicating that this system is deeper into the Kondo
regime. It is also apparent that the LDOS’s of the different
molecular orbitals have much less overlap in Fig. 6, under-
scoring the fact that, for the parameters to be used in Sec. IV,
the molecular orbitals provide a more suitable description of
the TQD system. Nonetheless, notice that the molecular or-
bitals provide an appropriate framework to understand the
results presented in Sec. III as well, as it is clear that Figs. 3
and 6 are qualitatively similar.

IV. LOSS OF AMPLITUDE THROUGH A THIRD LEAD

In this section, as just mentioned, we use different param-
eters �t1=0.2, t3=0.4, and U=0.5� from the ones used in Sec.
III. The objective is to have a larger value of U /� and there-
fore move deeper into the Kondo regime and away from the
intermediate valence.

Based on a comparison of the results in Fig. 2 with those
in Figs. 7 and 8, a clear picture emerges of the effect of a
third lead connected to QD B �see Fig. 1�a��. Using the labels
defined in Fig. 1�a� for the QDs, let us qualitatively describe
how the coherent propagation of electrons is affected by the
additional lead. Assume that an electron is traveling from the
left into QD A. After arriving at QD A, the electronic wave
splits into two: one travels via QD C and the other via QD B.
The latter portion, on reaching QD B, will be split into two
again: one travels away through the upper lead, while the
other travels via QD C. We can view this process of “elec-
tron loss” through lead P �the “third” lead� as being a process
of amplitude leakage, like that occurring at a beam splitter.

The remaining two traveling waves �traveling through the
triangle, in the direction of QD C� are coherent and will
interfere when they propagate out of the system through the
right lead. It will be shown below that the introduction of
lead P does not make the electron propagation incoherent,
since the propagation through overlapping molecular orbital
levels clearly shows signs of interference, the same way as
observed for t2=0, when the third lead is absent, as was
discussed in Figs. 2 and 4. To analyze the results for conduc-
tance and LDOS, we use again the molecular orbital basis.
The strategy for this analysis can be summarized by the fol-
lowing two observations: first, by analyzing the conductance
through each molecular orbital, one realizes that the percent-
age of the traveling wave lost through lead P will depend on
the coupling of each molecular orbital to it. This “loss”
through lead P will result in a lower partial conductance
through the molecular orbital in question. Note that, for a
fixed value of t2, the coupling to lead P depends only on the
coefficient of QD B in each molecular orbital, which varies
with the ratio t4 / t3. Second, if we assume that the transport
through each molecular orbital is coherent �even after cou-
pling QD B to lead P�, the transport through two overlapping
molecular orbital levels should give origin to interference
effects, as in the case where lead P is not present �see Sec.
III�. We will show evidence below that this is indeed the
case.
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FIG. 6. �Color online� Same LDECA calculations �nine sites� as
in Fig. 3, but now for U=0.5, t1=0.2, t2=0.0, t3=0.4, and t4=0.
Note that the Kondo peaks are better defined than the ones in Fig. 3,
as there is less overlap of the LDOS from different molecular or-
bitals, indicating that for these parameters the system is deeper into
the Kondo and molecular regimes. Nonetheless, the qualitative
similarities with Fig. 3 are evident, indicating that the molecular
orbitals are appropriate for the description of the results in Sec. III.
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FIG. 7. �Color online� Conductance as function of gate poten-
tial, Vg=VgA=VgB=VgC, for different values of t2, showing the ef-
fect of the “amplitude loss” due to the presence of the third lead.
The other parameters are U=0.5, t1=0.2, t3=0.4, and t4=0. Panels
�a� and �b� refer to FUSBMF and ECA �six sites� results,
respectively.
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A. TQD in series (t4=0)

Before presenting the results, we should point out that
most of the embedded cluster results in this section were
obtained with ECA, not LDECA.52 As will be seen below, in
contrast to Fig. 2�d�, where the LDECA results suffer from
minor finite-size effects, no such effects were detected after
the third lead is connected. The higher symmetry obtained
when t2= t1 leads to no discernible finite-size effects for t4
= t3. There are two main reasons for that. First, the third
contact provides a way for the “frozen” spin �present for t2
=0�49 to delocalize from QD B. Second, when t4= t3 and t2
= t1, any net spin would be equally distributed among the
three QDs, diminishing its ability to suppress the Kondo ef-
fect in an ECA calculation.43

Let us start by turning on the connection of QD B to lead
P, by varying t2 from zero to t1=0.2. To facilitate the analy-
sis, we start with t4=0 �three QDs in series, see Fig. 7�. In
this case, the molecular orbitals are

��1� = �1,− �2,1�/2, �25a�

��2� = �− 1,0,1�/�2, �25b�

��3� = �1,�2,1�/2, �25c�

with E1=Vg−�2t3, E2=Vg, and E3=Vg+�2t3. Since state
��2� does not involve QD B, the processes of wave splitting
and loss of amplitude of the propagating wave through lead
P will not occur when ��2� is the state near the Fermi energy
�i.e., Vg=−U /2�. This results in the partial conductance G2
through level ��2� being unitary, i.e., G2=G0=2e2 /h, for any
value of t2. This is clearly what happens to the central peak
in Fig. 7, which is associated to the molecular orbital ��2�, as
previously discussed in Figs. 2�a� and 3�b�. The conductance
through the other two molecular levels �rightmost and left-
most peaks in Fig. 7�, as mentioned above, will depend on
the weight of QD B in ��1� and ��3�. Note that, as mentioned
above, because of the choice of parameters �t3 / t1=2�, the
total conductance is basically the direct sum of the partial
conductances when t4=0.0 �as there is minimal overlap be-
tween the molecular orbitals�. For t4=0 �see Eq. �25� above�,
QD B has the same coefficient in ��1� and ��3�, therefore
G1=G3 for any value of t2 �see the identical leftmost and
rightmost peaks in Fig. 7�. The simultaneous and drastic de-
crease in G1 and G3 as t2 increases comes from the increase
in the coupling of QD B to lead P, which increases the am-
plitude loss through the third lead. Note the agreement be-
tween FUSBMF �top panel in Fig. 7� and ECA �bottom
panel�.53

B. Finite t4

An interesting picture emerges for finite t4. In Fig. 8, the
top four panels show a comparison of conductance results
calculated with FUSBMF �“+” �red� signs� and ECA �stars
�blue�� for t4=0.1, 0.2, 0.3, and 0.4. The most salient feature
in these results is the abrupt suppression of conductance
when t4 varies from 0.3 to 0.4. An explanation of this abrupt
suppression is presented in three of the lower panels, which
show ECA results for the total conductance �for t4=0.1, 0.3,
and 0.4, in panels �e�, �f�, and �g�, respectively�, as well as
partial conductances through each molecular orbital. In addi-
tion, panel �h� shows phase difference results �see Eq. �24��
for paths going through either molecular orbital ��1� or ��2�,
for varying values of t4.

As t4 increases, the coefficient of QD B in ��1� increases
monotonically �in absolute value�, until it reaches −2 /�6 for
t4= t3, while it decreases monotonically for orbital ��3�,
reaching 1 /�3 for t4= t3 �see Eqs. �6� and �7��. In accordance
to that, G1 decreases as t4 increases, while G3 increases,
because of the associated changes in the coupling of states
��1� and ��3� to lead P: more coupling ���1��, more “leak-
age”; less coupling ���3��, less leakage. Note that, in panels
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FIG. 8. �Color online� �a�–�d�: Conductance as function of gate
potential, Vg=VgA=VgB=VgC, obtained with FUSBMF �+ signs
�red�� and ECA �six sites� �stars �blue�� for several values of t4.
Panels �a�–�d� show how the peak structure evolves from three to
two peaks as the system goes from isosceles to equilateral triangle
symmetry �t4= t3=0.4, panel �d��. For all panels, U=0.5, t2= t1

=0.2, and t3=0.4. Panels �e�–�g� show ECA �six sites� results for
the partial conductances Gi �G1, thick solid �red� curve; G2, solid
�blue� dots curve; G3, open squares �green� curve�, together with the
total conductance GT �thin solid �black� curve�. Panel �h� shows the
evolution with t4 of the phase difference ��12 between molecular
orbitals ��1� and ��2�, in units of �.
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�e� to �g� in Fig. 8, this is evident, as the solid �red� curve
corresponds to G1 and the open squares �green� curve corre-
sponds to G3. In addition, since molecular orbital ��2� is
independent of t4 �see Eq. �6b��, the maximum value of G2

�solid �blue� dots� is G0 for all values of t4 �no coupling of
lead P to ��2� results in no leakage�. This can also be clearly
seen in panels �e� to �g� of Fig. 8, where results for G2 are
shown with solid dots �blue�. Finally, as t4 approaches t3,
molecular orbitals ��1� and ��2� approach each other �see
Fig. 1�b��, allowing interference between them to strongly
influence the transport properties of the system for Vg values
where these orbitals are close to the Fermi energy. It so hap-
pens that the phase difference between the paths through
these two orbitals �as calculated in accordance to Sec. III,
Eq. �24�, and shown in Fig. 8�h��, for the relevant values of
Vg, changes from approximately zero �for t4=0.1, dashed
�red� curve� to � �for t4= t3=0.4, double-dot-dash �black�
curve�. As discussed in Sec. III, the interference will have
noticeable effects only when the molecular orbitals ��1� and
��2� are close enough in energy �for t4� t3�. At this point, the
interference will be mostly destructive, as the phase differ-
ence is �� �the resulting total conductance GT is shown for
all values of t4 in panels �e� to �g� as a thin solid �black�
curve�. We see the abrupt suppression of the central peak
�associated to G2� due to its interference with the right-side
peak �associated to G1� for t4= t3 �see panel �g� in Fig. 8�.

One may ask why the suppression of the conductance in
Fig. 8�d� is less severe than the one in Fig. 2�d� �note that
there are no Fano antiresonances in Fig. 8�d��. The reason is
that, because of the presence of lead P, G1 is considerably
less than the unitary conductance value G0 �see thick solid
�red� curve in Fig. 8�g��. Therefore, destructive interference
cannot be total �even if the phase difference is ��, as G2 and
G1 have widely different values. This is not the case in Fig.
4, where both partial conductances have similar values �be-
ing exactly the same at one Vg value�, as in that case lead P
is not present.

The results just described for the conductance of the cen-
tral peak ���2�� in Fig. 7, where t2 takes values 0, 0.1, and
0.2, can also be understood in terms of the LDECA density
of states. Figure 9 shows the LDOS for QDs A and C �panel
�a��, and QD B �panel �b��, for Vg=−U /2 �corresponding to
the central peak in Fig. 7�. Notice that there is no sizable
change in the value of the density of states at the Fermi
energy ��=0�, for any of the QDs, as t2 varies. Since in this
case the conductance is directly proportional to the density
of states at the Fermi energy, this leads to a central peak in
Fig. 7 that does not change with t2. Obviously, this indepen-
dence from t2 comes from the fact that the density of states
of QD B is very small in a broad interval around the Fermi
energy when the charge transport occurs through orbital ��2�
resulting in lead P being effectively disconnected from the
TQD for this value of Vg. Notice that as lead P couples to the
other molecular orbitals ���1� and ��3��, there is no longer a
simple proportionality relation between the LDOS and the
conductance,54 so that no simple direct connection can be
made between the LDOS at the Fermi energy and the con-
ductance �as was done in Fig. 3�.

V. CONCLUSIONS

We have studied the transport properties of a TQD in the
molecular regime coupled to leads. By applying the
FUSBMF, and the ECA and LDECA approaches, we have
calculated the conductance of the TQD system for different
symmetries and different configurations of the leads. For the
two-lead case, we have calculated the conductance for both
series and triangle configurations. In the series configuration,
LDECA and FUSBMF results agree with each other and with
the results for the molecular regime obtained in Ref. 19,
where the Kondo effect has been studied in detail. In the
triangular symmetry, the quantitative results obtained by
FUSBMF and LDECA differ slightly as the equilateral sym-
metry is approached, due to a finite-size effect in the rela-
tively small clusters accessible to LDECA, although agree-
ment is still very good �see Fig. 2�d��. The suppression of
conductance in the regime where approximately two elec-
trons occupy the triangle was explained by LDECA as an
interference effect between two degenerate molecular orbit-
als, utilizing the concept of partial conductance. In addition,
our results for triangular symmetry differ from those pre-
sented recently in Ref. 17. We believe that the approach pur-
sued here, where details of the internal structure of the inter-
acting region of the system are taken fully into account, is
very important to explain the conductance of the TQD sys-
tem. In fact, our results show that changes in the internal
couplings of the TQD dramatically change the features of the
conductance. We also found that the degeneracy of the mo-
lecular orbitals at equilateral symmetry, when two electrons
occupy the TQD, induces an effective ferromagnetic interac-
tion between the spins localized in the interacting region50

leading to an S=1 Kondo effect.
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FIG. 9. �Color online� LDOS calculated using LDECA �six
sites� for U=0.5, t1=0.2, t3=0.4, t4=0, and varying values of t2, at
the particle-hole symmetric point �Vg /U=−0.5�. Panel �a� contains
results for QDs A and C and panel �b� for QD B. In panel �a�, it is
evident that coupling QD B to lead P �t2=0.1, dashed �red� curve,
and t2=0.2, solid �blue� dots curve� has no effect over the density of
states of QDs A and C, as curves are indistinguishable from the t2

=0 case �solid �black� curve�. Thus, the conductance does not
change with t2 �see Fig. 7�. Note in panel �b� that QD B has no
spectral weight at �=0 for any value of t2 implying that when
charge transport occurs through orbital ��2�, the conductance of the
TQD is not affected by its coupling to lead P.
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In the TQD series configuration, our results show that the
third lead produces a strong suppression in the bonding and
antibonding orbital conductance peaks �Fig. 7�. The non-
bonding peak, however, remains unchanged, since this or-
bital does not have the appropriate symmetry to couple to
lead P. This suppression of conductance can be seen as a
“loss of amplitude” through lead P similar to the effect oc-
curring with beam splitters in optics. If one thinks of the
conductance in terms of transmission of waves through the
interacting region, the introduction of lead P provides an ad-
ditional transmission channel, which clearly affects the con-
ductance between leads L and R. This “loss of amplitude”
idea is then used to understand the conductance results in the
triangular symmetry. In particular, it explains why the inter-
ference effects seem less effective in suppressing the conduc-
tance in the equilateral symmetry �i.e., why no Fano anti-
resonance occurs�: the loss of amplitude prevents the
conductance through molecular orbital ��1� from reaching

the unitary limit leading to a decrease in the destructive in-
terference, as discussed in detail in Fig. 8. We should remark
that the excellent overall quantitative agreement of results
obtained with FUSBMF, ECA, and LDECA �Refs. 49 and
53� �which rely on totally different approximations� makes
our conclusions much more reliable and robust. Moreover,
the combination of techniques allows a better insight into the
physics of the different geometries.
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50 When two electrons are each occupying orbitals ��1� and ��2�,
for Vg /U�0.5 �see Fig. 5, Ref. 51�, the hopping from one lead
to the orbitals �and vice versa� is maximized when the spins of
the electrons in the molecular orbitals ��1� and ��2� are parallel
to each other, i.e., ferromagnetically correlated, generating an
effective ferromagnetic interaction between the orbitals. See G.
B. Martins, C. A. Büsser, K. A. Al-Hassanieh, A. Moreo, and E.
Dagotto, Phys. Rev. Lett. 94, 026804 �2005� for a similar effect
in a different system.

51 Note that results for �ni� in Fig. 5 have to be multiplied by 2 to
account for different spin orientations.

52 Except, obviously, for the LDOS results, where LDECA was
used with 
�1.0.

53 Although there is good qualitative agreement between FUSBMF
and ECA in Fig. 7, the ECA conductance peaks are narrower.
This arises from the fact that the clusters used for these calcu-
lations had just six sites, and therefore the results are not fully
size-converged. The next cluster size available for this geometry
contains 12 sites. Although feasible, ECA calculations for this
cluster size consume considerably more CPU time.

54 To confirm this, a test for a simplified system containing a
single-level QD with three leads shows that the conductance
through two of the leads is not directly proportional to the
LDOS at the QD.
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