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We performed a local spectroscopy of the Landau levels density of states using gated mesoscopic Hall bars
placed at very low temperature in the integer quantum Hall regime. The transverse and longitudinal conduc-
tances were measured while scanning both the two-dimensional electron density and the applied magnetic field.
We observe a succession of sharp peaks due to backscattering across the samples caused by tunneling effects.
Using temperature as a parameter in the range of 0.1–1 K, we characterize those tunnel processes: a resonant
double-barrier tunneling and a single-barrier tunneling which corresponds to the variable range hopping re-
gime. We show that for vanishing temperature and noninteger filling factor � the conductance ��T=0,�� does
not vanish unlike the case of wide samples: instead, it converges to a limit function �S��� that is a noisy image
of the Landau levels density of states.
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In standard Hall bars whose widths are several tenths of
microns, the quantum Hall effect �QHE� plateaus are suffi-
ciently quantized due to the absence of backscattering,1 to
allow the conservation of the Ohm’s etalon.2 However, in
mesoscopic Hall bars, fluctuations appear in both Hall resis-
tance �RH� and longitudinal resistance �RL� in a large region
between Hall plateaus due to backscattering between both
edges of the mesoscopic sample.3,4

The first astonishing characteristic of these fluctuations,
revealed by Cobden et al.3 and Machida et al.,4 is that one
observes parallel lines along two directions when plotting
RL�B ,Ns� in a three-dimensional diagram as in Fig. 1�a�
�where B is the magnetic field and Ns is the two-dimensional
�2D� electron density�. This behavior has been attributed to
charging effects3 or modifications of the network of com-
pressible and incompressible regions.4 Recently, Ilani et al.5

found similar lines but all of them parallel to one direction
when measuring the compressibility of the 2D electron gas
�2DEG�. This effect is more pronounced at the plateaus cen-
ter, where the filling factor � is an integer and the density of
states �DOS� vanishes, i.e., when adding an electron costs a
finite energy. Thus the peaks observed by Ilani et al. repre-
sent the charging of the localized compressible puddles of
electrons, as in conventional Coulomb blockade experi-
ments. Very recently, Sohrmann et al.6 showed via simula-
tions that in the case of Ilani et al. the Coulomb interaction
modifies the width of the compressible states and, conse-
quently, the contrast of the lines observed in their experi-
ments. In our experiments, as in the experiments of Cobden
et al. and Machida et al., we are concerned with the transi-
tion regions between Hall plateaus, where the filling factor �
is half-integer. The second astonishing characteristic of these
conductance fluctuations, revealed by Peled et al.,7 is the
existence of correlations between the Hall resistance RH�B�
and the longitudinal resistance RL�B�. Zhou et al.,8 by using
a single-electron model based on a generalization of the
Landauer-Buttiker formula,1 demonstrated that these correla-
tions reflect the symmetry of the diffusion matrix, a direct
consequence of the chirality of the conduction processes that
govern these fluctuations.

So, two aspects of the phenomenon are entangled and

finally not contradictory: following Zhou et al.,9 the correla-
tions observed by Peled et al. can be understood in the gen-
eral theory of the one-electron S matrix; following Sohrmann
et al., the visibility of the quantized lines in the �B ,Ns� plane
reflects the nontrivial screening ability of the 2DEG at me-
soscopic scale,10 which depends on the ratio between the
strength of the Coulomb interaction and the disorder
potential.6

Here we interpret the conductance fluctuations as a one-
electron tunneling effect between incompressible puddles at
integer �. The characteristics of the tunnel process depend on
the topology of the electron puddles.4,5 However, to support
this interpretation, it was necessary to identify definitely the
conductance fluctuations with the transport mechanisms pro-
posed by Zhou et al. In order to quantify precisely the hop-
ping regime as well as the double-barrier tunneling, we have
varied the temperature in the range for kBT to scale the fun-
damental energies.

FIG. 1. �Color online� �a� In the B-ns plane, the fine structure of
the plateau-to-plateau transition appears as two series of entangled
lines whose slope is quantized. Lines are guide for the eyes: �=2 in
black, �=1 in white. �b� In blue �dark gray� RL=R14,23, in green
�gray� RH=R14,62, and in orange �light gray� RL+RH, showing both
correlated and noncorrelated regime. �c� Photo of the 13 �m-long
TH1.5.
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In this Brief Report we report experimental results ob-
tained on mesoscopic Hall bars in the QHE regime in the
temperature range 0.1–1 K. We tuned the top-gate voltage
�Vg� and we characterized the tunneling processes that gov-
ern the conductance fluctuations of two categories of peaks,
which we distinguish using the symmetry of the S matrix:
those for which RL�B� and RH�B� are correlated, and those
for which no correlation is observed. We identify unambigu-
ously both kinds of tunnel mechanisms by their temperature
dependence and we confirm the theory of Zhou et al.8,9

An unexpected consequence arises from our temperature
dependence analysis: the longitudinal conductivity as a func-
tion of Vg follows the shape of the Landau levels �LL’s�
DOS, though it deviates from the true DOS by sharp peaks
whose origin is understood. Therefore, we have realized a
local LL spectroscopy of a small part of the GaAlAs/GaAs
heterojunction.

Measurements were performed using standard lock-in am-
plifier techniques at 7 Hz, by applying a voltage drop across
the sample smaller than 10 �V, so that we always verified
the condition eV�kBT. We performed experiments on sev-
eral samples processed on a same GaAs/InGaAs/GaAlAs
heterostructure. At 4.2 K, the two-dimensional electron gas
in the quantum well has a carrier density Ns=9
�1011 cm−2 and a mobility of 3 m2 /V s. The wafer is pat-
terned into Hall bars of different dimensions having a gate on
top to modulate the electron concentration of the 2DEG �see
Fig. 1�c��. Due to the very thin spacer between the �-doping
layer and the 2DEG �4 nm�, the 2DEG is strongly perturbed
by the ionized impurities and the LL’s develop a broad low-
energy tail.11 A clear experimental signature of the asymme-
try of LL’s is the shift of the Hall plateaus toward lower B:
the line of the classical resistance Rclass=B /Nse does not
cross the middle of the Hall plateaus12 and, as shown by Fig.
1�b�, the minima of the Shubnikov–de Haas �SdH� curve do
not correspond exactly with the plateaus.13 Another cause of
asymmetry of the density of states for our narrowest samples
is the formation of a quantum wire due to the lateral confine-
ment. This results in a high-energy tail caused by the impor-
tant weight of the states close to the edges in these samples.14

Our results are obtained on narrow Hall bars of width
1.5 �m �TH1.5� and 2 �m �TH2�. Moreover, a depletion
zone on both sides of the Hall bar due to the etching process
reduces also the effective width W� of the 2DEG:13 for in-
stance, for TH1.5, W�=420 nm at Vg=0 V, and W�

=150 nm at Vg=−1.5 V.
In Fig. 1, we distinguish two categories of fluctuations

using the Zhou classification: �1� First, on the low-B �or
high-�� side of the SdH peaks, fluctuations occur in the RL
resistance while RH remains quantized. Those tunneling
mechanisms are chiral and are described in the theory of
Zhou by the resonant double-barrier tunneling between edge
states, using antidots in the middle of the bar as intermediate
states.15 In the �B ,NS� plane, those fluctuations draw lines
parallel to the slope �=1 �see Fig. 1�a��, which signifies that
the localized intermediate antidot is an incompressible
puddle at �=1 �see Fig. 2�a��: when �B ,NS� vary, the con-
ductance value at the resonance peak remains the same as
long as the shape of the �=1 puddle remains the same.16

Thus, the resonance peak moves like �=1. �2� Second, cor-

related fluctuations between RL and RH appear on the high-B
side of the SdH peaks verifying RL+RH=h /e2, which signi-
fies that the S matrix is symmetric. According to Zhou et al.,
these fluctuations are due to hopping between localized
puddles of same � passing through hills of potential at filling
factor �=1 �see Fig. 2�b��. The hopping conductivity, result-
ing from the recovery of the tails of the wave functions,17

would then be the consequence of a multiple tunneling pro-
cess through single barriers formed by the hills of the disor-
der potential. In the plane �B ,NS� in Fig. 1�a�, those lines
move parallel to �=2 �Ref. 13� supporting the interpretation
that the shape of the incompressible puddles at �=2 is the
relevant parameter for the hopping conductance.

In Fig. 3, we report the normalized conductance
�xx / �e2 /h� �where �xx is approximated to �W� /L�
� �RL /RH

2 � because RL�RH� for different temperatures in the
range 0.1–1 K. We tuned the magnetic field to scan the tran-
sition ��=2→1�. It is obvious that the opposite side of the
transition on the B axis has a different behavior with increas-
ing temperature. In the inset, we have enlarged a part of the
low-B side: we observe that the amplitude of the major peak
decreases when the temperature increases while the peak is
broadening. Contrarily, on the high-B side of the transition,
the mean value of the conductance increases when the tem-
perature increases, showing that a different mechanism con-
trols the conductance. In the following we analyze the tem-
perature dependence of both categories of peaks.

On the low-B part of the SdH transition, the peak height
decreases with increasing temperature as shown in the inset

FIG. 3. �Color online� Normalized conductivity for the transi-
tion ��=2→1� and different temperatures in the range 0.1–1 K for
sample TH2. In the inset, a zoom on the Jain Kivelson peaks.
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FIG. 2. �Color online� Mechanisms proposed by Zhou having
the appropriate symmetry �black: contacts; gray: incompressible
fluid at �=2; white: incompressible fluid at �=1�. �a� The Jain
Kivelson process is a double-barrier tunneling. �b� The hopping
regime corresponds to a multiple single-barrier tunneling.
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of Fig. 3 �see also Fig. 5 in our previous work13�. This is the
signature of a resonant double-barrier tunneling �see Fig.
2�b�� between edge states. The barrier height is a fraction of
the energy gap between the first and the second LL �	
c
=16 meV at 10 T� because the energy of the lowest free
electronic state above the incompressible fluid �=2 lies in
the next Landau level.

In our experimental conditions, the longitudinal conduc-
tivity �xx corresponds exactly to the conductance between
edge states. Considering a single energy level �w��, we call
�L

� and �R
� the transparencies of the tunnel barriers that iso-

late the state �w��. We define ��= ��L
�+�R

�� /2 and A��E� as
the spectral function, whose width is ��, of the intermediate
localized state at the energy E� �see for example Ref. 18�.
Following Bruus and Flensberg,19 the total double-barrier
conductance through the dots including Coulomb interac-
tions is

�xx

�0
= �

E

dE

2
�−

� f

�E
	


�

�L
��R

�

�L
� + �R

�A��E� . �1�

For the lowest temperatures �kBT���, a straightforward cal-
culation leads to

�xx/�0 =
1

2


�

��
�A���� , �2�

where � is the Fermi energy, �0=2e2 /h, and ��
�

= ��L
��R

�� / ��L
�+�R

��. Thus it is obvious that for sufficiently
low temperature, the longitudinal conductance reveals the
complete local density of states. However, the true shape is
distorted by the maxima of the prefactor ��

� when the inter-
mediate state �w�� is located right in the middle of the Hall
bar.15

For higher temperature �kBT���, Eq. �1� leads to the for-
mula �xx /�0= �1 /2kBT�
���

� cosh−2�
E�−�

2kBT �. We have fitted
a great number of peaks with the usual law20 �xx /�0

=GT cosh−2�
Vg−V0

W�T� � and found W�T� and GT for each tempera-
ture. In Fig. 5 of Ref. 13, we have for example characterized
completely one peak; we have shown that above 300 mK, the
width W�T� increases like kBT as expected, whereas below
300 mK, the width of the transition is almost constant. Simi-
larly, the maximum GT decreases like 1 /kBT, as expected,
but saturates below 300 mK. The temperature dependence of
the conductance allows to scale the energy width of �w��
�Ref. 21�: we obtain ���30 �eV and ��

��3 �eV.
On the high-B part of the SdH peaks, the mechanism pro-

posed by Zhou et al. is a hopping process from localized
puddles �=2 to localized puddles at �=2 through the sur-
rounding quantum Hall fluid at �=1 �see Fig. 2�a��. Experi-
mental results show that the temperature dependence of the
conductivity is, in fact, perfectly represented by the sum of
the variable-range hopping conductivity17 and a constant
�S���:

�xx��,T� = �S��� + �H�T�exp�− T0/T� , �3�

where the prefactor �H�1 /T. For several couples �B ,Vg�, we
have plotted the conductivity �xx�� ,T� as a function of the
temperature in order to obtain the quantity �S���. This al-

lowed us to report in Fig. 4�a� the quantity T��xx�� ,T�
−�S���� as a function of T0 /T on a semi-log scale. We
obtain a linear dependence with a slope that varies slightly
with the filling factor. This dependence is a clear signature of
the variable-range hopping process in QHE conditions and
we obtain the localization length � by using the formula22

kBT0= �6�e2� / �4���.
We have reported the values of � as a function of �

−3 /2 in Fig. 4�b�. Contrary to the case of wide samples for
which a clear linear dependence with a slope 2.3 is
measured,23 we observe for narrow samples that data are
scattered around the universal law ����� ��−�c�−2.3 and that
the slope is smaller than the expected value. Now, the local-
ization length is comparable to the width of the sample �for
TH2, W��600 nm at Vg=−1.3 V�, and we attribute both
the dispersion of our data in Fig. 4�b� and the reduced value
of the critical exponent to the geometrical constraint imposed
on the extension of electronic wave functions.

Finally, let us return to the skeleton function �s���, which
is the limit of the SdH curve at vanishing temperature, rep-
resented in Fig. 4�c� by the black area obtained at T
=0.1 K. In wide samples, the conductivity vanishes at van-
ishing temperature, except at the center of the SdH peaks.24

In narrow samples, the recovery ��L ��R� of the electronic
wave function from reservoir ��R� to reservoir ��L� �see Fig.
2� is enhanced by the distribution of localized states �w��� of
energy E�, which participate in the total transmittance if
the Fermi energy �=E�. The total transmission T
= �
���L �w���w� ��R��2 can be developed as

T = 

�

�CL,��2�CR,��2 + 

�,����

CL,�CL,��
� CR,�

� CR,��, �4�

where CL�R�,�= ��L�R� �w��. The first term decreases as
exp�−� /W� and vanishes in wide samples. However, in our
narrow samples, it is proportional to the number of states at
the energy E�. Thus, as for the high-� side of the transition,
the longitudinal conductivity is proportional to the local
DOS.

(a) (b)

(c)

FIG. 4. �Color online� �a� Hopping conductivity as a function of
the temperature for TH2. �b� Localization length as a function of
��−�c�. The straight line corresponds to the expected universal law
����= ��−�c�−2.3. �c� Sample TH2 at B=13.5 T. The conductivity at
T=0.1 K is an image of the asymmetrical DOS.
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Therefore, and this appears clearly in Fig. 4�c�, the con-
ductivity at vanishing temperature, the black asymmetrical
area, gives a noisy image of the density of states.25 Indeed,
the density of states characterizes the disorder and thus the
sample itself; therefore, only the smooth envelope of the
conductivity at T=0 can be independent of the measurement
method and can represent the mean DOS of the sample. Con-
trarily, all the peaks superimposed on this smooth structure
reveal the local impurity concentration and depend, of
course, on the pair of contacts used in the transport measure-
ments. The peaks on the right side are due to the enhance-
ment of the prefactor in Eq. �1�. Moreover, the second term
in Eq. �5�, resulting in interferences between different paths,
could be at the origin of the oscillations which appear on the
left side of the black area in Fig. 5�c� in Ref. 26. For this
heterojunction, it appears clearly that the DOS is asymmet-

ric. This confirms the results of the calculations made by
Bonifacie et al. �see Ref. 11� on this kind of heterostructure.
In high mobility samples, the DOS might be more narrow in
energy and less asymmetric.

In conclusion, by studying the temperature dependence of
the conductance fluctuations in mesoscopic Hall bars, we
have identified a double-barrier tunneling and a multiple
single-barrier tunneling. The mesoscopic Hall bar, when
measuring the longitudinal conductivity across the SdH tran-
sition, plays the role of a local probe and gives an image of
the density of states.

This work was financed by the French National Agency
for Research �ANR�. We thank Ken Ichiro Imura from To-
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