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Superconducting nanowires: Interplay of discrete transverse modes with supercurrent
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From a numerical solution of the Bogoliubov-de Gennes equations, we investigate an interplay of the
transverse discrete modes with a longitudinal supercurrent in a metallic cylindrical superconducting nanowire.
The superconductor-to-normal transition induced by a longitudinal superflow of electrons is found to occur as
a cascade of jumps in the order parameter (supercurrent and superfluid density) as a function of the superfluid
velocity for diameters d<<10—15 nm (for Al parameters) and sufficiently low temperatures 7<0.3-0.47T,,
with 7. the critical temperature. When approaching 7, the jumps are smoothed into steplike but continuous
drops. A similar picture occurs for d>15-20 nm. Only when the diameter exceeds 50-70 nm the quantum-
size cascades are fully washed out, and we arrive at the mesoscopic regime. Below this regime the critical
current density j,. exhibits the quantum-size oscillations with pronounced resonant enhancements: the smaller
the diameter, the more significant is the enhancement. Thickness fluctuations of real samples will smooth out

such oscillations into an overall growth of j. with decreasing nanowire diameter.
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I. INTRODUCTION

Interplay between superconductivity and quantum con-
finement has been a subject of increasing interest in the last
several years. This is motivated by recent experiments on
nanosuperconductors.!”” These experiments became possible
due to modern technological advances which resulted in the
fabrication of high-quality low resistive superconducting me-
tallic nanofilms and nanowires. In most fabricated samples
the electron mean-free path € was found to scale with the
confined dimension d.>*° In particular, Matthiessens-like ap-
proximation 1/€=1/2d+1/{;,, was of use in the second pa-
per of Ref. 2, where 1/2d represents the contribution of the
boundaries (i.e., of confinement) and €;,,,>d stands for the
mean-free path due to nonmagnetic imperfections. Based
on results of this paper, one can estimate that €y,
~200-400 nm in Pb single-crystal atomically uniform
nanoislands with thickness about 30-40 A and area
~400 nm X400 nm. In nanowires disorder is more signifi-
cant but due to the scaling € «d, we can also expect that the
boundary scattering controls ¢ and, hence, €;,,>d. Thus
from present-day technologies it is possible to fabricate su-
perconducting nanofilms and nanowires with minor disorder,
i.e., €imp/d>1 and kgt;,> 1, with kg the three-dimensional
(3D) Fermi wave vector. An important consequence is that
the discrete transverse electron spectrum is not smeared by
impurity scattering in this case, and the conduction band
splits up into a series of single-electron subbands which
move in energy with changing d. As was established half a
century ago,®° the superconducting equilibrium properties
are not very sensitive to minor disorder. Thus, to first ap-
proximation, these high-quality nanosuperconductors can be
treated as being in the clean limit. This situation is rather
different from the main stream of most previous and current
studies of superconductivity in high-resistivity samples with
reduced dimensionality that are strongly disordered or granu-
lar. In such structures the strong disorder destroys the super-
conductivity since it enhances the repulsive part of the
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electron-electron effective interaction and results also in the
localization of the electron wave functions (the fermionic
mechanism!®) or favor the phase fluctuations of the super-
conducting condensate (the bosonic mechanism''). Notice
that the high-quality superconducting nanofilms show no sig-
nificant indications of defect- or phase-driven suppression of
superconductivity even down to thicknesses of about a few
monolayers.® In high-quality superconducting nanowires
clear signatures of the superconducting state are observed
even for thicknesses down to 5-8 nm.*%

The potential application of high-quality nanostructures is
another reason for the stimulating active research of their
physical and, particularly superconducting, properties. These
properties are mainly governed by the size-quantization of
the transverse electron spectrum,12 which has a substantial
impact on the basic superconducting characteristics, e.g., the
order parameter,'3-1® the critical temperature,'”'® and the
critical magnetic field.'%?0

One of the most striking (quantum) features of the super-
conducting state is that the sample offers absolutely no resis-
tance to the flow of an electrical current. The destruction of
the supercurrent can occur only after all of its momenta have
been transferred to quasiparticle excitations when the indi-
vidual Cooper pairs are depaired into ordinary itinerant elec-
trons. This process of supercurrent suppression can be
viewed as a competition between the Doppler quasiparticle-
energy shift Epopp(kp)=h*kpq/m,, where g is the superfluid
wave vector, and the superconducting energy gap Ag.
Namely, the process of destructing the Cooper pairs starts
when the Doppler shift exceeds the superconducting gap.
This is the celebrated Landau criterion.?! In the 3D case the
superconducting state is not immediately destroyed after the
Landau criterion is met; there appears a small region of su-
perfluid velocities with gapless superconductivity (it is pos-
sible only for fermions). However only the situation of the
supercurrent with the positive derivative with respect to the
superfluid velocity can be easily accessible in experiments.??
The dimensionality of the sample is of essential importance
in the behavior of the superconducting state under current
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flow. As shown in Ref. 23 for the case of one-dimensional
(ID) structures, any superconducting quantity immediately
drops to zero when Ep,,,(kp)=Ag. So, one can expect that
quantum confinement has a serious impact on the current-
carrying state in superconducting metallic nanowires. In the
presence of the splitting of the conduction band into a series
of subbands, a supercurrent flows through a set of 1D quan-
tum channels, and the energy of excitations in any channel
depends on the nanowire thickness.

The present paper focuses on a theoretical and numerical
study of the superconductor-to-normal transition induced by
a longitudinal supercurrent in metallic high-quality nano-
wires. Our study is based on a numerical solution of the
Bogoliubov-de Gennes (BdG) equations for a clean cylindri-
cal nanowire in the presence of quantum confinement for the
transverse electron motion. The suppression of the supercon-
ducting order by thermal- and quantum-phase fluctuations
can be a serious issue in quasi-1D superconducting struc-
tures. However, the crossover from the superconducting to
normal state due to phase fluctuations is expected in high-
quality nanowires for thicknesses =5-8 nm (see the second
paper in Ref. 4 and discussion in Sec. V). As to the effects of
the transverse quantization, they are of importance when the
energy spacing between the transverse levels becomes larger
than the bulk superconducting order parameter (at zero tem-
perature), i.e., ;—;p% > Ay For instance, for Al this is true
when d=<40 nm.

The present paper is organized as follows. In Sec. II we
outline the BdG formalism for a cylindrical nanowire and
express the important current characteristics in terms of the
distribution function of quasiparticles. Next, by numerically
solving the BdG equations, we study the superconductor-to-
normal transition in the presence of a longitudinal supercur-
rent (Sec. III). The critical current and superfluid density are
discussed in Sec. IV. Section V gives our concluding re-
marks. The details of our numerical algorithm to solve the
BdG equations are given in Appendix A. Anderson’s ap-
proximate semianalytical solution to the BdG equations is
discussed in Appendix B. The basic formula for the super-
fluid density is derived in Appendix C.

II. FORMALISM

To study the critical current and depairing superfluid ve-
locity in high-quality metallic nanowires, we consider a su-
perconducting nanowire with diameter D and length L in the
clean limit, as our model system. Due to the transverse quan-
tum confinement, the translational invariance is broken along
the confining directions, and the superconducting order pa-
rameter is position dependent, i.e., A(r). Here we present a
mean-field treatment of such a situation, which is based on
the BAG equations.>* In a frame co-moving with the pair
condensate (with the superfluid velocity v,), the BdG equa-
tions for the stationary pseudospinor in the particle-hole
space (r|W)=((r|u;),{r|v))T, can be written as

Ejlu) = HJu) + Alvy), (1a)
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Ei|vi>=AA*|”i>_I:I:|vi>’ (1b)

where E; stands for the quasiparticle (bogolon) energy and
the single-electron Hamiltonian (absorbing the chemical po-
tential w) is given by
.
He =+ Vconf(f) - M (2)
2m,

where I3=ﬁ+mevs (the band mass m, is set to the free-
electron mass) with p the momentum operator, ¥ is the posi-
tion operator, and V(r) stands for the confining potential. We
remark here that the effects of the magnetic field produced
by the supercurrent can be entirely ignored in narrow wires.
For the sake of simplicity, the confining interaction Vg (r)
is taken as zero inside the specimen and infinite outside:
Veont(r) =V 0(R—p) with Vz—o0 (R=D/2 and p is the trans-
verse coordinate from the cylindrical set p, ¢, z). A in Eqgs.

(1a) and (1b) is related to the order parameter by A:A(f').
The asterisk in Egs. (1a) and (1b) means the complex conju-
gate.

As a mean-field approach, the BdG equations are solved
in a self-consistent manner, taking account of the self-
consistency relation

A(r) = 82 <r|”i><vi|1'>[1 -2f1, (3)

where g>0 is the coupling constant and f;=1/(effi+1) is
the Fermi distribution for the bogolons. The sum in Eq. (3)
runs over the states with the single-electron energy (¢

&= [<ui|1:1e|q=0|ui> + <vi|f1:|q:0|vi>] € [-haop.fiwp], (4)

with wj, the Debye frequency. Equation (4) introduces the
cutoff related to the momentum p, to remedy the well-known
ultraviolet divergence in Eq. (3). In addition, notice that there
are two branches of solutions of the BdG equations (i,+) and
(i,-) (see Refs. 24 and 25) with E;,|,.c>0 and E;_|,
<0. The sum in Eq. (3) should be taken over the physical
states [the (i,+) branch], i.e., E;=E; ,. Notice that this choice
leads to the same results as the Gor’kov equations.? It is of
importance to remark that some of E; can become negative at
q#0(v,#0). This is a signature of a reconstruction of the
ground state due to the current-induced depairing of elec-
trons. Indeed, the usual expression for the ground-state en-
ergy in the Bogoliubov theory (neglecting the term uN, with
N, the number of electrons) is given by?>20

2
E=fd3r%—22 Efvilvy. &)

When bogolons with negative energies appear, they survive
at zero temperature and, so, give rise to corrections to the
ground-state energy, i.e., E— E+AE with

AE=2 > E, (6)
i,E;<0

a feature typical for the gapless superconductivity.?+-20
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For a given mean electron density n,=N,/(wR’L) the
chemical potential w is determined from

ne= RZLE [ludfi + wlod = 1)) (D)
Notice that the sum in Eq. (7) is convergent, and, so, the
restriction to the Debye window [see Eq. (4)] is not needed
here. For conventional superconductors the energy gap is
typically much smaller than the chemical potential. As a re-
sult, u stays practically the same when passing from the
normal state to the superconducting one.>*?” So, it is easier
to solve Eq. (7) in the absence of the superconducting order
[for A(r)=0], before the main procedure of numerically in-
vestigating a superconducting solution of the BdG equations.
The chemical potential approaches the Fermi level Er when
T— 0 (which is not true for nanograins). As discussed in our
previous papers,'® when working with the BdG equations in
the parabolic band approximation, one needs to introduce an
effective Fermi level, in order to obtain the correct results for
the quantum-size superconducting oscillations. For alumi-
num (below we limit ourselves to this superconducting ma-
terial) Ep=0.9 eV can be chosen when D> 1-2 nm (see the
discussion in Ref. 18 and comparison with the experimental
results in Ref. 20). For extremely thin nanowires (D
~1 nm)E; (and u, as well) will be systematically shifted
up, as follows from Eq. (7).

Below it is natural to restrict ourselves to the situation
when a superflow is parallel to the nanowire, v,=(0,0,v,). In
this case the order parameter depends only on the transverse
coordinate, i.e., A(r)=A(p), and we arrive at

)
Pz ——— J
<r| > '277 \L Ujmk(p) ’ (8)

where i={j,m,k}, with j the radial quantum number, m is the
azimuthal quantum number, and k is the wave vector of the
quasi-free-electron motion parallel to the nanowire. Along
the z direction we use periodic boundary conditions with a
unit cell of length L. In the transverse direction the quantum-
confinement boundary conditions

i) p=k = Vjunk(P)] p=p = 0 9)

should be imposed. The order parameter A(p) can be taken
real together with u;,,(p) and vj,.(p) in our scheme.?2
For the laboratory framework one needs to introduce
position-dependent  phase  shifts, i.e., A—Ae2 | y
—ue'?, vy —ve % (see Ref. 24). Details of the method used
in the present work to numerically solve the Bogoliubov-de
Gennes equations, are given in Appendix A.

In the presence of the superfluid motion of electrons, it is
of interest to study how the supercurrent depends on the
superfluid velocity v,. The mean supercurrent density is
given by

2 A A
Js= meﬂ'—zzLEl [<Mi|P|ui>fi+ <Ui|P*|vi>(1 -f)1, (10

with P*=—p+m,v,. Similar to Eq. (7), the sum in Eq. (10) is
over physical states [the (i,+) branch of the solution] and
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perfectly convergent. Using Eq. (8) and the cylindrical-
coordinate representation

€
- 2}
V=e,d,+ ot e (11)

with e,, e,, and e, the corresponding unity vectors, we can
rewrite Eq. (10) as [j,=(0,0,—j,)]

el Yl k), o
Js= ﬂ;RZEm » dk|: meq mkfjmk
h

where it is convenient (see Appendix B) to introduce the real
quantities U, and V;,,

R
ujz'mk = <ujmk|ujmk> = J dppu]zmk(l))’ (133)
0
]mk <vjmk|vjmk> J dppv]mk(p) (13b)
with the usual constraint?*
U+ Vi = 1. (14)

We remark that in the presence of the longitudinal supercur-
rent, f,# fjm-r (see Appendix B), and, so, the terms pro-
portional to k should be kept in Eq. (12).

It is instructive to present another expression for the su-
percurrent density (see Appendix C), namely,

= le|n,v,, (15)

= |e|nevs —Jn

with j, the contribution of the normal component and n, the
density of the superfluid component. According to Eq. (15),
the supercurrent is the current of all electrons moving with
the superfluid velocity v, minus the term due to the normal
component (bogolons). The minus sign appears because a
normal current is dissipative in equilibrium, and, so, the nor-
mal component cannot participate in the superfluid motion.

III. QUANTUM-SIZE CASCADES

In this section we investigate how the superconducting
condensate is suppressed by the longitudinal supercurrent in
the presence of a quantized spectrum of the transverse elec-
tron motion. In this case the band of single-electron states
splits up into a series of subbands. When the nanowire diam-
eter increases, these subbands move down in energy. Each
time when the bottom of a subband passes through the Fermi
surface, the density of single-electron states at the Fermi
level increases abruptly, which results in a sequence of
width-dependent peaks. As a consequence, any supercon-
ducting quantity exhibits quantum-size oscillations with re-
markable resonant enhancements.'® In addition, the super-
conducting order parameter is position dependent in the
presence of quantum confinement. Therefore, one can expect
that transverse quantization of the electron motion can have a
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FIG. 1. (Color online) (a) The spatially averaged order param-
eter A and (b) the energy gap Ag versus the superfluid velocity (in
units of the bulk Landau velocity v;) at zero temperature for three
resonant diameters d=4.21, 4.44, and 5.15 nm. The inset in (b)
shows quantum-size oscillations of the energy gap as a function of
the wire diameter d.

strong impact on the superconductor-to-normal transition
driven by the longitudinal supercurrent. Notice that the
present investigation supplements our recent work about
magnetically induced suppression of superconductivity in
metallic nanowires.?”

Numerical calculations were performed with the set of
parameters typical of aluminum:**?’ Awp=32.31 meV,
gN(0)=0.18, with N(0) the bulk density of states at the
Fermi level. The BCS coherence length for the chosen pa-
rameters is §,=1.6 wm, which is much larger than the nano-
wire diameters considered in the present work. The length of
the unit cell in the longitudinal direction was taken L
=5 um>Np=27/kp.

Figures 1(a) and 1(b) display how the spatially averaged
order parameter A and the energy gap Ap depend on the
superfluid velocity for three resonant diameters d=4.21,
4.44, and 5.15 nm (at T=0). The superfluid velocity v, is
here shown in units of the Landau (bulk) critical
velocity,?*2% i.e., v, =Apu/fikp (for the chosen parameters
Apuk=0.25 meV and v;=A,/fkp=78.1 m/sec). Notice
that the energy gap A is defined as the minimal non-
negative quasiparticle energy, and, so, in the presence of a
sector of negative E;,;, we get Ap=0 (the gapless regime).
The quantum-size oscillations of Ay as a function of the wire
diameter at 7=0 are given in the inset of Fig. 1(b). From Fig.
1(a) one can see that the destruction of the superconducting
state occurs as a cascade of jumps in the superconducting
order parameter. Some of these jumps are almost insignifi-
cant [see the left-hand-side inset in (a)]. Any jump is accom-
panied by clear signatures of the hysteretic behavior; see, for
instance, the right-hand-side inset in (a), where details of the
jump at v,=54.2v;(d=4.21 nm) are presented.

To outline the physics behind these cascades of jumps in

A, we need to learn more detail about the quasiparticle ener-
gies and the energy gap Ag. As seen from Fig. 1(b), Ag

behaves differently from A. First, Ay goes to zero much
faster and in a large region of superfluid velocities it is zero
with a nonzero pair condensate, which is related to the gap-
less regime. Second, there are no jumps in Ag, and third, the
energy-gap dependence on the superfluid velocity has a po-
liline structure. All these features can easily be understood
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FIG. 2. (Color online) Quasiparticle energies
k>0 are given) for d=4.21 nm at v,=0.

Ej, versus k (only

with the help of Anderson’s approximation (see Appendix B)
that results in Ej,,, given by Eq. (B7). Due to the Doppler
term EDopp—h kq/ m, the quasiparticle energies with k<0
(with £>0) shift down (up) with increasing the superfluid
velocity, and such shifts are linear in v,. Furthermore, since
the relevant states of each single-electron subband (the states
situated in the Debye window) occupy only two narrow re-
gion in 1D k space, we can say that, to a certain approxima-
tion, each quasiparticle branch can be specified by two
Doppler-shift terms: EDOpp im=Tkjnvs for k>0, and EDOpp m
=—tk;,v, for k<0, with k;,,=\2m(u—&;,,). This approxi-
mation is quite accurate for excitations in the single-electron
subbands with the bottoms far below the Fermi level. In Fig.
2 Ej,, are shown versus k (at k>0) for d=4.21 nm and v,
=0. As seen, for the energy gap we have Ap=A, . Notice
that A;, is defined by Eq. (B1), and, at v,=0, it is the energy
gap in the corresponding single-electron subband [see Eq.
(B7)]. For v,>0 the subband-dependent energy gap is no
longer A;, but A, —fv k;, instead. As follows from Fig. 2,
one can expect that at small enough values of the superfluid
velocity we have Ap=A| —fvk; . Now, let us take into
account that at zero temperature A;, does not change with v,
for Ap>0 [see, for instance, Eq. (B9) with 1-2f;,,=1 in
this case]. Hence, Ag can have only a poliline structure, and
for small enough values of v, its slope is %k, o. However, as
seen from Fig. 2, k; (<koo while A is nearly the same as
Ag . So, at a certain value of the superfluid velocity, a kink
can be expected in Ay as a function of v,, when its slope
changes from %k, to fiky (. This weak kink does occur at
v,~vy, as seen from Fig. 1(b). We remark that for 7>0 such
a kink is smeared out because A, becomes sensitive to the
superfluid velocity even for Az>0 [1-2f;,,#1 when T
>0].

Now let us return to the cascades of jumps in the spatially
averaged superconducting condensate A. The contribution of
any single-electron subband to the superconducting order pa-
rameter depends strongly on the fact whether or not there are
excitations with negative energies in this subband [see the
self-consistency relation given by Eq. (3)]. Hence, when ana-
lyzing the pronounced jumps in A, it seems promising to
consider the quasiparticle energies of the most important

024513-4



SUPERCONDUCTING NANOWIRES: INTERPLAY OF...

-0.50 -0.25 0.00 025 050

(j,m)=1,+4

Jm

E . (meV)

(,m)=1,+4

o
> 4t ~
)
g
N—’
32t ]
K
(b) v/v =19.3
-0.50 -0.25 0.00 025 050

k (nm™)

FIG. 3. (Color online) Dispersion curves for the resonant
branches j=0,m=*7 and j=1,m==*4 at d=4.21 nm: (a) v /vy
=54.2 and (b) v,/v;.=79.3.

single-electron subbands making the major contribution to
the superconducting characteristics. In particular, for the
resonant diameter d=4.21 nm, there are four such single-
electron subbands, i.e., (j,m)=(0,*7),(1, £4). In Fig. 3
the dispersion curves for the corresponding excitations are
shown for two cases: (a) v,=54.2v; (the first profound jump

in A) and (b) v,=79.3v, (the second significant drop). As
seen, in the presence of a longitudinal supercurrent, the dis-
persion curves for both quasiparticle branches are tilted with
respect to k=0, in total agreement with Eq. (B7). Figures
3(a) and 3(b) illustrate the fact that each time when a quasi-
particle branch touches zero, a discontinuity (jump) in the
spatially averaged order parameter occurs. A profound jump

in A arises when quasiparticles with negative energies appear
in one of the single-electron subbands that is responsible for
a major contribution to the order parameter. Shifts to nega-
tive energies of other bogolons can produce only insignifi-

cant jumps or even kinks in A(v,). Quasiparticles with nega-
tive energies are a signature of the destruction of the Cooper
pairs (see Ref. 25 and discussion in Ref. 20). Thus, the
supercurrent-induced depairing of electrons is the reason for

the cascades of jumps in A as a function of the superfluid
velocity. In the presence of the transverse quantization such a
depairing is not uniform but subband dependent. In this case
the decay of the order parameter driven by the supercurrent
is accompanied by a nonuniform depletion of contributions
from different transverse modes. Hence, in addition to a de-
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FIG. 4. (Color online) The transverse distribution of the pair
condensate A(p) for (a) d=4.21 nm [at v,=0,54v;,79v;] and (b)
d=5.15 nm [at v,=0,31v,,63v.].

crease in the spatially averaged value of A(p), a change in its
profile can be expected when increasing v,. This is clearly
seen in Fig. 4, where the v,-dependent evolution of A(p) is
shown for (a) d=4.21 nm and (b) d=5.15 nm (for T=0).

The spatially averaged condensate A for these diameters is
given in Fig. 1. Notice that for both situations there exist two
jumps: at v/v;=54.2 and 79.3 for d=4.21 nm, and at
v,/v;=31.7 and 63.5 for d=5.15 nm. In Fig. 4(a) A(p) is
shown for d=4.21 nm for different values of v,. In addition
to v,=0, we show the results for v,/v; =54 (just before the
first jump) and 79 (the vicinity of the final jump down to
zero). As seen, the profile of A(p) changes significantly. In
particular, for v,=0 there are two pronounced maxima in
A(p), ie., at p/R=0.47 and p/R=0.8. For v,/v;=79, the
maximum at p/R=0.47 is completely washed out. The data
for d=5.15 nm are presented in Fig. 4(b) for v,/v;=0,31
(just before the first jump) and 63 (near the eventual jump to
zero). It is clear that the profile of A(p) at v,/v; =63 is com-
pletely different as compared to v,=0.

We remark that the resonant single-electron subbands
have much smaller Doppler shifts since their bottoms, being
situated in the Debye window, are close to the Fermi level.

This is why pronounced jumps in A(v,) appear for large
enough superfluid velocities and accompany the total decay
of the superconducting condensate. Notice that the single-
electron subbands with large k;,, can be more sensitive to
surface roughness and imperfections. Consequently, the

kinks and small jumps in A calculated for the case of a
uniform cross section would be smeared out in the presence
of imperfections. The pronounced jumps can be expected to
be more stable. In general, the quantum-size cascades in-
duced by a longitudinal supercurrent look similar to the cas-

cades in A induced by a magnetic field parallel to a
nanowire.?” In both situations the quantum-size cascades sur-
vive up to d=10-15 nm, being washed out for larger diam-
eters (see Fig. 5). For both the longitudinal supercurrent and
parallel magnetic field, the cascade structure is not only typi-
cal for the resonant diameters but it is also found for the
off-resonant diameters [the points where the thickness-
dependent superconducting characteristics drop below their
bulk values, see the inset in Fig. 1(b)]. To illustrate this fact,

we show in Fig. 6 A for off-resonant diameters d=5.5, 7.6,

and 10.85 nm. Note that the off-resonant drops in A are
reduced when d increases. It is also of importance to under-

024513-5



CROITORU et al.

d=10.12 nm
13.66

1 1 =8

10 12 14

FIG. 5. (Color online) The spatially averaged condensate A as a
function of v /v, for the resonant diameters d=10.12, 11.56, 12.94,
and 13.66 nm.

line differences of the present cascades with respect to those
in a paramagnetic field. For the setup with a parallel mag-
netic field, the superconducting condensate is “eaten” by the
screening currents induced in the azimuthal direction. In this
case the condensate is stable in the center of the nanowire,
and the transverse modes with m=0 cannot be directly influ-
enced by the magnetic field.?° As a result, there are diameters
for which the superconducting state cannot be destroyed by
the orbital effects without invoking the Pauli paramagnetism.
In the present case there is no preference for any point of the
nanowire cross section (the superfluid velocity does not de-
pend on the transverse and azimuthal coordinates). As a con-
sequence, we do not observe any superconducting reso-
nances that are extremely stable. The appearance of the
cascade structure in the presence of the longitudinal super-
current makes it possible to expect that similar cascades can
exist for superconducting nanowires in perpendicular mag-
netic fields. If so, the ratio of the parallel to perpendicular
critical magnetic field can significantly deviate from the
usual mesoscopic regime due to possible quantum-size oscil-
lations.

It is necessary to stress that smoothing of the quantum-
size cascades for d~20 nm does not mean that we immedi-
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d=10.85nm

0.20+ B
—~ 7.6 nm
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FIG. 6. (Color online) A as a function of the relative superfluid
velocity v,/v; for the off-resonant diameters d=5.5, 7.6, and 10.85
nm.
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FIG. 7. (Color online) A versus v,/v; for the resonant diameter
d=20.2 nm and off-resonant diameter d=20.4 nm. The dotted
curve represents the bulk results.

ately arrive at the bulk regime. In Fig. 7 the ratio A/A |Ur=0 is
shown as a function of v, for the resonant and off-resonant
diameters, d=20.2 nm and d=20.4 nm, respectively (to-
gether with the bulk result given by the dotted curve). While
the off-resonant points are close to the bulk dependence, the
resonant data still exhibit significant deviations from the bulk
curve. Though jumps are washed out, the cascade structure
of continuous steplike drops is still seen. The same is valid
for any resonant point when d~20-40 nm. The bulk re-
gime is obtained only when the superconducting resonances
are completely decayed (for d=50-70 nm).

We would like to emphasize that the above discussed re-
sults are for 7=0. At finite temperatures the situation
changes. As seen from Fig. 8 all the kinks and small jumps
are washed out rapidly even at very low temperatures. The
first pronounced jump at v,=54.2v; survives up to 7=1 K
(T/T,=0.08 with T, the critical temperature at v,=0) and
then degenerates into a smooth steplike drop. As for the jump
to zero at v,=79.3v,, it remains up to T=4 K(T/T,=0.32).
However, its position shifts to smaller values of v,. There are

no signatures of jumps for 7/7T,>0.32, and A smoothly goes
to zero with increasing v;.

d=4.21 nm |

FIG. 8. (Color online) The spatially averaged condensate A ver-
sus v,/v; for d=4.21 nm at 7=0, 1.0, 2.0, 4.0, and 5.0 K.
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FIG. 9. (Color online) The supercurrent density j, in units of the
bulk critical current density j, ,x versus the relative superfluid ve-
locity v /vy for d=4.21, 4.44, and 5.15 nm at T=0.

IV. CRITICAL CURRENT AND SUPERFLUID DENSITY

In this section we investigate how the transverse quanti-
zation can influence the supercurrent density j, (together
with the related critical current j, and superfluid density n,).
Numerical results for j, as function of the superfluid velocity
at 7=0 are shown in Fig. 9 for three resonant diameters d
=421, 4.44 and 5.15 nm. As expected, at small values of v,
there is a linear increase in the current density with the su-
perfluid velocity. This is typical of the gap regime (Ap#0),
when there are no excitations in the system (at 7=0) and so,
j.=0 and j,=|e|n,v; [see, for details, Eq. (15) and Appendix
C]. At a certain superfluid velocity, the first quasiparticle
branch touches zero and so, the energy gap disappears, i.e.,
Ag=0. This velocity can be referred to as the first depairing
velocity v, ; being the analog of the Landau depairing veloc-
ity v, =Apy/ ik in bulk. With the subsequent increase in vy,
the supercurrent density j, exhibits a sequence of kinks (they
sometimes are accompanied by small jumps), shown in the

inset of Fig. 9 by arrows. Similar to the dependence of A on
v,, a kink (or small jump) in j; as a function of v, occurs
each time when excitations with negative energies appear in
a new single-electron subband making a minor contribution
to the superconducting characteristics. At v,>v, ; the current
density j; usually continues to exhibit an overall increase
with v, (see, for instance, the results for d=4.21 nm and
5.15 nm in Fig. 9) until the maximum value j. (the width-
dependent critical current density) is reached. Notice that
sometimes j, is already reached at v;=v, ;, e.g., see the data
for d=4.44 nm in Fig. 9. A strong decay of the supercurrent
density follows immediately after reaching the maximum.
However, the interval of such a decay is seen to be narrow.
Subsequently, an extended region is found where j; rather
slowly varies with v, before a complete suppression of j
occurs at the second depairing velocity v;,, which can be
treated as the critical velocity v.=uv;,. At this point bogo-
lons with negative energies appear in the single-electron sub-
band responsible for the resonant enhancement, and the order
parameter immediately drops down to zero. If two (or more)
single-electron subbands give a major contribution to the ba-
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FIG. 10. (Color online) The relative supercurrent density
Js!Jewuk versus vg/vy for d=1.75 nm (the resonant diameter) at T
=0, 5, 10, and 20 K.

sic superconducting characteristics, there exist two (or more)
pronounced jumps in A and j, as function of the superfluid
velocity (see d=4.21 and 5.15 nm in Fig. 9). It is of impor-
tance that j; exhibits a linear increase with v, in the vicinity
of any pronounced jump (recall that the superconducting
state is unstable when j; decreases with v,). However, the
slope of such an increase is not |e|n, any more, like it was for
v,—0 but |e|n, with n,<n,. Increasing T smooths out all
jumps and shortens the regions, where the current density
increases, as seen from Fig. 10, where j, as a function of
v,/v; is plotted versus the four temperatures 7=0, 5, 10, and
20 K [for the resonant diameter d=1.75 nm]. In the off-
resonance regime most of the kinks and jumps in j; as a
function of v, disappear but the eventual drop to zero sur-
vives at v,=v,, as seen from Fig. 6.

The physics behind the strong decay of the current density
after reaching the critical current density j. is the appearance
of quasiparticles with negative energies. Excitations cannot
participate in a nondissipative flow and so, it should be re-
duced due to depletion of the pair superconducting conden-
sate. For superfluid velocities much smaller than v, the den-
sity of excitations is almost insignificant. Therefore, it is
intriguing why their effect is so pronounced, resulting in al-
most an abrupt drop of the supercurrent density just after
U,=0, ;. The reason is that quasiparticles with negative ener-
gies, which appear in the vicinity of v, have large longitu-
dinal momenta of the order of 4—5 nm™' (this is about 3D
Fermi momentum kg; for our effective Fermi level Ep
=0.9 eV we have k;=4.86 nm™!). See, for instance, Fig. 3.
It is instructive to compare k. with Aiv ;/m,, which allows us
to conclude that k. is larger by at least three to four orders of
magnitude! So, even a small number of quasiparticles can
produce a significant contribution to j, [see Eq. (C5)], which
remarkably reduces j,. From Fig. 11, where the supercurrent
density j, is plotted versus v,/v; together with j,, one notices
a rapid increase in j, taking place just in the vicinity of the
first depairing velocity. It is of interest to compare j
=|e|n,v, with |e|n,v, given by the solid line in the insets. For
small v, i.e., in the gap regime, n,=n, and j,=|e|n,v,. For
the superfluid velocities close to v, we have j,— |e|n,v, and,
hence, a great suppression of the supercurrent density j,.
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FIG. 11. (Color online) The supercurrent density j, together
with the normal-component contribution j, versus v,/v; [at T=0]
for d=4.44 nm (a) and =5.15 nm (b). The insets in both panels
show the same data but for larger current values and on a log-log
scale, together with the solid line representing |e|n,v;.

Such a suppression is a result of a significant drop in the
superfluid density ng from n, down to values of about
0.01-0.1n,, as seen in Fig. 12, where n, is plotted in units of
the electron density n, versus the relative superfluid velocity
v,/v;, for the same diameters as in Fig. 9. In addition, n,/n,
calculated at the resonant diameter d=1.75 nm is shown in
the inset of Fig. 12, to illustrate how the nanowire diameter
can influence the drop of n,.

Figure 13 shows our numerical results for the longitudinal
critical current density as a function of the nanowire diam-
eter. Calculations were performed with steps of Ad
=0.02 nm. As can be expected, the formation of the trans-
verse superconducting modes results in j. oscillating with the
diameter. Such quantum-size oscillations are accompanied
by resonant enhancements at which the supercurrent density
increases significantly above its bulk value j.pux
~1.03|e|n,v;.2>?® The off-resonant diameters exhibit drops
of j., sometimes even below the bulk limit. However, the
resonant enhancements are more pronounced. For instance,
J§ mmj dd=1.88f "™ ,uxdd. Real samples have inevitable
cross-section fluctuations that will smooth the quantum-size
oscillations of the critical current. However, the main in-
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FIG. 12. (Color online) The relative superfluid density n,/n,
versus v,/v; as calculated at zero temperature for the resonant di-
ameters d=4.21, 4.44, and 5.15 nm. The inset shows the same but
for d=1.75 nm, with n(v)=lim, _, _¢ n,. Arrows indicate critical
velocities with the corresponding values of the superfluid density.
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FIG. 13. (Color online) Quantum-size oscillations of the critical
current density: j. given in units of the bulk critical current density
Jepuk Versus the nanowire diameter at 7=0 The inset shows an
enlargement for diameters d=12—14 nm.

crease in the order parameter and, hence, of the critical cur-
rent, comes from the resonant single-electron subband(s)
whose bottom(s) are situated near the Fermi surface. Single-
electron states from such a subband are characterized by
small values of k and, consequently, they can be expected to
be rather insensitive to the surface roughness and (nonmag-
netic) imperfections. Therefore, the critical current at the
resonant diameters will be stable with respect to inclusion of
the roughness and impurity effects. At the off-resonant diam-
eters, different subbands produce more or less the same con-
tribution to the superconducting characteristics. These sub-
bands have their bottoms significantly below the Fermi level
and, hence, the relevant single-electron states have large (ab-
solute) values of k, close to the 3D Fermi wave vector kp.
Such states are more sensitive to imperfections and, so, the
off-resonant drops in the critical current would be smeared
out by disorder. Thus, one can expect that disorder, i.e., non-
magnetic impurities and surface roughness, will smooth the
quantum-size oscillation of the critical supercurrent into an
overall increase with decreasing nanowire thickness.

V. CONCLUDING REMARKS

In conclusion, in this work we restricted ourselves to
high-quality metallic superconducting nanowires, where the
quantization of the transverse electron spectrum is not
smeared by the scattering on nonmagnetic impurities. In this
case spatial transverse variations in the pair condensate are
of paramount importance. To take this important issue into
account, we have employed the Bogoliubov-de Gennes
wave-function formalism supplemented by Anderson’s ap-
proximate semianalytical solution. Within this approach we
have found that the superconductor-to-normal transition in-
duced by a longitudinal supercurrent in a metallic cylindrical
nanowire occurs as a cascade of jumps in the order parameter
and supercurrent density as function of the superfluid veloc-
ity. Similar quantum-size cascades were recently calculated
for a superconducting nanowire in a parallel magnetic field.?"
We have also demonstrated that the temperature effects
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smooth out the jumps into steplike but continuous drops. The
cascade structure was shown to be washed out for diameters
d>15-20 nm. However, the bulk behavior is recovered
only for much larger diameters d=60-70 nm, i.e., in the
mesoscopic regime. We have shown that the critical current
density exhibits quantum-size oscillations with pronounced
resonant enhancements. Real samples exhibit inevitable
cross-section fluctuations that will smooth the quantum-size
oscillations, leading to an overall enhancement of the critical
current density with decreasing nanowire thickness. Another
consequence of such fluctuations is that they will smooth out
jumps in the order parameter (and supercurrent) so that only
the final drop down to zero can survive (compare results for
the resonant and off-resonant diameters). It is of importance
to note that the superconducting modes responsible for the
resonant enhancements have long wavelengths in the longi-
tudinal direction and, hence, are not very sensitive to disor-
der.

In the present manuscript we did not address the issue of
phase fluctuations of the order parameter. For nanowires the
fluctuation-induced phase slips can be of importance result-
ing in nonvanishing resistance down to low temperatures 7'
<T,. However, for high-quality superconducting nanowires,
such fluctuations were found to be significant only in ex-
tremely narrow samples with thickness less than 6—8 nm. For
example, the sharp crossover from the superconducting state
to the normal one due to fluctuations was observed in alumi-
num high-quality nanowires when the nanowire thickness
reduces down to 8 nm (see the second paper in Ref. 4).
However, no signature of such a crossover was observed in
similar aluminum nanowires with the cross section of about
5.2 nmX 6.1 nm,® where the sample resistance due to the
quantum-phase slippage was found to be less than 1% of the
corresponding normal resistance at 7<<0.9T.. Thus, the
quantum-cascade transitions in high-quality superconducting
nanowires can be expected before the phase slippage de-
stroys the superconducting state.

Another remark concerns the coupling constant g that was
taken in the present paper the same as in bulk. What about
the well-known softening of phonons due to the surface ef-
fect? First, the concrete value of g does not influence our
results about quantum-size cascades and is only of impor-
tance for the thickness-dependent enhancement of the critical
current density. Second, from a comprehensive study in
paper,?® one can expect that for Al films, the phonon soften-
ing can result in an increase in the critical temperature by
~10% at d=5 nm as compared to bulk. From our previous
investigations on nanofilms,'®?° we know that the quantum-
size resonant enhancements of 7', in Al nanofilms with thick-
ness of 5 nm are about 50% (for g the same as in bulk). From
this we expect that phonon softening can significantly con-
tribute to an additional enhancement of j. only for d
<5 nm.

Notice that probing the supercurrent in superconducting
samples on a local scale has recently been addressed in Ref.
30. The developed technique based on scanning tunneling
spectroscopy with a superconducting tip is highly sensitive
to the Doppler-shift term in the superconductor quasiparticle
spectrum of the sample, thus allowing the local study of the
superfluid velocity. Therefore the investigation of the
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current-carrying state can be performed locally, and the su-
percurrent distribution in the nanostructures can be obtained
experimentally.

ACKNOWLEDGMENTS

This work was supported by the Flemish Science Foun-
dation (FWO-VI1), the Belgian Science Policy (IAP), and the
ESF-AQDIJJ and ESF-NES networks. One of the co-authors
(M.D.C.) is grateful to the Academia Sinica (Taiwan).

APPENDIX A: NUMERICAL SOLUTION
OF THE BDG EQUATIONS

To numerically solve the BdG equations, Egs. (1a) and
(Ib) are converted into a matrix form by expanding in terms

of the eigenfunctions of the single-electron Hamiltonian ﬁe
[see Eq. (2)]. This form is numerically diagonalized, and
iterations are invoked, to account for the self-consistency
relation given by Eq. (3).

When inserting Eq. (8) into Egs. (1a) and (1b), a system
of two effectively 1D equations is derived for u;,,(p) and
v;mk(p), the transverse parts of the particlelike and holelike
wave functions, respectively. Then, u;,,(p) and v;,,(p) can
be replaced by the series

(ujmk(p) ) _ 2 (ujmk,lm>ﬁ] (p) (Al)
Ujmk(p) J vjmk,Jm " |
with
B
91(p) = mjm(a,m@ , (A2)
m+ Jm

where 7,,(x) is the first-kind Bessel function of the mth or-
der, and «;,, is the J node of this function. As a result, we
arrive at the following system of matrix equations:

[Ejmk - T.(]‘;)k]ujmk,Jm = E AJm,J’mUjmk,J’m» (A3a)
J!
LE i + AL ik Jm = > A gtmtjmi,grms  (A3b)
J!
where
K| a2
T = —| 24 (k+ ¢ | - A4
Jmk 2m, R2 ( q) M (A4)
and
R
A grm= f dpp,,,(p)A(p) By, (p). (A5)
0

In addition, one should take into account the normalization
condition®*
2 2
> (ot g + Vot gm] = 15 (A6)
J

where u;,, ; and v, ; are real.
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APPENDIX B: ANDERSON’S APPROXIMATION
TO THE BDG EQUATIONS

As described in Appendix A, the BdG equations are
solved by expanding the order parameter in the single-
electron wave functions. By this procedure we take into ac-
count the fact that, in general, the electronlike and holelike
wave functions are not proportional to the single-electron
wave function with the corresponding quantum numbers.
However, Anderson’s approximate solution,® when seeking
for the minimum of the free-energy functional in the sub-
space of u;,,(p) and v, (p) being proportional to ,(p)
[compare with Eq. (A1)], is very helpful for analyzing results
obtained from a numerical solution of the BdG equations.
Anderson’s approximation is good enough provided that the
pairing of two electrons from different single-electron sub-
bands plays a minor role, ie., A, ;,,=0 (j#j'). This is
true when the subband-dependent order parameter

A, =A

Jm Jm.jm

(B1)
is much less than the subband energy spacing &, i.e.,

2w
2m, R*’

e

Ajm < 5sub = (B2)
As seen, the smaller the nanowire width the better the ap-
proximation. However, we remark that this approximation
becomes exact only in the situation of the spatially indepen-
dent order parameter for which, as follows from Eq. (A5),
A, jrm=0 for j#j".

With this in mind, we outline Anderson’s approximate
solution to the BAdG equations. The basic assumption is given
by
(B3)

ujmk(p) = ujmkﬁjm(pL jmk(p) mkﬁjm(p)

with U, and V), defined by Eqs. (13a) and (13b). Inserting
Eq. (B3) and keepmg in mind Eq. (B2) [or, in other words,
taking A, +,=0 for j# '], we can rewrite Egs. (A3a) and
(A3Db) in the following form:

Tﬁlk ik = D jinVimics (B4a)
[Ejmk + T<mk] mk = Aij/{jmk' (B4b)

A nontrivial solution of these equations exists only when

2,7\2
Ejm=* \/<§jmk+ 2—) +A2 +h%kg/m,, (B5)
me

with the single-electron energy given by

#? a2
= | o+ |-

2m,| R? (B6)

The sign + in Eq. (B5) corresponds to the physical branch
[see discussion in Sec. II, next to Eq. (3)]. Note that the term
proportional to g is canceled due to the renormalization of
the chemical potential in the presence of the supercurrent.”
Then, the physical solution reads

PHYSICAL REVIEW B 80, 024513 (2009)

h2kq/m,.

me jm

"k, —5* [kj,, is defined by
fjmk|k X —0] there exist negative qua51partlcle energies.
Qua51part1cles with negative energies survive in the system
even at zero temperature, which means a reconstruction of
the ground state due to depairing of electrons [see discussion
on Eq. (7) in Ref. 20] in the corresponding single-electron
subband. Notice that due to the transverse quantization of the
electron motion the set of kj, controls the gapless regime
rather than k; (compare with bulk). We also remark that due
to the presence of the Doppler term #%kq/m, in Eq. (B7),
Simk 7 fjm-x in the presence of the longitudinal supercurrent.

For the physical solution, from Egs. (B4a) and (B4b) one
can get [Eq. (14) is also needed]

Ejp = NEy+ A, + (B7)

It is of importance that for ¢>g;,=

A
u mkv'mk —L’ (Bga)
! ! 2\ gjzmk + Ajzm
Ve = l( _ _25%) (B8b)
2 v gjmk + Ajm
U?mk=l<1+—2‘§/L;2>. (B8c¢)
2 Al gjmk + Ajm
This allows us to rephrase Eq. (3) as
A; ’m’_zg]m ]m lm’ (B9)
where
O(hw m
T, = f dk(D—ﬂm ~2f;m),  (B10)
8772 - \’  jmk

with 6( ) the Heaviside step function [see the selection intro-
duced by Eq. (4)] and

R
gj’m’,jm=gf dpp %, ()97, (p). (B11)
0

The position-dependent order parameter A(p) can be calcu-
lated with

jm
APPENDIX C: SUPERFLUID DENSITY
We can rewrite Eq. (12) as
]¥:|e|nevs_jm (Cl)

where Eq. (7) is used and the contribution of the normal
component is of the form

7T2R22 f dk_[ mkfjmk jmk( fjmk)]

jm J -
(C2)
Then, using Eq. (14), we can get
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j m WZRZJEm f_ dkkvjmk jmk] (C3)

Equation (C3) can further be simplified due to

jm

+00
J dkkV3, =0 (C4)

-0

since the coherent factors U, and V;,, turn out to be inde-
pendent on the sign of k [see Eq. (B8c)]. Then, we arrive at
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= ﬂleE dkkf,-mk. (C5)

jm

Notice that j,>0 for v,#0 because for any given |k| the
bogolon occupation number f;,, is larger for negative k [see
Eq. (B7)]. Now, when using the representation j,=|e|n,v,
[see Eq. (15)], we obtain for the superﬂuld density

dkkfjmk. (C6)
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