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The key feature of the Fe-based superconductors is their quasi-two-dimensional multiband Fermi surface. By
relating the problem to a negative U Hubbard model and its superconducting ground state, we show that the
defining instability of such a Fermi surface is the valley density-wave �VDW�, a combined spin/charge density-
wave at the wave vector connecting the electron and hole valleys. As the valley parameters change by doping
or pressure, the fictitious superconductor experiences “Zeeman splitting,” eventually going into a nonuniform
“Fulde-Ferrell-Larkin-Ovchinikov” �FFLO� state, an itinerant and often incommensurate VDW of the real
world, characterized by the metallic conductivity from the ungapped remnants of the Fermi surface. When
Zeeman splitting exceeds the “Chandrasekhar-Clogston” limit, the “FFLO” state disappears and the VDW is
destabilized. Near this point, the VDW fluctuations and interband pair repulsion are essential ingredients of
high-Tc superconductivity in Fe pnictides.
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I. INTRODUCTION

Recently, the superconductivity below 7 K in LaOFeP
�Ref. 1� led to the discovery of high Tc�26 K in its doped
sibling LaO1−xFxFeAs�x�0.1�.2 Even higher Tc’s were
found by replacing La with other rare earths, up to the cur-
rent record of Tc=55 K.3 These are the first noncuprate su-
perconductors �SCs� exhibiting such high Tc’s and their dis-
covery has touched off a storm of activity.4

In this paper, we introduce a notable element into the
theoretical debate by considering a unified model of spin
density-wave, orbital density-wave, structural deformation,
and superconductivity in Fe pnictides. The model is simple
but it contains the necessary physical features. The essential
ingredients are electron and hole pockets �valleys� of the
quasi-two-dimensional �2D� multiply connected Fermi sur-
face �FS�.5–7 To extract the basic physics we consider spin-
less electrons first and only a single electron and a single
hole band with identical band parameters. We then show that
this model can be related to a 2D negative U Hubbard model,
the ground state of which is known exactly—it is a
superconductor.8 In real FeAs materials, this fictitious super-
conductivity translates into a fully gapped valley density-
wave �VDW�, a unified state representing a combination of
spin, charge, and orbital density-waves �SDW/CDW/ODW�
at the commensurate wave vector M connecting the two val-
leys. Next, we introduce two different fictitious “chemical
potentials,” �e��h for the electron and the hole valleys, as
measured from the bottom and the top of the bands,
respectively—this describes the effect of doping the parent
iron-pnictide compounds and corresponds to the external
Zeeman splitting in our fictitious attractive Hubbard model.
As ��=�e−�h increases, so does this Zeeman splitting, and
eventually our fictitious superconducting state approaches to
and exceeds the “Chandrasekhar-Clogston” limit, giving way
to a nonuniform Fulde-Ferrell-Larkin-Ovchinikov �FFLO�
ground state at an incommensurate �IC� wave vector q,
where �q� is set by �kF=kF

e −kF
h , and thus by doping x. This

“FFLO state” is nothing but an IC VDW at the wave vector
M+q. Finally, as �kF �x� exceeds certain critical value �kc

�xc�, the “superconducting” state is completely destroyed and
so is the VDW in a true material. However, for �kF above but
near �kc, we consider strong “superconducting” fluctuations
and find that these VDW fluctuations can induce real super-
conductivity in Fe pnictides �see Fig. 1�. In principle, one
could avoid the mapping to the negative U Hubbard model
and argue that the VDW instability in pnictides occurs for
the same reasons as the SDW instability found in, say, Cr.9

We find, however, that our “fictitious superconductivity” de-
scription is more appropriate to pnictides not only due to its
illustrative purposes but also because it allows us to extend
the analogy to the “FFLO” state and multiband “SC,” i.e.,

FIG. 1. �Color online� Phase diagram of Fe pnictides, depicting
the evolution of our fictitious superconductor from the fully gapped
VDW insulator to the “FFLO superconductor”—a partially gapped
metallic VDW—to the real SC under the influence of the Zeeman
splitting �� �doping or pressure�. The red dot on the vertical axis
symbolizes the parent compounds and the regime below it might be
physically inaccessible. Insets: FS of �a� the normal state in the
folded ��↔M� BZ �Ref. 18�, �b� the VDW metal �computed with
the interband interaction set to unity�—this is the C4 version of �c�
the continuum FFLO state �Ref. 21�. The remaining states are fully
gapped.
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VDW. Furthermore, the “fictitious superconductor” descrip-
tion allows us to maximize the symmetry of the noninteract-
ing Hamiltonian and classify the interactions by the degree
of symmetry breaking they introduce. Finally, it provides a
natural venue, by using the known near-rigorous results on
two-dimensional superconductors10 to highlight the crucial
role played in real superconductivity by the interband pair-
scattering processes, as discussed at length below.

The appearance of an SDW in pnictides along with a
structural transition, which we argue to be a signature CDW
coupled to phonons, has been established early on in the
so-called 1111 family11 and the universal presence of these
orders in other families of pnictides and related materials
�122, 11, etc.� has been confirmed by many authors.12,13 Both
the magnetic and the structural order set in at nearly identical
temperatures, the experimental fact that has motivated us to
model this problem as a one major, “mother” instability
�VDW� driven by a large energy scale, which is then split
into several stages �say, CDW, followed by SDW, and even-
tually ODW order� by interaction terms considerably smaller
in magnitude. A main feature of our fictitious FFLO state is
the ungapped portions of the reconstructed FS�s�. These FSs
have been observed in pnictides directly14 as well as indi-
rectly through their signatures in metallic resistivity15 and
recently detected incommensurability of the SDW order.16

II. AN IDEALIZED MODEL OF A VALLEY
DENSITY-WAVE AND AN FFLO STATE
IN A FICTITIOUS SUPERCONDUCTOR

The band structure of Fe pnictides5–7 can be parametrized
by the five-orbital tight-binding model.17,18 The key feature
is the multiband nature of the FS, possessing both hole and
electron sections. We work with the properly defined Fe-
pnictide unit cell which contains two of Fe and two pnictide
�As or such� atoms per unit cell. The basic physics is cap-
tured by the Hamiltonian describing two hole �c�� and two
electron �d�� bands centered at the � and M points of the 2D
Brillouin zone �BZ�, respectively,

H = H0 + Hint, �1�

H0 = �
k,�,�

	k
���ck,�

���†ck,�
��� + �

k,�,�
	k

���dk,�
���†dk,�

��� , �2�

Hint =
1

2
� d2rd2r�V�r,r��n�r�n�r�� , �3�

where � ,��= ↑ ,↓ and � ,� are the spin and band labels,
respectively, 	k

��,�� is the hole �electron� dispersion near the
FS, V�r ,r�� is the effective interaction and n�r�
=��
�

†�r�
��r� with 
��r�=�k,�ck,�
��� �k

����r�+�k,�dk,�
��� �k

����r�.
k� and �k

����r� are the Bloch wave functions of hole �elec-
tron� bands.

For simplicity, Eq. �3� includes only the screened density-
density repulsion; its form becomes more complex if we in-
tegrate out the bands away from the Fermi level EF, gener-
ating additional interactions in the spin and interband
�orbital� channels. Furthermore, we could equally well start

from the minimal tight-binding representation of Ref. 18 and
introduce the interaction term in the Wannier representation
as

Hint =
1

2
Ud�

i

ndi
2 − JHund�

i

Sdi
2 + � ¯ � , �4�

where ndi and Sdi are the total particle number and spin in
Wannier d orbitals of iron. Ud describes the overall Hubbard-
type repulsion on iron sites while JHund signifies the
intra-d-orbital Hund coupling. In addition, there are numer-
ous intra-d-orbital interactions, as well as various similar
terms for p orbitals on pnictide sites, all contributing to
�¯ �.19 However, all such interaction terms feed into the ge-
neric classes of quartic vertices near the FS which are gen-
erated by Hint �3�; only the precise numerical values of vari-
ous vertices are affected. In particular, as long as the
influence of JHund �and �¯ � terms� is relatively small and
one is in the weak-to-intermediate coupling regime argued to
be relevant to pnictides,18 the overall numerical hierarchy of
energy scales defined by these various classes of vertices
remains intact, as discussed below. Finally, we further sim-
plify the problem by exploiting the fact that all electron
�hole� bands have EF near their bottom �top� and their Fermi
wave vectors kF’s are M. This allows us to restrict our
attention to the first BZ and take continuum limit with
V�r ,r��→V�r−r��.

Hint �3� generates three classes of vertices: �i� the intra-
band �c†cc†c and d†dd†d�, �ii� the interband �c†cd†d�, and
�iii� the mixed �d†cc†d+H.c. and c†dc†d+H.c.�. All arise

from Hint→ 1
2�qṼqnqn−q, where

nq = �
k����

�k+q,k
����� ck+q,�

���† ck,�
���� + �

k����

�k+q,k
����� dk+q,�

���† dk,�
����

+ �
k���

�k+q,k
���� ck+q,�

���† dk,�
��� + H.c., �5�

Ṽq is the Fourier transform of V�r−r��, and

�k,k�
����� =� d2rei�k�−k�·r�k

�����r��k�
�����r� ,

�k,k�
����� =� d2rei�k�−k�·r�k

�����r��k�
�����r� ,

�k,k�
���� =� d2rei�k�−k�·r�k

�����r��k�
����r� . �6�

The following should be kept in mind about these three
classes of vortices: first, all exhibit considerable variation as
one moves around the FS. This is the consequence of signifi-
cant variations in the orbital content of various bands in dif-
ferent portion of the BZ. Second, we find that, generically,
the intraband and the interband vertices are comparable in
magnitude while the mixed ones are notably smaller. This
remains true regardless of whether we use the interaction
�Eqs. �3� and �4�� or some other related form as long as JHund
is not dominating the physics and �¯ � Eq. �4� are relatively
small.
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To illustrate the latter claim, we include the Hund’s cou-
pling to the interaction terms and compare the vertices with
and without it. For example, the hole intraband vertex

Uk,k�,q
��� ck+q,�

���† ck�−q,��
���† ck���

��� ck�
��� �7�

acquires strength

Uk,k�,q
��� = 	Vq +

1

4
JHund
�k+q,k

���� �k�−q,k�
���� +

1

2
JHund�k+q,k�

����
�k�−q,k

����

�8�

and therefore the Hund’s coupling effectively only adds up to
the Coulomb potential in this scattering channel. The same is
true for other intraband scattering processes, the second
mixed term G2, and most importantly for the interband scat-
tering vertices

Wk,k�,q
���� = 	Vq +

1

4
JHund
�k+q,k

���� �k�−q,k�
���� +

1

2
JHund�k+q,k�

���� �k,k�−q
����� ,

�9�

where the second term is negligible for small q. The only
interaction vertex that is more affected by JHund than the
others is the first mixed term

G1/k,k�,q
���� = 	Vq +

1

4
JHund
�k+q,k

���� �k�,k�−q
����� +

1

2
JHund�k+q,k

���� �k�−q,k�
����

�10�

due to the relative size of �’s and �’s. However, as long as
the screened Coulomb potential is the strongest interaction
�i.e., JHund�Vq here� the changes to vertices due to the other
sources of scattering �such as those in Eq. �4�� will be only
quantitative in nature.

We now observe that the shapes of different sections of
the FS �Fig. 1� resemble each other to a reasonable degree.
Furthermore, various masses are also roughly similar.17,18

Thus, to make theoretical progress, it is useful to first assume
that all electron and hole bands are equal −	k

��=h1�=−	k
��=h2�

=	k+M
��=e1�=	k+M

��=e2��	k
0. After making the particle-hole �ph�

transformation dk,�
��� →ek,�

��� and ck,�
��� →�hk,−�

���† , Hamiltonian �1�
becomes

HSU�8� → �
k,��

	k
0�k,�

���†�k,�
��� + Hint� , �11�

where ����†= �e1
† ,e2

† ,h1
† ,h2

†�. Ignoring the effects of bands
away from the FS, the kinetic part of HSU�8� �11� has an exact
SU�8� symmetry involving orbital �both electron and hole�
and spin degrees of freedom, � and �, respectively. This
symmetry can be used to classify various vertices in
Hint� —ultimately generated by Hint �3� which itself has
only U�1�charge�SU�2�spin symmetry—and analyze various
symmetry-breaking patterns, starting with SU�8�→SU�4�
�SU�4�, as discussed in Ref. 20.

To illustrate the physics, we focus first on the minimal
model: SU�8�→SU�2�. This leaves one with only two fer-
mion flavors, e and h. Note that spin SU�2� symmetry is
suppressed but the orbital electron-hole symmetry remains
as it is essential for this problem. We now obtain

HSU�2� = �
k

	k�ek
†ek + hk

†hk� +
1

2
� d2rd2r�

� �Ue�r − r��ne�r�ne�r�� + Uh�r − r��nh�r�nh�r��

− 2W�r − r��ne�r�nh�r��� + HSU�2�
mixed, �12�

where Ue/h�r� and W�r� are the Fourier transforms of

Ṽk−k���k,k�
�e/h��k�,k

�e/h�FS and Ṽk−k���k,k�
�e� ��h��k� ,k�FS, respectively.

�¯ FS indicates the k and k� dependence was replaced by
the average over the FS—this is justified later. The SU�2�
symmetry implies Ue�r�=Uh�r�. Finally, the general Hmixed

contains smaller mixed vertices and eventually plays a
prominent role in our theory; however, we initially—but only
temporarily—set it to zero, HSU�2�

mixed→0.
The intraband scattering W�r� has a minus sign in front

of it. This is the result of the ph transformation and indi-
cates that, we having started with a �screened� Coulomb re-
pulsion between the original electrons, the e and h flavors
now mutually attract. Consequently, at low energies, HSU�2�
�without HSU�2�

mixed� is equivalent to the negative U Hubbard
model at low �or high� x, assuming that W�r� is short ranged
and 	k can be represented in the effective-mass ap-
proximation �W�r�→W��r� and 	k→k2 /2m�. Both assump-
tions should be valid since kFM. The ground state is a
“superconductor” with an anomalous correlator �e†h†�0,
where e†�h†� creates a “spin-up �down�” fermion f↑�f↓�. For
T�Tc�EF exp�−1 /N�0�W�, the system is in its normal state
�see phase diagram in Fig. 1�. At T�Tc one enters a broken-
symmetry state, with “off-diagonal” long-range order and
gapped fermions.

Of course, the above “superconductivity” is useful but
entirely fictitious mathematical construct, resulting from the
ph transformation used to enhance the symmetry of our basic
model for iron pnictides. Still, what is this “superconductiv-
ity” in the real world? By retracing our steps and undoing the
ph transformation, the “off-diagonal” order in �fk↑

† f−k↓
† 

= �ek
†h−k

†  translates into the diagonal density-wave,
�dk+M

† ck�0, connecting electrons from two pockets of the
FS separated by M= �� ,��; a VDW. Note that the VDW
describes both spin and charge/orbital density-waves. With
the spin SU�2� symmetry suppressed in our minimal model,
one cannot—and should not—distinguish between the two.
We identify the above VDW �SDW/CDW/ODW combina-
tion� formation as the physical mechanism driving the
density-wave orderings observed in numerous experiments.

We can pursue this VDW-“superconductor” analogy a bit
further: in real FeAs materials, the electron-hole pockets are
not identical, the main difference being their distinct kF’s. In
our fictitious superconductor, this translates to different
“chemical potentials”, �e��h for the electron and the hole
valleys. This is nothing but the external Zeeman splitting in a
fictitious negative U Hubbard model. As ��=�e−�h grows,
the “superconducting” state approaches the “Chandrasekhar-
Clogston” limit, giving way to a nonuniform FFLO ground
state at an incommensurate wave vector q, where �q� is set by
�kF=kF

e −kF
h . This “FFLO state” is just an IC VDW at the

wave vector M+q. Finally, as �kF �x� exceeds certain critical
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value �kc �xc�, the “superconducting” state is destroyed
and so is the VDW �SDW/CDW� in a real FeAs system
�Fig. 1�.22

III. VALLEY DENSITY-WAVE AND INTERBAND
SUPERCONDUCTIVITY

The above “superconductor” analysis dealt with an ideal-
ized model but its main conclusions apply to the real Fe
pnictides: �i� the dominant instability is the VDW at wave
vector M, a unified spatially modulated state manifested
through the combined SDW/CDW/ODW and a structural
transformation,11 the details of which depend on nonuniver-
sal features of individual materials; �ii� since hole and elec-
tron valleys are not identical, the VDW is the ph analog of a
fictitious FFLO state, resulting almost always in portions of
the FS which are not gapped �Fig. 1�. Consequently, the
SDW/CDW/ODW’s in FeAs are highly itinerant and coexist
with finite density of normal charge carriers, exhibiting me-
tallic conductivity;15 and, finally, �iii� Hamiltonian HSU�2�
�12� without the mixed vertices �i.e., with HSU�2�

mixed→0� con-
tains only three basic ground states: fictitious uniform and
nonuniform FFLO “superconductor” �commensurate and in-
commensurate VDW� and the normal state �Fig. 1�. Thus, if
purely electronic interactions are to have a prominent role in
generating Fe-based superconductivity of the real world, this
effect must arise from HSU�2�

mixed. This is an important result and
an added benefit of our transforming the original problem
into a fictitious “superconductor”.10

With this last point in mind, we now restore these mixed
vertices to investigate the real superconductivity in our ficti-
tious “superconductor” model. It is beneficial at this stage to
add extra two flavors to the elementary SU�2� model and
demand an additional global SU�2� isospin symmetry with
respect to these flavors—this isospin degree of freedom is
completely inert and can be thought of as either the real spin
or an additional orbital index. Its role is purely mathematical
as it couches the following analysis in the language most
easily translated to the ultimate realistic description of
pnictides.23 Furthermore, viewing this isospin as simply the
real spin is useful since, assuming a reasonable degree of
total spin conservation in pnictides, the additional SU�2� glo-
bal symmetry limits the number of terms in Hmixed that need
to be considered. The mixed vertices allowed by this exten-
sion of our model are mixed scattering G1 and Josephson-
type term G2 which, in absence of nonlocal interactions, has
to be in a spin-singlet channel

Hspin
mixed � G1c�

†d�d��
† c� +

1

2
G2��c�

†c−�
† ����d−��d��� + H.c.

�13�

The relation of these vertices to the screened Coulomb inter-
action is given in Eq. �10�. We assume that the corresponding
coupling constants are in the regime G1 ,G2W ,Uh ,Ue, as
will be justified momentarily.

These preliminaries in place, we are ready to answer the
key question: what is the effect of finite G1 and G2 on the
previous analysis? Analyzing corrections in the perturbation

theory to our four point vertices, we find contributions to the
processes which are dependent on whether the incoming and
outgoing spins are parallel or not. This occurs due to the fact
that incoming or outgoing states of mixed term G2 as well as
the intraband interaction U are spin singlets of either holes or
electrons, Eq. �13�. The interband scattering term is therefore
conveniently split into two pieces

Wd��
† c�

†c�d�� → W�d−�
† c�

†c�d−� + W�d�
†c�

†c�d� �14�

with the bare values for both coupling being identical to W.
The first mixed term G1 is split in identical fashion while the
intraband scattering and the G2 mixed term are required to
scatter particles with incoming opposite spins and therefore
do not need to undergo the same separation �or equivalently,
G2��0, etc.�. At the lowest order, we find that different types
of vertices receive the following corrections in the perturba-
tion theory:

gU��� = gU − gU
2 ln	�

�



pp
− g2

2 ln	�

�



pp
,

g2��� = g2 − 2g2gU ln	�

�



pp
+ 2g2gW� ln	�

�



ph

c

+ 2g2gW� ln	�

�



ph

v

− 2g2g1� ln	�

�



ph
,

gW� ��� = gW� + �gW� �2ln	�

�



ph
+ g2

2 ln	�

�



ph
,

gW� ��� = gW� + �gW� �2ln	�

�



ph
,

g1���� = g1� − 2g1�g1� ln	�

�



ph
+ 2g1�gW� ln	�

�



ph

v

,

g1���� = g1� − �g1��
2ln	�

�



ph
− �g1��

2ln	�

�



ph

− g2
2 ln	�

�



ph
+ 2g1�gW� ln	�

�



ph

v

, �15�

where gU, g2, gW� , gW� , g1�, and g1� are just the vertices
U�=Uh=Ue�,23 G2, W�, W�, G1�, and G1�, respectively, mea-
sured in units of inverse density of states at the Fermi level.
The logarithmic divergences in Eq. �15� arise from two
sources: first, the standard Cooper pairing instability in the
particle-particle �pp� channel and second, the perfect nesting
of the hole and electron bands in the particle-hole �ph� chan-
nel, i.e., our fictitious “Cooper” instability. Finally, ln� �

� �ph
c�v�

denotes a crossing �vertex� diagram in the ph channel—it
strictly diverges only in the kF

e,h /M→0 limit and is otherwise
finite. Needless to say, there are many additional terms that
contribute to various vertices at the leading order in pertur-
bation theory. However, all such terms are finite in the low
energy limit and are omitted from Eq. �15�.

The third and fourth lines of Eq. �15� are just the math-
ematical shorthand for our earlier discussion: under renor-
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malization, the coupling constants gW� and gW� keep growing,
ultimately generating the VDW instability, driven by W �the
short-ranged attraction of our fictitious Hubbard model�. We
notice, however, that G2 enhances the growth of W�, thereby
giving slight edge to SDW �spin triplet� over a CDW �spin
singlet�. The first and last two lines tell us that U and G1’s do
not interfere: the intraband repulsion gU, initially large, is
rapidly renormalized downwards, toward the Fermi-liquid
behavior. g1’s are typically small to begin with and are also
driven down; in practice, they can be set to zero. The inter-
esting physics is reserved for G2. The growth of gW’s fuels
the growth of g2 and thus the mixed vertex describing
the resonant pair scattering between the hole and elec-
tron bands—i.e., the “Josephson” interband vertex c†dc†d
+H.c.—becomes strongly enhanced as one approaches the
VDW �SDW/CDW/ODW� instability. However, since typi-
cally G2W �see below�, gW wins, resulting in the VDW
order. Once the VDW is formed, the fermions are gapped
and the singular behavior disappears, and with it any addi-
tional enhancement of G2.

The situation changes, however, when the differences in
size between h and e bands are included, i.e., when the “Zee-
man splitting” is turned on, by doping or pressure in real
FeAs �Fig. 1�. This cuts off the fictitious “Cooper” diver-
gence, resulting in our “FFLO” state and eventual disappear-
ance of VDW. In this case, the portions or even all of the FS
is still available for the true Cooper pairing and the real
superconductivity becomes a viable option. The remarkable
feature of interband pair resonance is that it can produce real

superconductivity irrespective of its sign.24 Thus, strongly
enhanced G2 can take advantage of the real-world Cooper
singularity—which is always present—and amplify a pre-
existing intraband superconducting instability or generate
one entirely on its own. We will revisit this point shortly.

IV. VALLEY DENSITY-WAVE AND SUPERCONDUCTIVITY
IN REAL IRON PNICTIDES

This is as far as we can go within the idealized picture: we
now must face up to the complexities of the real materials.
First, there are four, two h and two e, bands which deviate
from an ideal parabolic shape and whose kF’s are different
and second, all vertices—intraband, interband, and mixed—
have considerable structure as one moves over different por-
tions of the FS. The latter is an important point and reflects a
fundamental feature of FeAs: all five d orbitals need to be
included in realistic calculations and various two-orbital and
three-orbital models will fall short in addressing the phenom-
enology of real materials. We find that, no more than a single
orbital, d2z2−x2−y2, can be dropped without a major qualitative
disruption of the character of the electronic states at the FS;
thus a four-orbital description is the absolute minimum. Fi-
nally, the lattice effects produce modifications to our con-
tinuum picture which need to be addressed.22

We use the full 8+8-band tight-binding model18 to find
the electron ��k

���� and hole ��k
���� wave functions. This

model yields �’s and �’s Eq. �5� shown in Fig. 2. For a fixed

FIG. 2. �Color online� �a� Inter/intraband �k,k�
�e/h� of Eq. �5� �in kFM limit� for the inner and outer hole bands, and the electron bands as

k and k� go around respective FSs. �b� Mixed �k,k�
�e,h� Eq. �5� are clearly smaller than �’s.
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k, a given � varies as k� goes around the FS. At k=k�, the
normalization of wave-function sets � to 1. As k and k�
move apart, so does � decreases until it reaches its minimum
at k�=−k. Based on the symmetry properties of the atomic
orbitals, one obtains �kFM�

�k,−k
��� = � 	 �

��even

�b�
����2 − �

��odd

�b�
����2
 , �16�

where b�
��� is the amplitude of atomic orbital � in a hole state

��� or, equivalently, an electron state ���. Each orbital’s con-
tribution is determined by its in-plane parity �i.e., sign
change under �x ,y ,z�→ �−x ,−y ,z��; even/odd orbitals con-
tribute with + /− or vice versa. Our model uses orbitals of
different parity, and consequently, Eq. �16� is bound between
−1 and 1, the precise value depending on the amount of
mixing of even and odd orbitals within a state. For example,
compare ��h1� and ��h2� �Fig. 2�. Since both hole bands have a
significant contribution of dxz/yz atomic orbitals �odd�, both
are similarly shaped. The fourfold repetitive structure is due

to the C4 lattice symmetry. However, the minimum values
�k=−k�� are different: ��h1� nearly reaches −1, whereas
��h2��−0.6. This reflects the fact that the outer hole band
possess a significant overlap with dxy �even� orbital state
while the inner hole band is almost entirely made of odd
bands. In a more limited model, where only bands of a cer-
tain parity are kept,25 a topological “Berry phase winding”
can be defined for each section of the FS.26 Depending on
this “winding,” �k,−k would have to be either +1 or −1 and
the consequences of the latter would include a suppression of
an s-wave VDW in the favor of a p-wave one. Within our
model, this notion of topology is absent.

Next, the above form factors �’s and �’s are used to com-
pute all the interaction vertices �intraband, interband, and
mixed� stemming from Eq. �3� along different sections of the
FS �h1, h2, e1, and e2� and to extract the corresponding
coupling constants in the C4 “angular momentum” channels,
s, p, and d. The results, normalized by the overall strength of
the screened Coulomb interaction in Eq. �3�, are

U W

�h1� �h2� �e1� �e2� �h1,e1� �h1,e2� �h2,e1� �h2,e2�
s 0.44 0.31 0.36 0.35 0.21 0.25 0.27 0.29

px 0.02 0.10 0.08 0.10 0.11 0.10 0.11 0.11

py 0.02 0.10 0.09 0.10 0.11 0.10 0.11 0.11

dx2−y2 0.14 0.08 0.02 0.03 0.06 0.07 0.05 0.06

d2xy 0.08 0.04 0.07 0.07 0.05 0.06 0.04 0.05

, �17�

G1 G2

�h1,e1� �h1,e2� �h2,e1� �h2,e2� �h1,e1� �h1,e2� �h2,e1� �h2,e2�
s 0.11 0.00 0.00 0.00 0.15 0.01 0.11 0.02

px 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

py 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

dx2−y2 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00

d2xy 0.05 0.00 0.00 0.00 0.03 0.00 0.00 0.00

. �18�

All the vertices �Eqs. �17� and �18�� are given in the original
c and d electron basis �1–3� and are all positive �repulsive�;
they are easily converted into the basis used in Eq. �11� by
the ph transformation �i.e., W→−W, etc.�. The numbers in
the above table change if additional forms of interaction in
real space are considered, for example, those of Eq. �4�, as
discussed earlier. Again, provided one is outside the regime
dominated by the Hund’s coupling, such changes are minor.

Obviously, when it comes to the interband vertex �W� as
well as all the other vertices, the “s-wave” channel domi-
nates, which retroactively justifies our earlier idealized
analysis in terms of an attractive Hubbard model and a ficti-
tious “superconductor”. We find that—depending on the

overall strength of Coulomb repulsion—the most likely
ground state is a multiband VDW �SDW/CDW/ODW�
which, due to the mismatch of the hole and electron bands
and the underlying lattice effects, is generically in the
“FFLO” region of the phase diagram in Fig. 1, leaving por-
tions of the original FS ungapped and metallic. As expected,
this VDW �SDW/CDW/ODW� symmetry breaking at wave
vector M is fueled by a large susceptibility of nearly nested
hole and electron valleys.18

If the Coulomb repulsion is just below what is needed to
produce a metallic VDW �Fig. 1�, the mixed Josephson ver-
tex G2 is strongly enhanced, as illustrated by Eq. �15� and
surrounding discussion. This is the regime where the inter-
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band superconductivity6,18,27 is possible. Here, an important
point needs to be made: there are two ways in which G2 can
lead to high-temperature superconductivity in Fe pnictides:
first, G2 itself can be the source of superconductivity. This is
a naturally appealing theoretical scenario since it relies on
the proximity to a VDW �SDW� instability to enhance G2
and uses purely electronic interactions to generate supercon-
ducting order. The difficulty in this case is that G2 has to
overwhelm the intraband Coulomb repulsion Ue and Uh be-
fore superconductivity becomes possible, the condition being
roughly G2��UeUh. While G2 takes off as one approaches
the VDW �SDW/CDW/ODW�, there is a reflection of this
enhancement in the renormalized values of Ue and Uh as
well. For the realistic model with four inequivalent bands
and the interaction vertices displayed in Eqs. �17� and �18�,
this balancing act between U’s and G2 becomes very sensi-
tive, particularly since the bare U’s start as generically larger
and only two of G2’s are not negligible in size while all four
U’s are appreciable. Any effort to extend Eq. �15� to four
realistic bands and to all �intraband, interband, and mixed�
vertices quickly descends into impenetrable numerics with
the above sensitivity to the bare values in Eqs. �17� and �18�,
making it difficult to reach firm quantitative conclusions.
A notable recent progress along these lines was made in
Ref. 28.

However, there is a reasonably straightforward way to
illustrate the qualitative argument for the interband super-
conductivity mechanism near the VDW phase boundary. This
argument follows straight from Eq. �15�. Imagine that our
isospin label is simply an ordinary spin. Therefore, we have
spinful electrons with two �instead of four in real pnictides�
orbital flavors, c and d �h and e�. In this case, G2 is the
interband pairing resonance in the spin-singlet channel. As
argued earlier, we can safely set G1=0 and rewrite the re-
maining parts of Eq. �15� as

ġU = − gU
2 − g2

2,

ġW� = �gW� �2 + g2
2,

ġW� = �gW� �2,

ġ2 = − 2g2gU + 2g2�gW� + gW� � , �19�

where g’s are functions of ln� �

� � and ġ�dg /d ln� �

� � and we
again assume Uh=Ue=U.

Imagine for the moment that there is no last term in the
last line of Eq. �19�, i.e., W’s and G2 are not directly coupled.
As one moves to low energies �→0, gW’s rapidly grow and
one ultimately reaches the point where the system turns into
a VDW. Meanwhile, U and G2 do nothing: this is easily seen
by adding and subtracting the first and the last lines of Eq.
�19� ġU� ġ2=−�gU�g2�2. This is just the lowest-order de-
scription of the real Cooper pairing instability in the s-wave
spin-singlet channel with the superconducting gap parameter
having either the same sign for both bands c and d �conven-
tional s wave� or the opposite sign �s� wave or an extended

s wave, s��, the corresponding coupling constants being gU
+g2 and gU−g2, respectively. Both of these coupling con-
stants are repulsive and thus both scale toward zero and into
the Fermi-liquid regime, leaving the VDW and W to deter-
mine the physics at low energies, unless G2�U���UhUe� at
the bare level. This is not impossible but appears to be un-
likely within the regime of interactions considered here,
where G2 is typically quite a bit smaller than U. This tells us
that the direct coupling of G2 to W’s in the last line of Eq.
�19� must be crucial: the growth of W’s as we approach the
VDW eventually pulls G2 along with it while U still contin-
ues being renormalized downward. This growth of G2 gen-
erated by its coupling to W’s and the VDW could ultimately
result in G2

��U����Uh
�Ue

��, where G2
� and U� are the renor-

malized coupling constants at some low energy scale �0
�, even though G2�U���UhUe� at the bare level. This
implies that the coupling constant gU−g2 is attractive for
���0 and translates into growth of s� �s�� pairing correla-
tions at yet lower energies. All of this is for nothing, how-
ever, W’s and the VDW instabilities are still far stronger. But,
if the strong growth of W and the VDW instability are cut off
by our fictitious Zeeman splitting in doped or pressurized
FeAs �Fig. 1�, then W stops growing at some energy scale
�z���=�e−�h directly tied to the difference in FS size
between h and e bands and the corresponding lack of perfect
nesting. Then, if �z��0, the subleading instability would
take over and the ground state would be an s� �s�� supercon-
ductor, either adjacent to the VDW boundary or coexisting
with it in the pockets left ungapped by the VDW �Fig. 1�.
The above argument is similar in spirit to the weak-coupling
mechanism for d-wave superconductivity once the single
band repulsive Hubbard model is doped away from half fill-
ing and the SDW ground state. There is an important differ-
ence, however, if �z��0 there will be no superconducting
ground state since gU−g2 is still repulsive. This is a qualita-
tive point and it underscores the fact that an s� �s�� super-
conductor still has an overall s-wave symmetry and, unlike
the nodal d wave, must contend with the strength of the bare
intraband repulsion.

The second way is now obvious: G2 enhancement near
the VDW instability can overcome the repulsion U if an
attractive intraband interaction is at work as well. Such in-
traband attraction might come from phonons, for example.
This attraction may or may not suffice to produce supercon-
ductivity by itself—the key point is that it reduces the effec-
tive U’s Eq. �17� allowing the enhanced G2 to cross over the
hurdle. Note that in both of these cases, the purely electronic
and the phonon-assisted one, the superconducting gap on the
hole and the electron portions of the FS will have the oppo-
site sign,6,18,27,29 reflecting the fact that the interband pairing
term G2 is repulsive.

V. CONCLUSIONS

In summary, we have proposed an idealized model of Fe
pnictides which includes an electron and a hole band, and
takes advantage of their similar shape and size. The ph trans-
formation maps this model into a fictitious attractive Hub-
bard model in external “Zeeman” field. The ground states,
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fictitious superconductor and the “FFLO” state, correspond
to insulating and metallic VDW in real materials. Next, by
considering deviations from perfect nesting, two hole and
two electron bands, and other realistic features of Fe pnic-
tides, we analyze the structure of interactions in the 8+8
orbital model18 and identify the interband pair resonance
mechanism that can generate the real superconductivity in
the region of the phase diagram of Fe pnictides where the
VDW order gives way to strong VDW fluctuations.
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