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We consider the problem of slow activation dynamics in glassy systems undergoing a random first-order
phase transition. Using an effective potential approach to supercooled liquids, we determine the spectrum of
activation barriers for entropic droplets. We demonstrate that fluctuations of the configurational entropy and of
the liquid glass surface tension are crucial to achieve an understanding of the barrier fluctuations in glassy
systems and thus are ultimately responsible for the broad spectrum of excitations and heterogeneous dynamics
in glasses. In particular we derive a relation between the length scale for dynamic heterogeneity and the related
barrier fluctuations. Diluted entropic droplets are shown to have a Gaussian distribution of barriers, strongly
suggesting that non-Gaussian behavior results from droplet-droplet interactions.
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I. INTRODUCTION

The glass transition and glassy behavior are dynamical
phenomena characterized by slow relaxations and a broad
spectrum of excitations. Recently strong experimental evi-
dence for dynamical heterogeneity in glassy systems, i.e., for
spatially varying characteristic time scales for relaxation, has
been obtained through NMR �Ref. 1� and nanometer-scale
probing of dielectric fluctuations.2 The wide distribution of
excitations, as seen in bulk dielectric measurements, is there-
fore believed to be caused largely by spatial variation in the
characteristic time scales; see also Ref. 3. Regions in a glassy
system separated by only a few nanometers relax on time
scales different by many orders of magnitude.

Whether these purely dynamical phenomena can be ex-
plained in terms of the underlying energy landscape is still
debated. The question has been positively answered on the
level of the mean-field theory of glasses. The dynamical,
ideal mode-coupling theory4 and energy landscape based
replica mean-field theories were demonstrated to describe
the same underlying physics yet from rather different
perspectives.5,6 The idealized version of the mode-coupling
theory4 falls out of equilibrium below a temperature TA
�Tg, where Tg is the laboratory glass temperature �see be-
low�. This is consistent with static energy landscape based
mean-field theories that find the emergence of exponentially
many metastable states, Nms�exp�const.V�, at the same tem-
perature TA. Here V is the volume of the system. Thus, the
configurational entropy Sc=kB log Nms becomes extensive
and only vanishes at the Kauzmann temperature TK�TA.
Unfortunately, neither the emergence of slow activated dy-
namics nor the possibility of spatial heterogeneity is cor-
rectly captured within mean-field theory, making it impos-
sible to use mean-field theory alone to directly explain the
heterogeneous dynamics observed in numerous glass-
forming liquids. On the other hand, mode-coupling theory at
higher temperatures �T�TA� has been shown to give a rea-
sonably accurate account of the dynamics of liquids. At
lower temperatures �T�TA�, bulk thermodynamic properties

of glass-forming liquids, most notably the temperature de-
pendence of the configurational entropy and the related
Kauzmann paradox,7 agree with the results of the energy
landscape based mean-field theory �see Refs. 8 and 9�. This
motivated the development of a theory for glass-forming liq-
uids that has its foundation in the mean-field theory, but that
does take into account activated dynamics and spatial hetero-
geneity which are beyond the strict mean-field approach.5,8

The resulting random first-order �RFOT� theory of glasses
demonstrates that ergodicity above the Kauzmann tempera-
ture TK can be restored via “entropic droplets” in which a
region of the liquid is replaced by any of an exponentially
large number of alternatives. The entropy of the possible
alternatives acts as a driving force for structure change. This
driving force is offset by the free-energy cost of matching
two alternative structures at their boundaries. This conflict
gives a free-energy barrier for activated motions.5,10 Various
consequences of entropic droplets have been analyzed in
Refs. 11–14 using for concrete calculation a density func-
tional description of the liquid state. These quantitative re-
sults have been found to be in good agreement with experi-
ment. Within RFOT, the number of metastable states
determines the activation barrier of the glassy state. While
this is similar to the Adam-Gibbs theory for glasses,15 there
exist important distinctions between the two approaches �see
Ref. 10�. In agreement with the RFOT approach but not with
the assumptions of Adam-Gibbs argument, the complexity of
a correlated region increases as the glass transition is
approached.16 The need for instantonlike events to under-
stand the longtime dynamics in glasses is also supported by
recent findings on extended mode-coupling theories for
dense fluids.17

More recently, an effective Landau theory for glasses,
based on the replica method of Ref. 18, has been developed.
This framework naturally allows for activated dynamics be-
yond mean-field theory.19,20 This approach based on instan-
tons offers a formal justification of the entropic droplet ap-
proach using the replica approach to glasses. It reproduces
and thus confirms several results of the RFOT theory of
structural glasses.8 In both approaches, a mean droplet acti-
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vation energy F‡ occurs, which is determined by the configu-
rational entropy density sc �for details see below�,

F‡ � sc
1−d�. �1�

sc�
T−TK

TK
vanishes linearly at the Kauzmann temperature TK

�Tg. The exponent � relates the droplet size R and the con-
figurational entropy density: R�sc

−�. d is the spatial dimen-
sion. Below we assume that d=3. In its most elementary
version the replica Landau theory yields �=1.19,20 A renor-
malization of the droplet interface due to wetting of interme-
diate states on the droplet surface8 was shown to yield �
=2 /d, leading to F‡�Tsc

−1 and correspondingly to a Vogel-
Fulcher law �̄��0 exp�

DTK

T−TK
� for the mean relaxation time,

�̄ = �0 exp� F‡

kBT
� . �2�

A softening of the surface tension due to replica symmetry
breaking of the instanton solution was also obtained in Ref.
20 and seems to be a first correction containing the effects
that lead to a reduction in the exponent � from the value of
�=1.

Numerous experiments on supercooled liquids not only
depend on the most probable barrier, F‡, but are also sensi-
tive to the entire broad excitation spectrum in glasses.3 Most
notably, the broad peaks in the imaginary part of the dielec-
tric function ����� are most naturally understood in terms of
a distribution g��� of relaxation times such that

����� �� d�g���
��

1 + ����2 . �3�

Similarly dynamical heterogeneity with spatially fluctuating
relaxation times yields nonexponential �frequently stretched
exponential� relaxation of the correlation function,

��t� =� d�g���e−t/�, �4�

and allow for an explanation of nonresonant hole burning
experiments21 even though interesting interpretations of the
nonexponentiality based on “dynamical homogeneity” exist
as well.22 Other effects that are most likely caused by a dis-
tribution of relaxation rates include the breakdown of the
Stokes-Einstein relation D=

kBT

4	
L between the diffusion coef-
ficient D of a particle of size L and the viscosity 
.23,24

These experiments all call for a more detailed analysis of
the fluctuations,

�F‡2 � F‡2 − F‡2,

of the activation barriers and, more generally, of the distri-
bution function p�F‡� of barriers. The latter yields the distri-
bution function of the relaxation times,

g��� = p�F‡�
dF‡

d�
, �5�

through ��F‡�=�0 exp� F‡

kBT �. For example, in case of a Gauss-
ian distribution of barriers one obtains a broad log-normal
distribution of relaxation rates,

g��� =
1

��2	�
exp�−

log2��/�̄�
2�

� , �6�

with

� = �F‡2/�kBT�2 �7�

and �̄ from Eq. �2�. While the distribution 	Eq. �6�
 does not
yield precisely a stretched exponential form for the correla-
tion function, it can often be approximated by

��t� � exp�− �t/�̄�� , �8�

with = �1+��−1/2. Furthermore, the study of higher order
moments of p�F‡� is important to determine whether the dis-
tribution is indeed Gaussian or more complicated.

In this paper we determine the fluctuations �F‡2 as well as
higher moments of the distribution of the barrier distribution
function p�F‡�. Thus, we address the following question:
what are the fluctuations of this optimal barrier around its
most probable value? Due to the distribution of metastable
states the barrier is sometimes a little larger and is sometimes
a bit smaller. Our theory gives a quantitative answer as to
how much larger and smaller. We start from the replica Lan-
dau theory of Ref. 18 and use the replica instanton theory of
Refs. 19 and 20. We then generalize the replica formalism to
determine barrier fluctuations in addition to the determina-
tion of the mean barrier F‡. Our approach is an important
step to gain insight into the whole spectrum of activated
processes in glassy systems in general.

The role of barrier fluctuations within the RFOT theory of
structural glasses was first discussed by Xia and Wolynes in
Ref. 12. Variations in the configurational entropy density
were assumed to be the main cause of the fluctuations of the
barrier �Fig. 1�.

Starting from F‡�sc
1−d�, barrier and configurational en-

tropy density fluctuations are related by �F‡�sc
−d��sc, which

yields �F‡2�sc
−2d��sc

2. Standard fluctuation theory then deter-
mines the entropy fluctuations in a region of size Rd as �sc

2

��cpR−d where the configurational heat capacity remains fi-
nite as T→TK �for a detailed discussion of �cp see below�.
This reasoning finally yields

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

N1
states

3

(1) (2)
s

(3)scc c= =

c B is k Log(N )/ Vdrop~(i)

s

N
statesstates

N2

FIG. 1. �Color online� The appearance of an exponentially large
number of metastable configurations and the possibility for a sys-
tem to realize these configurations give rise to the configurational
entropy. The latter serves as the driving force for the structure
change in the glassy phase. The energy cost to match the boundaries
between the different density configurations gives rise to the energy
barriers. The fluctuations of the configurational entropy give rise to
the energy barrier fluctuations.
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�F‡2 � sc
−d� � Rd. �9�

In the approach of Ref. 12, barrier fluctuations diverge with
the volume of the entropic droplet. Our results will demon-
strate that the leading droplet size dependence of �F‡2 agrees
with Eq. �9� and Ref. 12. We also show that there are addi-
tional terms originating in the fluctuations of the interface
tension of entropic droplets that contribute to �F‡2. In addi-
tion we analyze the temperature dependence of the static
barrier fluctuations and of the exponent  for stretched ex-
ponential relaxation as well as the variation in the dielectric
response with frequency and temperature.

We stress that there may, in principle, be experiments that
probe certain dynamical processes that deviate from the most
probable barrier in ways that differ from our procedure.
These could result in tails in the distribution of relaxation
times. Indeed, a pileup of short, not long, relaxation times is
observed and is called beta relaxation. We believe that these
beta relaxations occur via transition states that deviate con-
siderably in shape from the most probable one. Notice how-
ever that they have small effect on the moment of the barri-
ers that occur on the low barrier side of the distribution. To
determine these, another calculation is needed since our
theory does not apply in that case.

This paper is organized as follows. In the next section we
introduce the replica effective potential formalism to analyze
barrier fluctuations in glass-forming liquids. We motivate the
approach by starting from a density functional approach to
liquids and by using an equilibrium replica theory to derive
the mean-field theory as the starting point of our calculation.
Next we analyze fluctuations of the configurational entropy
in bulk; summarize the effective potential approach of Ref.
18 and the instanton calculation that yields the most probable
barrier F‡. Finally we demonstrate how higher moments of
the barrier distribution can be derived within the same for-
malism. At the end of the section we present our results for
physical observables. The paper is concluded with a summa-
rizing section.

II. REPLICA EFFECTIVE POTENTIAL FORMALISM

A. Motivation and cloned replica approach

We start our description of glassy systems from the point
of view that there exists a density functional, �	�
, that de-
scribes a supercooled liquid undergoing a mean-field glass
transition. Initially, such an approach was used in Ref. 25
where it was shown that it allows one to describe the emer-
gence of a metastable amorphous solid �Fig. 2�. Following
the classical approach to freezing into ordered crystalline
states,26 the density was assumed to be ��r�
= � �

	 �3/2�ie
−��r − ri�

2
. Here, � determines the Lindemann

length, �−1/2 over which particles are localized. In distinction
to crystallization, the mean positions, ri, of an amorphous
solid were taken to be those of a random hard sphere
packing27 instead of the periodic crystal lattice positions. The
free energy of this amorphous solid was shown to have a
global minimum at �=0 and a local minimum for finite �. If
��V−2/3→0, the particles are delocalized and the system in
an ergodic liquid state with homogeneous density �0= N

V . Fi-

nite � corresponds to a frozen amorphous solid, i.e., a glassy
state. For T�TK the amorphous solid is metastable with re-
spect to the liquid and is higher in free energy by TSc. It is of
course always metastable with respect to the crystalline
solid.

Essentially the same mean-field physics can be described
in terms of a formally more precise replica approach, intro-
duced by Monasson.28 Here one determines the partition
function in the presence of a bias configuration �̂�r�,

Z	�̂
 =� D�e−�	�
−g�ddx	��x� − �̂�x�
2
. �10�

Here, �D�¯ corresponds to the statistical sum over all den-
sity configurations of the system. The free energy of a bias
configuration is

f	�̂
 = − T log Z	�̂
 . �11�

Physically f	�̂
 can be interpreted as the free energy for a
metastable amorphous configuration of atoms, for example,
with density �̂�x� being a sum over Gaussians discussed
above. In the replica formalism, no specific configuration
such as this needs to be specified in order to perform the
calculation. Rather, the assumption is made that the probabil-
ity distribution for metastable configurations is determined
by f	�̂
 accordingly,

P	�̂
 � exp�− efff	�̂
� , �12�

and is characterized by the effective temperature Teff=eff
−1

�T. This allows one to determine the mean free energy,

F̄ =� D�̂f	�̂
P	�̂
 , �13�

and the corresponding mean configurational entropy,

Sc = −� D�̂P	�̂
log P	�̂
 . �14�

The approach of Ref. 28 was successfully used to develop
a mean-field theory for glass formation in supercooled
liquids29 yielding results in detailed agreement with earlier
nonreplica approaches.30 As shown by Monasson,28 the mean

values F̄ and Sc can be determined from a replicated partition
function,

B

ρ

cut in spaceρ( )

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
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2R

cTS =k TLog(N)
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FIG. 2. �Color online� The typical energy landscape in the struc-
tural glassy phase as a function of density �left panel� and the ef-
fective potential, which is used to describe the transition between
the nonergodic glassy states and the ergodic liquid state �right
panel�.
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Z	m
 =� Dm�e−�a=1
m �	�a
+g�a,b=1

m �ddx�a�x��b�x�, �15�

via F̄= �
�mmF�m� and Sc= m2

T
�

�mF�m� with

F�m� = −
T

m
log Z�m� �16�

and replica index m= T
Teff

. It follows from the replicated free
energy F�Teff� that

F̄ = − Teff
2 �	F�Teff�/Teff


�Teff
,

Sc = −
�F�Teff�

�Teff
. �17�

These results are in analogy to the usual thermodynamic re-
lations among free energy 	F→F�Teff�
, internal energy �U
→ F̄�, entropy �S→Sc�, and temperature �T→Teff� �see also
Ref. 31�. If the liquid gets frozen in one of the many meta-
stable states, the system cannot anymore realize its configu-
rational entropy; i.e., the mean free energy of frozen states is

F̄, higher by TSc if compared to the equilibrium free energy
of the liquid, Fig. 2.

If the replica solution is taken to be marginally stable so
that the lowest eigenvalue of the fluctuation spectrum be-
yond mean-field solution vanishes, it has been shown32 that
Teff agrees with the result obtained from the generalized
fluctuation-dissipation theorem in the dynamic description of
mean-field glasses.33 Typically, the assumption of marginal-
ity is appropriate for early times right after a rapid quench
from high temperatures. In this case Teff�T for T�TA; i.e.,
the distribution function of the metastable states is not in
equilibrium on the time scales where mode-coupling theory
or the requirement for marginal stability applies. Above the
Kauzmann temperature it is however possible also to con-
sider the solution where Teff=T, i.e., where the distribution of
metastable states has equilibrated with the external heat bath
of the system. Since we are interested in a system where
ergodicity is restored for TK�T�TA we use Teff=T. Techni-
cally this is a supercooled liquid and not a nonequilibrium
aging glass. Below the Kauzmann temperature this assump-
tion cannot be made any longer �at least within the mean-
field theory� as it leads to a negative configurational entropy,
inconsistent with the definition in Eq. �14�.

The physically intuitive analogy for effective temperature,

mean energy, F̄, and configurational entropy to thermody-
namic relations 	Eq. �17�
 suggests that one should analyze
the corresponding configurational heat capacity,

Cc = Teff
�Sc

�Teff
= − m

�Sc

�m
. �18�

Using distribution function �12� we find, as expected, that Cc
is a measure of the fluctuations of the energy and configura-
tional entropy of glassy states. We obtain for the configura-
tional heat capacity,

Cc =
��F�2

Teff
2 = ��Sc�2, �19�

where ��F�2=F2− F̄2 and ��Sc�2=Sc
2−Sc

2. Here the mean

values F̄ and Sc are determined by Eq. �17�. The fluctuations
of the configurational entropy and frozen state energy are
then determined by Sc

2=�D�̂P	�̂
log2 P	�̂
 and F2

=�D�̂P	�̂
f	�̂
2, respectively. Both quantities can be ex-
pressed within the replica formalism in terms of a second
derivative of F�m� with respect to m. For example, it follows
that

�2

�m2mF�m� = −
1

T
�F2 − F̄2� . �20�

It is then easy to show that Eq. �19� holds. With the intro-
duction of the configurational heat capacity into the formal-
ism we have a measure for the fluctuation of the number of
available metastable states from its mean value. The analogy
of these results to the usual fluctuation theory of thermody-
namic variables34 further suggests that Cc also determines
fluctuations of the effective temperature with mean-square
deviation,

��Teff�2 = Teff
2 /Cc. �21�

Since Cc is extensive, fluctuations of intensive variables,
such as Teff, or densities, such as sc=Sc /V, vanish for infinite
systems. However, they become relevant if one considers
finite subsystems or small droplets. In the context of glasses
this aspect was first discussed by Donth.35

Using standard techniques of many-body theory we can
proceed by expressing the replica free energy F�m� as a
functional of the liquid correlation functions of the problem
�see, e.g., Ref. 36�

H	�
 =
T

2m
	Tr��0

−1�� + T Tr ln � + �	�

 . �22�

Here the mean-field result of F�m� is determined by the sta-
tionary point of the effective Hamiltonian: �H

�� =0 with repli-
cated density-density correlation function,

�ab�x,x�� = ��a�x���b�x��� . �23�

The Luttinger-Ward functional �	�
 is determined by the
nature of the density-density interaction and determines the
self-energy �=− ��

�� ; see also Refs. 4 and 37. For example,
expanding the density functional, ����=���0+���, into a
Taylor series in �� yields to lowest order in ��,

� = −
v3

2

3
� ddxddx��

ab

�ab
3 �x,x�� , �24�

where v3= 1
2

d3���0�
d�0

3 .38 In what follows we will formulate the
theory in terms of the collective variable �ab�x ,x��, instead
of the original density fluctuations and write

�ab�x,x�� = ��x,x���ab + Cab�x,x�� , �25�

where Cab=0 if a=b. Cab�x ,x�� depends on two spatial vari-
ables x and x�. We simplify the problem by assuming that its
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Fourier transformation, Cab� x+x�
2 ,q�, with respect to the rela-

tive coordinates x−x� can be written as

Cab�r;q� = qab�r��0S�q� , �26�

with liquid structure factor; S�q� and r= �x+x�� /2 is the cen-
ter of mass coordinate. The important collective variable of
our theory is qab�r�, which plays the role of a spatially vary-
ing Debye-Waller factor. Within mean-field theory we expect
below the temperature TA that qab=q��1−�ab� is replica sym-
metric with q� of order unity, while q� vanishes in the equi-
librium liquid state for T�TA. Physically the Debye-Waller
factor q� contains the same information as does the localiza-
tion parameter �−1 discussed above. Finally, it is important to
stress that a replica symmetric approach of qab in the present
formalism is equivalent to one step replica symmetry break-
ing in the conventional replica language.28

In order to keep our calculation transparent we will not
determine H	q
 from an explicit microscopic calculation for
supercooled liquids. It was demonstrated by Franz and
Parisi39 that this is possible. However, in order to be able to
make simple calculations beyond the mean-field theory ex-
plicitly including droplet fluctuations, we start from a sim-
pler Landau theory in the same universality class,20,40

H = E0�
a,b
� d3r

a0
3 �h	qab
 −

u

3�
c

qabqbcqca� , �27�

with

h	qab
 =
a0

2

2
��qab�2 +

t

2
qab

2 −
u + w

3
qab

3 +
y

4
qab

4 �28�

and replica index a ,b=1, . . . ,m. a0 is a length scale of the
order of the first peak in the radial distribution function of
the liquid, and E0 is a typical energy of the problem that
determines the absolute value of Tsc. In addition the problem
is determined by the dimensionless variables t, u, w, and y,
which are in principle all temperature dependent. We assume
that the primary T dependence is that of the quadratic term,
where t=

T−T0

E0
. Making this assumption, along with the poly-

nomial form of the Lagrangian, requires constraints between
the other Landau parameters to ensure thermodynamic con-
sistency from the fluctuation formulas. In Appendix A we
give estimates for the parameters of Eqs. �27� and �28� ob-
tained from fits to experimental data for OTP, a well-studied
fragile glass-forming material. Formally, Eqs. �27� and �28�
can be motivated as the Taylor expansion of Eq. �22� to-
gether with the functional � of Eq. �24�. In what follows we
further simplify the notation and measure all energies in
units of E0 and all length scales in units of a0.

The mean-field analysis of this model Hamiltonian is
straightforward. Inserting a replica symmetric ansatz qab
=q��1−�ab� into H and minimizing with respect to q� yield
q�=0 or

q� =
w + �w2 − 4ty

2y
. �29�

Nontrivial solutions exit for t� tA= w2

4y with q��tA�= w
2y , which

determines the mode-coupling temperature TA= tAE0+T0. In-

serting q� of Eq. �29� into H	q
 yields for the replica free
energy

F�m�
V�m − 1�

=
t

2
q�2 −

w + u�m − 1�
3

q�3 +
y

4
q�4. �30�

The mean configurational entropy density, as determined by
sc= 1

TV
�

�mF�m� �m→1, is given by

Tsc = � t

2
q�2 −

w

3
q�3 +

y

4
q�4� . �31�

Inserting q� of Eq. �29� yields the result that sc vanishes at
tK= 2w2

9y with q��tK�= 2w
3y . Close to tK it follows that

sc �
tK

4y
� t − tK

TK
� �

T − TK

TK
�32�

as expected. At tA one finds TAsc�TA�= w4

192y3 .
We next determine the configurational heat capacity of the

mean-field theory discussed above. From Eq. �30� we obtain

Cc =
2Vm

Teff
� t

2
q�2 −

w − u�2 – 3m�
3

q�3 +
y

4
q�4� . �33�

If Teff=T �corresponding again to the equilibrium behavior
between TK and TA� it follows that Cc�TK�= Vu

TK

2
3 � 2w

3y � �Ref.
41� so that comparing it with the expression for the configu-
rational entropy 	Eq. �31�
 at t� tK we can write it as

Sc �
w

4u
Cc�tK�

t − tK

tK
. �34�

Notice that w /4utK must equal 1 /TK for complete thermody-
namic consistency. For temperatures close to but above TK
the energy fluctuations decrease as

Cc � Cc�tK��1 −
8u + w

2

t − tK

tK
� . �35�

As the temperature approaches TA the configurational heat
capacity decreases faster than linearly. It reaches a value
Cc�tA�= V

TA

8u−w
96

w3

y3 signaling that the system becomes unstable
close to tA for w�8u. This is analogous to the higher order
replica symmetry breaking suggested by Tarzia and Moore42

on the basis of the same Landau action. Cc�t→ tA� ap-
proaches Cc�tA� from above with an infinite slope,

Cc�t → tA�
Cc�tA�

= 1 −
24� tA−t

tA
�1/2

8u − w
. �36�

The full temperature dependences of the mean-field over-
lap q� and configurational heat capacity are shown in Fig. 3.
While q� or sc did not depend on the parameter u of the
Hamiltonian 	Eqs. �27� and �28�
, the configurational heat
capacity did. We may therefore consider u as a parameter
that determines the strength of entropy fluctuations.

B. Effective potential approach

In order to investigate the transition state for the decay of
a specific metastable frozen state, it is necessary to have a

REPLICA THEORY FOR FLUCTUATIONS OF THE… PHYSICAL REVIEW B 80, 024204 �2009�

024204-5



technique that agrees with the mean-field replica approach
discussed in the previous section in case of a homogeneous
solution q=q� but that allows one to study the behavior for
arbitrary values of the overlap between two states, including
inhomogeneous droplet solutions. This is possible within the
effective potential approach introduced in Refs. 18, 39, and
43. We use this technique to formulate our replica instanton
and barrier fluctuation theory.

We are interested in the regime above TK �i.e., for t� tK�
and consider the partition function of a system with con-
strained overlap between the particle density configurations
�1�r� and �2�r�,

Zpc,�2
=� D�1e−�	�1
 � �

x
��pc�r� − �2�r��1�r�� . �37�

The configuration �2 is assumed to be in equilibrium and
unaffected by �1. Averaging the free energy, −T log Zpc,�2

,
weighted with the equilibrium probability for �2 yields the
corresponding mean energy for the overlap pc,

�	pc
 = − Tlog Zpc,�2
��2

= − T
� D�2e−�	�2
 log Zpc,�2

Z
.

�38�

Here Z is the equilibrium partition function Z=�D�e−�	�
.
Using a replica approach �	pc
 can be written as18

�	pc
 = − T lim
n→0

lim
m→0

1

m
�Z�n,m� − 1� , �39�

with

Z�n,m� =� Dn�Dm�̂e−��=1
n �	��
−�b=1

m �	�̂b


� �
r,b=1

m

��pc�r� − �1�r��̂b�r�� . �40�

�	pc
 can be determined by analyzing an n+m times repli-
cated problem with additional constraint for the overlap be-
tween certain replicas. In complete analogy to the previous
paragraph one can introduce a field theory of the overlap but
now with order parameter

Q = � r p

pT q
� , �41�

where r is an n�n matrix, q an m�m matrix, and the n
�m matrix p must obey the additional constraint that
p1b�r�= pc�r� for ∀b=1,. . .,m. We have the same effective
Hamiltonian 	Eqs. �27� and �28�
 only with q replaced by Q;
i.e.,

Z�n,m� =� DQe−H	Q
�
b=1

m

��p1b − pc� . �42�

Following Franz and Parisi18 we use r�=0 and p�b=��,1pc
and it follows that

Hpc
	q
 =� ddr�2mh	pc
 + �

ab

h	qab


−
u

3�
abc

qabqbcqca − upc
2�

bc

qbc� . �43�

The remaining qab-dependent problem is formally similar to
the original one of Eqs. �27� and �28� but in an external field
upc

2.
Using these results we find that the effective potential can

be written as

�	pc
 = 2� ddrh	pc
 + �̃	pc
 , �44�

with

�̃	pc
 = − � �

�m
� Dqe−Hpc

	q
�
m→0

. �45�

We start with a homogeneous replica symmetric ansatz
for qab=q��ab−1� with equal off diagonal elements, q, and
zero diagonal elements. It was demonstrated that this replica
symmetric ansatz is again equivalent to one step replica sym-
metry breaking in the conventional replica language.44 We
take the limit m→0 and find

Hpc
�q�

Vm
= − h�q� + 2h�pc� + upc

2q −
2

3
uq3. �46�

If we extremize this with respect to q, i.e., perform the inte-
gration with respect to q at the level of a homogeneous
saddle-point approximation, it follows that
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(t-t

K
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A
-t

K
)
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1

C
c
(t)/C

c
(t

K
)

0 0.5 1
0

0.2

0.4
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1

q
*
(t)

FIG. 3. �Color online� Mean-field value for the configurational
heat capacity �main plot� and overlap �inset� for y=1.82, w
=2.72, u=0.385 �see text� as a function of reduced temperature
�t− tK� / �tA− tK�. Exponentially many states emerge below tA with
the discontinuous jump of the overlap.
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tq − �w − u�q2 + yq3 = upc
2. �47�

Depending on the value for the overlap pc, q is in general
different from the value q� obtained within the replica ap-
proach of the previous section. If we however insert q back
into Hpc

�q� and determine the effective potential �	pc

=Hpc

�q�pc�� we find that it has minima
��	pc


�pc
=0 for pc=0

and for pc=q�pc�=q�, with q� of Eq. �29�, in complete agree-
ment with the approach of the previous section. The value of
the effective potential for the metastable minimum pc=q� is
identical to the mean configurational entropy discussed
above,

�	q�
 = Sc. �48�

In order to analyze the local stability of the solution at the
minimum of ��pc� we determine the replicon eigenvalue of
the problem. Following Ref. 45 gives

�r = t − 2wq + 3yq2 �49�

for the lowest eigenvalue. Inserting q from Eq. �47� yields
close to tK a positive eigenvalue: �r� tK−5�t− tK�, while the
replicon eigenvalue vanishes at tA as �r�2tA�

tA−t

tA
�1/2. This

behavior is completely consistent with the results obtained in
Ref. 46 for the random Potts model. The homogeneous solu-
tion is marginal at TA and stable below TA. Except for tem-
peratures close to TA, the mean-field approach is locally
stable with respect to small fluctuations. The effective poten-
tial approach is not restricted to overlaps pc that minimize
�	pc
. In general q�pc� is given by the solution of Eq. �47�.
Inserting this solution into Hpc

�q� gives ��pc�. The result is
shown as broken line in Fig. 6. It turns out that for interme-
diate values of pc, between pc=0 and pc=q� an additional
replica symmetry breaking of qab occurs.43 For the present
model this effect was also studied in Ref. 20. This is related
to the well-known effect that an external field can cause rep-
lica symmetry breaking above TK,47 yielding one step replica
symmetry breaking for qab. The result for ��pc� shown in
Fig. 4 has been obtained, including this additional replica
symmetry breaking. Physically this additional replica sym-
metry breaking as pc “goes over the hill” was discussed in
Ref. 20. We also note that the generic behavior for ��pc� as
shown in Fig. 4 is very similar to Tsc�q�� of Eq. �31� if we
simply plot this function for arbitrary q�. As required both
expressions exactly agree at saddle points and minima.

In summary, we showed that on the level of spatially ho-
mogeneous mean-field solutions, the effective potential ap-
proach of Refs. 18, 39, and 43 yields results in complete
agreement with the physically transparent approach of Ref.
28. Since it allows for arbitrary overlap between two states,
we use it as starting point for the determination of activated
events within an instanton calculation.

C. Instanton theory for activated events

At the mean-field level a glass at T�TA is frozen in meta-
stable states and characterized by the overlap q� of Eq. �29�
between configurations at distant times. For temperatures T
�TK above the Kauzmann temperature, the free energy of

such a frozen state is higher by the configurational entropy

TS̄c compared to the liquid state that is characterized by q�

=0. Thus, for TK�T�TA the mean-field glass is locally
stable �the replicon eigenvalue �r is positive� but globally
unstable with respect to the ergodic liquid. The effective po-
tential ��pc� shown in Fig. 3 suggests that the decay modes
for the frozen state are droplet excitations, similar to the
nucleation of an unstable phase close to a first-order transi-
tion. This situation was analyzed in Refs. 19 and 20. Using
this approach, an analysis of the effective droplet size for a
Kac-type model was performed in Ref. 48. In agreement
with the RFOT theory,8 the driving force for nucleation is the
configurational entropy, leading to the notion of entropic
droplets. We stress that the variation in the “origin of the
instanton” is included in our formalism. In the instanton cal-
culations one always considers a noninteracting gas of infi-
nitely many �but dilute� instantons that are distributed in
space with arbitrary origin. The statistical weight of one in-
stanton that is forced to be at a fixed location would be
vanishingly small.

Instanton solutions for entropic droplets are determined
from

��	pc

�pc�r�

= 0, �50�

where we allow for spatial variations in the overlap pc�r�.49

Recently, Franz50 gave a transparent dynamical interpretation
for the solutions of Eq. �50�. Assuming that the effective
potential is characterized by spatially anisotropic but replica
symmetric solutions qab�r�=q�r���ab−1�, we perform the in-
tegral over the qab in Eq. �45� at the saddle-point level. We
find a solution q�r�= pc�r� with

�2pc�r� =
dV	pc�r�


dpc�r�
, �51�

where

0 0.5 1 1.5 2 2.5
pc

0

0.25

0.5

0.75

Ω
[p

c
]

replica symmetry
replica symmetry breaking

t=tK+0.4*(tA-tK)

FIG. 4. �Color online� Effective potential �	pc
 as a function of
the overlap at the fixed temperature TK�T�TA. At the Kauzmann
temperature an entropy crisis takes place with vanishing entropic
advantage of the liquid compared to the frozen solid.
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V�pc� =
t

2
pc

2 −
w

3
pc

3 +
y

4
pc

4. �52�

Equation �51� admits an exact solution in the thin-wall limit
R��,

pc�r/�� = q� +� 2

y�2�th� r

�
− z0� − th� r

�
+ z0�� , �53�

where the integration constant z0 is a function of t, w, and y.
R is the droplet radius and � is the interface width given by

� =
4a0

�3y�2q� − qK
� �2 − 6tK + 4t

. �54�

The final expression for the function z0�t� is more involved
and is given in Appendix C.

Inserting solution �53� into the expression for the effective
potential 	Eq. �44�
 we calculate the value of the mean bar-
rier. The latter is determined by optimizing the energy gain
due to creation of a droplet and energy loss due to the surface
formation. As a result for the most probable barrier we find
�reintroducing the energy scale E0 and length scale a0�

F‡ = E0
32	a0

9y�3 R2. �55�

The droplet radius,

R =
64a0

4

3y2q�3�qK
� − q��t���3 , �56�

is determined from the balance between the interface tension
and the entropic driving force for nucleation. The barrier
energy F‡ of Eq. �55� determines the relaxation time �̄ of Eq.
�2�. Furthermore, qK

� �q��t= tK� is the order parameter at the
Kauzmann temperature. When temperature approaches the
TK the radius of the droplet as well as the most probable
barrier diverge. One finds limt→tK

F‡� �t− tK�−2 and
limt→tK

R� �t− tK�−1. Since the droplet interface � remains
finite as t→ tK, the thin-wall approximation is well justified
close to the Kauzmann temperature. On the other hand, R
and � become comparable for temperatures close to TA and
the thin-wall approximation breaks down. We see that replica
Landau functional calculation predicts a rather diffuse drop-
let near the laboratory Tg. Combining R� �t− tK�−1 and sc
� �t− tK�, we obtain �=1 for the exponent that relates the
droplet size R and the configurational entropy density: R
�sc

−�.
In Ref. 51 it was demonstrated that for a similar model the

interface free energy is exponentially small for a large sys-
tem, and in any finite dimension the one step replica symme-
try breaking state does not exist. As was already pointed out
in Ref. 51, our approach is very different in scope and in its
conclusions. While Ref. 51 is concerned with the absence of
replica symmetry breaking in the ultimate equilibrium state,
our conclusions are relevant for the nonequilibrium situation.
Since we obtain a finite barrier height of the frozen mean-
field solution, our result offers a mechanism for equilibration
on time scales t��̄ demonstrating that our approach and the
conclusions of Ref. 51 are consistent.

D. Barrier fluctuations

To analyze the barrier fluctuations we start from the bar-
rier for a given density configuration �,

Fpc,�
‡ = Fpc,� − Fq�,�, �57�

where Fpc,�=−T log Zpc,� is determined by the constrained
partition function of Eq. �37� and Fq�,� is the corresponding
energy with homogeneous overlap; i.e., Fq�,�=
−T log Zpc�r→��→q�,�. When we analyze variations in activa-
tion barriers we need to keep in mind that both ground-state
and transition state contributions to Fpc,�

‡ are statistically
fluctuating and are correlated in general. Fluctuations in the
first term of Eq. �57� correspond to variations in the free
energy of the localized instanton. On the other hand, fluctua-
tions in the second term correspond to variations in the ho-
mogeneous background. In principle cancellations between
both occur, which are properly included in the analysis of
Fpc,�

‡ defined above.52

Barrier fluctuations are then characterized by the second
moment,

�F‡2 = Fpc,�
‡2 − Fpc,�

‡ 2, �58�

where the average is, just as for the analysis of the most
probable barrier, with respect to the density configuration �.
The second term in Eq. �58� is the square of the mean acti-
vation barrier F‡ and was determined in the previous section.
Thus, we can concentrate on the first term. Using Eq. �57� it
follows that the first term in Eq. �58� consists of three terms,

Fpc,�
‡2 = Fpc,�

2 + Fq�,�
2 − 2Fpc,�Fq�,�. �59�

In what follows we consider these three contributions sepa-
rately. The first two terms correspond to independent fluctua-
tions of the droplet and the homogeneous background, while
the last term measures their mutual correlations. In other
words, our approach explicitly takes the fluctuations of the
initial configuration 	second term in Eq. �59�
 and the cross
correlations between the localized instanton and the initial
configuration 	third term in Eq. �59�
 into account. We find
that this last term in Eq. �59� is proportional to the surface
area of the instanton. Correlations between droplet and ho-
mogeneous background terms result from their mutual inter-
face.

The detailed analysis of the three contributions to Fpc,�
‡2 of

Eq. �59� is summarized in Appendix B. In what follows we
summarize the results of this derivation. For the first two
terms in Eq. �59� it follows that

Fq�,�
2 = Fq�,�

2 − 2T� d3rh	q�
 ,

Fpc,�
2 = Fpc,�

2 − 2T� d3rh	pc�r�
 . �60�

The first expression gives fluctuations of the configurational
entropy for the homogeneous problem, while the second one
describes the energy fluctuations of the configurations with
spatially heterogeneous overlap.
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The result for the homogeneous problem, Fq�,�
2 can alter-

natively be obtained from our analysis of the configurational
heat capacity given in Eq. �19�. Using the replica formulation
of Eq. �20� together with the explicit result of Eq. �30� yields

F2 − F̄2 = − 2VT� t

2
q�2 −

w + u

3
q�3 +

y

4
q�4� , �61�

where V is the volume. If we now recall the definition of
h	q
 	Eq. �28�
, one readily observes that the first equation in
Eq. �60� coincides with Eq. �61�.

The derivation of the third contribution Fpc,�Fq�,� to Fpc,�
‡2

in Eq. �59�, which describes the energy correlations between
the instanton and environment, is also performed in Appen-
dix B. The result is

Fpc,�Fq�,� = Fpc,� � Fq�,� − T� d3r�2h	pc�r�


+ upc
3�r� − uq�pc�r�� . �62�

Combining Eq. �60� with Eq. �62�, we finally obtain for the
second moment of the barrier fluctuations,

�F‡2

2T
=� d3r�h	pc
 − h	q�
 + upc

3�r� − uq�pc
2�r�� . �63�

This result for the second moment of the barrier fluctuations
depends on the value of the homogeneous overlap q� of Eq.
�29� as well as the instanton solution pc�x�. The thin-wall
limit result for pc�x� is given in Eq. �53�. Inserting these
expressions into Eq. �63� yields

�F‡2 = A�R3 + �R2� , �64�

where R is the radius of the droplet. In the thin-wall approxi-
mation, the explicit expression for the coefficient A is

A

kBTE0
=

2	y

3a0
3 �− �1 +

u

w
��q�3 − q1

3� + q�4 − q1
4

+
2u

y
�q1

3 + q�3 − 2q1
2q��� , �65�

where the value of q1 is computed using an effective poten-
tial V�q1�=V�q��; i.e., it is the turning point of the instanton
�see Fig. 3�. Deriving Eq. �65� we also made the following
choice for the parameters q��tK�=2w /3y=1 �see Appendix A
for more details�. This choice is of particular convenience as
it allows one to express the resulting expressions in terms of
the ratio t / tK and u. The length scale ��t� can be compacted
as follows:

��t� =
4	tK��t�

a0
3 � kBTE0

A
�

��2uq�

tK
c2�t� − �1 +

4u

3tK
�c3�t� + c4�t�� , �66�

where cn�t� are functions of the ratio t / tK only and are de-
fined via

cn�t� = �
0

�

	q�n − pc
n�z�
dz . �67�

We have computed these integrals numerically for n=2, 3,
and 4. Temperature dependence of the surface length scale
��t� is shown in Fig. 5.

Before we proceed with the analysis of our results, it is
instructive to write down the expressions for the coefficient
A and ��t� for temperatures close to tK. When t� tK, one
readily finds q1� tK�t− tK� /y so that expanding expression in
the square brackets Eq. �65� up to the linear order in t− tK we
have A�t���kBTE0 /a0

3�	A0+A1�t− tK�
+O��t− tK�2� with

A0 =
8	

9
u, A1 = 4	�2u

tK
+ 1� , �68�

where once again we employed q��tK�=1 �see Appendix A�.
Thus we find that close to tK the bulk contribution to the
barrier fluctuations is governed solely by the value of the
phenomenological parameter u. The expression for ��t� tK�
=�K+�1K�t− tK� can be derived straightforwardly using our
results above together with the expansion for the functions
cn�t� and ��t��2 /�tK+5�t− tK� / tK

3/2. Here we provide the ex-
pression for the value of ��t= tK�,

��tK� =
9tK

1/2

u
�c4K − c3K +

2u

tK
�c2K −

2

3
c3K�� , �69�

where we have used the notations cnK�cn�tK�. We have
found that the coefficients cnK have the following values:
c2K�1.25, c3K�1.18, and c4K�1.11.

Thus, in addition to the bulk term, which behaves in a
similar way as the formulation in Ref. 12 	see Eq. �9�
, the
replica theory yields a surface term, resulting from fluctua-
tions in the interface. In the inset of Fig. 6 we show the T
dependence of the length scale ��t�, demonstrating that the
surface term becomes gradually more important as the tem-
perature increases. The value of ��tK� remains nonsingular so
that the volume term is dominant. This is consistent with the
view that the droplet interface close to TK is smaller then the
droplet radius, while both are comparable as T approaches
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FIG. 5. �Color online� We show the temperature dependence of
the ratio � /R �R is the size of the droplet� together with the tem-
perature dependence of interface width ��t� �inset�.
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TA, similar to the behavior close to a spinodal.53 The result-
ing temperature dependence of ��t� is shown on Fig. 6, �F‡2

is shown in Fig. 7, and the exponent of the stretched expo-
nential relaxation G is shown in Fig. 8.

The plots are constructed by setting the parameters of the
theory to reproduce experimentally relevant values of TK, Tg,
and TA, as well as configurational entropy above the glass
transition using o-terphenyl as the example of the glass tran-
sition �see Appendix A for details�. There is one free param-
eter left to be fixed, either y or w=3y /2. We have determined
the value of y in the comparison with the experimental value
of the most probable barrier at T=Tg given by F‡=Tgsc�Tg�
with the theoretically derived expression 	Eq. �55�
. This
procedure yields y=1.82, w=2.73, and u=0.385. As we can
see from Fig. 8, G�Tg��0.12, a value significantly reduced
compared to the exponential behavior where =1. This
value for G is lower than the experimentally found values of
exp�T=Tg��0.5. This discrepancy may signal that the

present approach overestimates the strength of the energy
barrier fluctuations, an effect that may be related with non-
Gaussian fluctuations of the activation barriers. It is however
clear that these may be described as instanton interaction
effects as discussed by Xia and Wolynes.11 Our analysis
yields a Gaussian distribution of barriers,

PG�F‡� =
1

�2	�F‡2
exp�−

�F‡ − F‡�2

2�F‡2 � , �70�

which yields the following estimate for the exponent of the
stretched exponential relaxation:

G = �1 + �F‡2/�kBT�2�−1/2. �71�

Our results for the temperature dependence of G are shown
in Fig. 8. The calculation that led to this result was based on
the assumption of single instanton events; i.e., entropic drop-
lets were assumed to be diluted. Obviously this is not ad-
dressing the fact that distinct droplets interact. The mosaic
picture underlying the RFOT theory is clearly based on the
view that such droplet-droplet interactions occur and are in
fact crucial. The impact of droplet-droplet interactions for
the distribution of barriers was analyzed in Ref. 11. Here it
was pointed out that as soon as the droplet size becomes
larger than the size R of a mean droplet 	Eq. �55� in our
theory
, boundary effects will limit the size of a droplet,
leading to a cutoff of the distribution function. This leads to
the modified distribution function

P�F‡� = � 1
2 PG�F‡� F‡ � F‡

1
2��F‡ − F‡� F‡ � F‡� , �72�

which leads to a reduction in the mean-square deviation of
the barriers by a factor of 1/4, compared to the Gaussian
distribution. This corrects the exponent of the stretched ex-
ponential relaxation to
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FIG. 6. �Color online� Temperature dependence of the length
scale ��t� describing the contribution to the barrier fluctuations due
to surface energy fluctuations of the structural droplets. We also
show the temperature dependence of the ratio � /R �R is the size of
the droplet�.
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 = �1 +
1

4
�F‡2/�kBT�2�−1/2

, �73�

where �F‡2 is still the result 	Eq. �63�
 of the dilute droplet
calculation. In Fig. 8 we compare G and . Obviously, the
reduction in the barrier fluctuation width due to droplet-
droplet coupling leads to an increase in the exponent . We
mention however that the resulting value of  at the glass
transition is �Tg��0.23. This suggests that the present Lan-
dau functional indeed overestimates the fluctuation effects.
This probably implies that the diffuseness of the droplet from
the Landau functional is also overestimated. The fluctuations
do vanish at TA, consistent with the emergence of simple
exponential dynamics at a significantly high temperature. We
did not attempt to vary the parameters of our model to reach
perfect agreement with experiments for OTP as the simpli-
fied Landau functional is clearly an oversimplification of the
physics of real glasses. It does however demonstrate the ge-
neric and qualitative trends for barrier fluctuations in the
RFOT theory.

Finally, in Fig. 9 we show the dielectric function ���� ,T�
as function of frequency for different temperatures. The peak
in ���� ,T� dramatically broadens as temperature approaches
the glass transition temperature, Tg, as predicted from the
static barrier distributions.

For this figure we used the second moment �F‡2 of the
barrier distribution function and then assumed that p�F‡� is
Gaussian. In case of a Gaussian distribution, all moments can
be expressed in terms of the second moment,

�F‡k = �k
G��F‡2�k/2, �74�

where �k
G=0 for k odd and �k

G=2k�� k+1
2 � /�	 for k even. In

particular it holds for higher order moments �3
G=0, �4

G=3,
�5

G=0, and �6=15, etc.
We can explicitly analyze higher moments of this distri-

bution and thereby demonstrate explicitly that p�F‡� is
Gaussian. To be precise, we have only shown this for the first
six moments but strongly suspect this to be true in general.

The calculations of higher moments are quite cumbersome
but they formally are a straightforward generalization of the
method we used to determine the second moment �F‡2. In
case of the kth moment the block structure of the matrix Q of
Eq. �B4� consists of �k+1�� �k+1� blocks where the total
dimension of Q is �n+�i=1

k mk�� �n+�i=1
k mk�. The rather te-

dious matrix algebra is then most easily analyzed using com-
puter algebra software, such as MATHEMATICA. Thus, we only
list the results here. We analyzed all moments,

�F‡k =� �F‡ − F‡�kp�F‡�dF‡, �75�

up to k=6. We find

�F‡3 = 0. �76�

In case of the fourth moment we analyze

�F‡4 = �F‡	�
 − F‡�4 = F‡4	�2
 − 4F‡3	�2
F‡ + 3F‡ + 6F‡F‡2.

�77�

It follows

�F‡4 = 3	2V	pc;q0
 − Hinh	pc
 − Hhom�q��
2, �78�

where Hhom and Hinh are defined below Eq. �B8�. Evaluating
this expression yields

�F‡4 = 3��F‡2�2. �79�

We further find that the fifth moment vanishes as well,

�F‡5 = 0, �80�

and that the sixth moment is given as

�F‡6 = 15��F‡2�3. �81�

Thus, up to the sixth moment the barrier distribution of drop-
lets is Gaussian. Thus, dilute entropic droplets should indeed
have a Gaussian distribution of barriers, strongly suggesting
that the observed non-Gaussian behavior of the effective bar-
rier distribution results from droplet-droplet interactions.

III. SUMMARY

In summary, we have shown how the energy barrier fluc-
tuations �F‡2 as well as higher moments of the static free-
energy barrier distribution function p�F‡� can be computed
using the replica Landau theory of Ref. 18 and use the rep-
lica instanton theory of Refs. 19 and 20. We have generalized
the replica formalism to determine barrier fluctuations in ad-
dition to the determination of the most probable barrier F‡.
Barrier fluctuations �F‡2 consist of a dominating bulk con-
tribution at temperatures close to the Kauzmann temperature
along with a contribution stemming from fluctuations in the
interface. The latter dominates the barrier fluctuations well
above the Kauzmann temperature. Fluctuations of the sur-
face energy enter prominently in the recent work of Biroli et
al.54 for directly computing point-to-set correlations in liq-
uids. It is very nice to see that the effect they found naturally
emerges from the replica instanton calculation framework. It
is interesting to speculate that these surface energy fluctua-
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FIG. 9. �Color online� Frequency dependence of the imaginary
part of the dielectric susceptibility above the glass transition. The
broadening of the peak at the glass transition signals the appearance
of wide spectrum of excitations.
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tions could account for the observed system specific devia-
tions from the Xia-Wolynes prediction of a direct relation
between the stretching exponent and �Cv. Chemical trends
in these deviations may provide clues on this. �F‡2 increases
as the typical droplet size increases, i.e., as the temperature is
lowered toward TK. Clearly, our theory only applies until the
system falls out of equilibrium at the laboratory glass tem-
perature Tg with Tg�TK. In the framework of the present
instanton approach, the energy barrier distribution function
turns out to be Gaussian. The skewness of the observed re-
laxation time distribution is, in our view, an effect due to the
interaction of spatially overlapping instantons. It can be cap-
tured, at least in spirit, by an extended mode-coupling ap-
proach, incorporating instantons.
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APPENDIX A: ESTIMATE OF THE MODEL PARAMETERS
FOR O-TERPHENYL

The Landau functional is quite convenient for formal use,
but there is a variety of ways that it may be mapped onto real
fluids. In this appendix we show how the model parameters
of the Landau replica potential 	Eqs. �27� and �28�
 can be
found by fitting the results of the mean-field theory to ex-
perimental data. We use the concrete example o-terphenyl
�OTP�, a well-known glass-forming material. On one hand,
values for the effective dynamical freezing temperature and
the Kauzmann temperature of OTP are TA=285 K �Ref. 55�
and TK=202.7 K.56,57 On the other hand, a typical value for
the glass temperature is58 Tg�243, . . . ,246 K. Here, the
glass transition temperature is the temperature at which the
viscosity reaches a value of 1013 g / �cm s�, which is also
where the mean relaxation time reaches values of 102 s. The
melting temperature of OTP is Tm=329 K with an entropy
jump at melting of �Sm=52.28 J

mol K .
The configurational entropies at Tg and TA are

Sc�Tg�=21.5 J
mol K =2.59R and Sc�TA�=39 J

mol K =4.69R,
respectively,57,59 where R is the molar gas constant. To obtain
the entropy per spherical object or bead one has to divide
these results by nB=3.7, the number of beads as defined by
the procedure in Ref. 14. This yields sc�Tg��

Sc�Tg�
nB

=0.7R as
well as sc�TA�=1.26R.

The heat capacity change at the glass transition is60

�cp�Tg� = 111.27
J

mol K
= 0.48

J

g K
, �A1�

where we used 1 g=4.31�10−3 mol. The specific and mo-
lar volumes of the system are58

v�TA� = 0.918
cm3

g
= 213.2

cm3

mol
,

v�Tg� = 0.893
cm3

g
= 207.3

cm3

mol
. �A2�

The typical volume per particle V /N= 4	
3 l0

3 is then character-

ized by the length l0. It follows that V /N=344.23Ä �Ref. 41�
such that l0=4.35Ä. In comparison, the van der Waals radius

of OTP was given as61 rvdW=3.7Ä.
If we introduce the energy and length scales into the prob-

lem, the mean-field theory results obtained from Hamiltonian
Eqs. �27� and �28� are

q0�TK� =
2w

3y
,

TA = T0�1 +
E0

T0

w2

4y
� ,

TK = T0�1 +
E0

T0

2w2

9y
� ,

TAsc�TA� =
4	

3
l0
3E0

a0
d

w4

192y3 ,

sc�T � TK� �
4	

3
l0
3 E0w

6TKa0
d�2w

3y
�3 t − tK

tK
,

TKcc�TK� =
4	

3
l0
3E0

a0
d

2u

3
�2w

3y
�3

. �A3�

The order parameter at TK should be large in order unity. We
chose q0�TK�=1 which gives w= 3

2 y. Using the relation TA

−TK= w2

36y E0 this yields

E0w = 1975.2 K = 9.74TK. �A4�

If we further make the reasonable choice of a0=0.87rvdW for
the length scale a0, sc�TA� of Eq. �A3� gives precisely the
experimental value listed above. We can also determine the
change in heat capacity �cp�Tg� from the same parameters.
Equation �A4� yields the result that

t − tK

tK
� 0.31

T − TK

TK
�A5�

so that we obtain for the temperature dependence of the con-
figurational entropy

sc�T� � �cp�Tg�
T − TK

Tg
, �A6�

where the mean-field result for the slope is �cp�Tg�=4.36R.
This compares reasonably well with the experimental value
�cp�Tg�=

�Cp�Tg�
nB

=3.62R. Note, however, that �cp as given by
Eq. �A6� is different from the configurational heat capacity cc

	Eq. �33�
. It holds that sc� w
4ucc�tK�

t−tK

tK
; i.e., w

4ucc�tK�0.253
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=�cp�Tg�; and, i.e., both are comparable provided that u
�0.1w, a value that we will assume in what follows thus
ensuring thermodynamic consistency from the two fluctua-
tion formulas. In summary, the existing thermodynamic mea-
surements can determine several parameters and can allow
consistent description of several thermodynamic data. Still,
one free parameter, either w or y, remains since only the ratio
from w to y is determined. We use this freedom to obtain the
correct value of the most probable barrier at the glass tem-
perature. Finally, we note that the above result also implies
that

tg−tK

tK
=0.066, i.e., about half of

tA−tK

tK
=0.125. It is worth

mentioning that the values of the Landau parameters are con-
sistent with the random first-order framework as assumed.
Finally, we summarize our results for the model parameters
by fitting the experimentally relevant quantities to the data
obtained for OTP in Table I.

APPENDIX B: DETAILS OF THE REPLICA
CALCULATION FOR BARRIER FLUCTUATIONS

In this appendix we summarize the derivation of the vari-
ous contributions to the barrier fluctuation given in Eq. �59�.
We start our calculation with the third term in Eq. �59�. The
other two terms are simpler to determine and can be obtained
as specific limits of the third one. It holds that

Fpc,�2
Fq�,�2

= T2
� D�e−H	�
 log Zpc,� log Zq�,�

� D�e−H	�


= lim
m1,2→0

�Y12 − Y1 − Y2� , �B1�

where we introduced

Y12 = T2
� D�e−H	�
Zpc,�

m1 Zq�,�
m2 + Z

m1m2Z
,

Y1 =

T2� D�e−H	�
Zpc,�
m1

m1m2Z
,

Y2 =

T2� D�e−H	�
Zq�,�
m2

m1m2� D�e−H	�


, �B2�

where Z=�D�e−H	�
. To analyze the first term in Eq. �B1�
we use again the replica trick and write

I12 = lim
m1,2→0

Y12 = lim
n,m1,2→0

� D�1

e−H	�1
Zpc,�
m1 Zq�,�

m2 + Z

m1m2�� D�e−H	�
�n−1

= lim
m1,m2→0

lim
n→0

Ipc;q�
�n;m1,m2�

m1m2
. �B3�

Here we introduced a quantity Ipc;q�
�n;m1,m2� that can be deter-

mined from an n+m1+m2 replicated problem with order pa-
rameter Q,

Q = � r p q

pT u �

qT �T v
� . �B4�

It holds that

Ipc;q0

�n;m1,m2� =� DQe−H	Q
�
x,a

�	pc�x� − p1a�x�


��
x,�

�	q0 − q1��x�
 . �B5�

H	Q
 has the same form as Eqs. �27� and �28� if one uses the
matrix Q of Eq. �B4� instead of the original replica variable
q. The submatrices of Q are given as follows: r is an n�n
matrix, p is an n�m1 matrix, q0 is an n�m2 matrix, u is an
m1�m1 matrix, v is an m2�m2 matrix, and � is an m1
�m2 matrix. Matrices p and q0 obey the additional con-
straints,

p1b�x� = pc�x� for ∀ b = 1, . . . ,m1,

q1� = q0 for ∀ � = 1, . . . ,m2, �B6�

which is enforced through the � function above. We assume
that for a replica symmetric instanton solution that and the
elements of �a are all the same,

�a�x� = ��x� . �B7�

Similarly we assume that v�= �1−���v.
The analysis of H	Q
 is tedious but straightforward and

yields that it can be written as a sum of three terms,

H	Q
 = m1Hinh	pc;u
 + m2Hhom	q0;v
 + m1m2V	�
 .

�B8�

Here

Hhom	q�;v
 =� d3x�2h	q�
 + �m2 − 1�h	v


− �m2 − 1�vq�2 −
1

3
�m2 − 1�v3�

refers to the homogeneous problem. In addition,

TABLE I. Parameters for the Landau functional.

a0

rdvW

tA

tK

tg

tK
w u y

0.1 1.125 1.066 2.73 0.385 1.82
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Hinh	pc;u
 =� d3x�2h	pc
 + �m1 − 1�h	u


− �m1 − 1�u�x�pc
2�x� −

1

3
�m1 − 1��m1 − 2�u3�x��

is the contribution of the inhomogeneous instanton. Finally,
the coupling term between the two is given as

V	�
 =� d3x�2h	�
 + 	�m1 − 1�u0�x�

+ �m2 − 1�v
�2�x� − 2pc�x�q���x�� .

In order to determine the various matrix elements of Q de-
fined in Eq. �B4� we perform saddle-point approximations
with respect to the numerous variables. We find u�x�=r�x�
which has been calculated earlier. Similarly it follows that
v=q�. The saddle-point equation for � is then

pc�x�q0 = − �2��x� + t��x� − ��2�x� + y�3�x�

+ 	r0�x� + q�
��x� , �B9�

and it follows that the solution of this equation is ��x�
= pc�x�. With these results we are in the position to calculate
the barrier fluctuations.

First we rewrite expression �B1� by employing the saddle-
point solution as follows:

Fpc,�2
Fq�,�2

= lim
m1,2→0

1

m1m2
�1 − e−m2Hhom	q�,q�


− e−m1Hinh	pc;r0,r1


+ e−m1Hinh	pc;r0,r1
−m2Hhom	q�,q�
−m1m2V	pc
� .

�B10�

Expanding the exponents up to the second order in mi’s and

taking r0,1= pc yield expression �57� in the text. Equation
�55� can be obtained using the same steps which lead us to
Eq. �B10�. For example, we have

Fpc,�2

2 = lim
m1,2→0

1

m1m2
�1 − e−m2Hinh	pc;r0,r1


− e−m1Hinh	pc;r0,r1


+ e−�m1+m2�Hinh	pc;r0,r1
−m1m2Vinh	pc
� , �B11�

where we introduced Vinh	pc
=�d3xh	pc
. Upon taking the
limit m1,2→0 and using the replica symmetry r0=r1= pc we
recover the second expression in Eq. �59�

APPENDIX C: EXPRESSION FOR THE INTEGRATION
CONSTANT z0

In this section we provide an expression for the integra-
tion constant z0 which enters into Eq. �53� for the interface
profile. First, we define the following functions:

q0�t� =
w

2y
�1 +�1 −

8t

9tK
�, t̃ =

3

2
tK − t ,

qm�t� =�y

t̃
�q0�t� −

w

3y
�, ��t� =�3qm

2 �t� − 1

2
.

�C1�

In terms of these functions the expression for z0�t� reads as

z0�t� =
1

4
log�qm�t� + ��t�

qm�t� − ��t�� . �C2�

Finally, we remark that the integral, which determines the
length scale ��t� 	Eq. �66�
 can be computed exactly using
relations above. The resulting expression is quite cumber-
some and will not be listed here.
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