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The exact solution of a quantum Bethe lattice model in the thermodynamic limit amounts to solve a
functional self-consistent equation. In this paper we obtain this equation for the Bose-Hubbard model on the
Bethe lattice, under two equivalent forms. The first one, based on a coherent-state path integral, leads in the
large connectivity limit to the mean-field treatment of Fisher et al. �Phys. Rev. B 40, 546 �1989�� at the leading
order, and to the bosonic dynamical mean field theory as a first correction, as recently derived by Byczuk and
Vollhardt �Phys. Rev. B 77, 235106 �2008��. We obtain an alternative form of the equation using the occupa-
tion number representation, which can be easily solved with an arbitrary numerical precision, for any finite
connectivity. We thus compute the transition line between the superfluid and Mott insulator phases of the
model, along with thermodynamic observables and the space and imaginary-time dependence of correlation
functions. The finite connectivity of the Bethe lattice induces a richer physical content with respect to its
infinitely connected counterpart: a notion of distance between sites of the lattice is preserved, and the bosons
are still weakly mobile in the Mott insulator phase. The Bethe lattice construction can be viewed as an
approximation to the finite-dimensional version of the model. We show indeed a quantitatively reasonable
agreement between our predictions and the results of Quantum Monte Carlo simulations in two and three
dimensions.
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I. INTRODUCTION

The bosonic version of the Hubbard model was intro-
duced for the first time in a seminal paper, Ref. 1. It de-
scribes a system of bosons hopping between neighboring
sites of a lattice, and subjected to a local repulsive interaction
disfavouring the multiple occupancy of a site. The competi-
tion between these two effects leads to a quantum phase
transition2 at zero temperature: when the hopping term domi-
nates, the ground state is a Bose-Einstein condensate �BEC�
delocalized over the lattice, also known as a superfluid
phase. On the contrary for large local repulsion it becomes
energetically favorable to form a commensurate state where
the average number of bosons per site is fixed to an integer
value. This incompressible phase is called a Mott insulator
�MI�.

The introduction of this model was motivated by experi-
mental results on Helium adsorbed on disordered substrates.
The recent progresses of the experimental techniques for the
manipulation of cold atoms, and in particular the possibility
of devising optical lattices loaded with cold gases, revivified
the interest for the Bose-Hubbard model. Following the pro-
posal made in Ref. 3, the experimental observation of this
Mott transition was first achieved in Ref. 4. We refer the
reader to Ref. 5 for a review of such experiments bridging a
gap between atomic and condensed-matter physics.

From a more theoretical point of view the Bose-Hubbard
model has been studied with various techniques, notably
mean-field approximations,1,6 perturbative expansions in the
hopping strength,7–9 random phase approximations,10–14 and
Quantum Monte Carlo simulations.15–20 The mean-field ap-
proach of Ref. 1 yields a qualitatively correct prediction of

the phase diagram of the model. However its description of
the Mott insulator is oversimplified, the hopping being com-
pletely neglected in this phase at the mean-field level. As
often the assumptions underlying the mean-field approxima-
tion become valid when the connectivity of each site �the
number of its neighbors� is very large, either of the order of
the system size itself �in which case a rigorous treatment of
the model is possible21,22�, or in the limit of large dimension-
ality. The latter case was recently investigated in Refs. 23
and 24 where a bosonic version of the dynamic mean-field
theory25 was developed, including first-order corrections in
the inverse of the spatial dimension.

In this paper we follow a related but slightly different
road to improve on the mean-field treatment of Ref. 1, by
treating the Bose-Hubbard model at the level of the Bethe
approximation, i.e. by solving it on a Bethe lattice. We show
that, in the thermodynamic limit, the computation of all ob-
servables amounts to solve a single self-consistent functional
equation. By writing this equation in the coherent-state basis
one recovers the bosonic dynamical mean-field theory �B-
DMFT� in the large connectivity limit.23,24 Unfortunately,
this equation cannot be analytically solved for finite connec-
tivity, except in some special limits. Hence, we show how to
rewrite it in a more convenient way using the occupation
number basis; this opens the way to its resolution through an
efficient numerical algorithm.

The Bethe approximation is the next step in a hierarchy of
approximations for lattice systems known as the cluster
variation method;26 it is in fact exact when the model con-
sidered is defined on a Bethe lattice, that is, a graph which is
locally a tree �no short loops can be closed on it�. Bethe
lattices appear in the DMFT derivations23–25 as an interme-
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diate step, before taking the limit of large connectivity. On
the contrary in the present paper the connectivity of the
Bethe lattice will be kept finite. From the point of view of the
universality classes of critical exponents Bethe lattice models
fall in the mean-field category, yet their finite connectivity
makes them richer than the �fully connected� mean-field ver-
sion of Ref. 1. In the latter any site is adjacent to all others,
whereas on a Bethe lattice one has a well-defined notion of
distance between two sites, though it does not correspond to
the usual Euclidean distance. Moreover the MI phase is non-
trivial for the Bethe lattice version of the model, at variance
with the mean-field picture. Though we only consider here
the ordered version of the model a motivation for studying
the Bethe lattice is the possibility that it exhibits a Bose glass
phase1,27 in presence of disorder, which cannot be described
at the simplest mean-field level. This hope is backed up by
the relevance of the Bethe lattices for the localization
problem.28

The methodology we use has its roots in the extensive
research effort, which took place over the last decade in the
community studying statistical mechanics of disordered sys-
tems. Under the name of cavity method a set of techniques
have been developed to solve classical spin models on Bethe
lattices �in the sense of sparse random graphs�, with applica-
tions to spin glasses29 and to random optimization problems
arising from theoretical computer science.30 An extensive
presentation of this field can be found in a recent book,
Ref. 31. The cavity method has been recently extended from
classical to quantum spin models in presence of a transverse
field.32–34 We widen here the range of applicability of the
method by including lattice boson models.

The rest of the paper is organized as follows. In Sec. II we
define precisely the model studied and the physical observ-
ables of interest, and we recall the usual mean-field treatment
and its qualitative physical predictions. Sec. III is an over-
view conveying the main ideas of the cavity method, starting
for pedagogical reasons from the ferromagnetic Ising model
before explaining its extension to quantum problems, and in
particular its connection with the B-DMFT of Refs. 23 and
24. Sec. IV contains the core of our contribution; we first
present in Sec. IV A the main equations describing the Bose-
Hubbard model on the Bethe lattice, and the principles of
their numerical resolution. In Sec. IV B we present our pre-
dictions for several physical observables and compare the
phase diagram we obtain with the Quantum Monte Carlo
results in two17 and three18 dimensions, as well as with the
B-DMFT prediction of Ref. 24 in three dimensions. For the
convenience of the reader not interested in technical aspects
we postpone the detailed derivation of the equations to Sec.
V. Finally we present our conclusions and perspectives for
future work in Sec. VI.

II. DEFINITIONS AND REMINDER ON THE
TRADITIONAL MEAN-FIELD APPROACH

A. Definition of the model and the observables

We shall consider the Bose-Hubbard model for spinless
bosons on a graph of N vertices �sites� defined by the fol-
lowing Hamiltonian:

H = − J�
�i,j�

�ai
†aj + aj

†ai� +
U

2 �
i=1

N

ai
†ai

†aiai − ��
i=1

N

ai
†ai

= HK + HL, �1�

where the first sum runs over a subset of the N�N−1� /2
possible edges �links� between pairs of sites, J is the hopping
amplitude between neighboring sites, ai �resp. ai

†� is the bo-
son annihilation �resp. creation� operator on site i, � is the
chemical potential fixing the density of particles, and U con-
trols the strength of the on-site interaction between particles.
It is convenient to separate the kinetic term HK �proportional
to J� in the Hamiltonian, from the local term HL including
the Hubbard interaction and the chemical potential term.
Note that the kinetic energy defined in such a way will be
negative: indeed, the discrete lattice version of the kinetic
energy would be given by HK+J�iciai

†ai, where ci is the
connectivity of site i.

Although the method we will discuss in this paper allows
in principle to compute very general observables �such as
multipoint imaginary-time correlations�, in the following we
will be mainly interested in standard observables such as the
mean density, kinetic and on-site energy, condensate fraction,
and Green functions. For the sake of clarity we recall now
their definitions. The partition function at temperature T is
defined by

Z = Tr�e−�H� , �2�

where �=1 /T �we set kB=1�, the corresponding free energy
is F=−T log Z; the free energy per site is f =F /N. The ther-
modynamic average of an operator O is defined as

�O� =
1

Z
Tr�Oe−�H� . �3�

In particular the average number of particles on site i reads
�ni�= �ai

†ai� and the density of particles is �=N−1�i�ni�; the
kinetic �resp. local� energy per site is eK= �HK� /N �resp. eL
= �HL� /N�. To define the order parameter for BEC, one pos-
sibility that is convenient for our purposes is to introduce a
small perturbation to the Hamiltonian in the form H�=H
+��i�ai+ai

†� and define

�a� = lim
�→0

�a��, �4�

where � • �� denotes the thermodynamic average in presence
of the perturbation.

The imaginary-time evolution of an operator O is given
by O���=e�HOe−�H; we then define the two-times correlation
functions as35

G�
i ��� = �ai���ai

†�0�� =
1

Z
Tr�e−��−��Haie

−�Hai
†� ,

G�
i ��� = �ai

†�0�ai���� =
1

Z
Tr�e−��+��Hai

†e�Hai� . �5�

The Green’s function is defined, for −� /2	�	� /2, by

SEMERJIAN, TARZIA, AND ZAMPONI PHYSICAL REVIEW B 80, 014524 �2009�

014524-2



Gi��� = 
���G�
i ��� + 
�− ��G�

i ��� = �Tai���ai
†�0�� , �6�

where T is the usual time-ordering operation, which should
not be confused with the temperature. Note that the cyclic
property of the trace implies that G�

i ���=G�
i ��+��, hence

Gi��� = 
���G�
i ��� + 
�− ��G�

i �� + �� , �7�

and the knowledge of G�
i ��� for 0	�	� is enough to de-

termine the Green’s function.
The cavity method allows also the computation of spatial

correlation functions, we shall in particular determine the
one-particle density matrix �ij = �ai

†aj�.

B. Review of mean-field results

The inexistence of an analytical solution of the model for
finite-dimensional lattices has triggered a large amount of
research effort on numerical simulations,15–19 pertubative
expansions,7,8 or mean-field treatments1,6 of the problem. Let
us briefly recall the various points of view and methodology
that the mean-field approach usually encompasses. It can first
be seen as an approximation to finite-dimensional models.
Maybe the most satisfactory way to perform this approxima-
tion is by means of a variational method. One introduces a
simpler trial �Gutzwiller� Hamiltonian where the sites are
decoupled,

H0 = �
i=1

N �− �iai
† − �i

�ai +
U

2
ai

†ai
†aiai − �ai

†ai	 , �8�

the �i being here free parameters. Note that H0 breaks the
particle conservation symmetry. The free energy at inverse
temperature � of the original model, F���, can be upper
bounded as F	F0+ �H�0− �H0�0, where F0��� is the free en-
ergy of the trial Hamiltonian and � · �0 denotes a thermal av-
erage with respect to the trial Hamiltonian. The best varia-
tional description is thus obtained by minimizing the upper
bound with respect to the parameters �i. Assuming that all
sites of the graph have the same number c of neighbors
�c=2d for a d-dimensional hypercubic lattice�, the bound is
minimized by taking the same value � on all sites, which can
be chosen real without loss of generality. The free energy per
site can then be upper bounded as f���	 fvar���, with

fvar��� = inf
�

 1

cJ
�2 −

1

�
ln Tr�e��a†a−�U/2a†a†aa+���a+a†��� ,

�9�

where the trace is over the Hilbert space of a single site. The
physical properties of this variational free energy are well
known:1 at all temperatures and chemical potentials there is a
transition encountered upon increasing the hopping intensity
J from an “insulating” phase, characterized by �a�=0, to a
“superfluid” phase with �a��0. At zero temperature this
transition line draws a series of lobes in the �J /U ,� /U�
plane, inside each lobe the particle density being constrained
to a given integer. These Mott insulator phases are thus in-
compressible. There exist alternative ways to obtain the es-
timation �Eq. �9�� for the free energy per site of the Bose-
Hubbard Hamiltonian. The usual mean-field approximation

consists indeed in replacing ai
†aj with �ai

†�aj +ai
†�aj�

− �ai
†��aj� in the hopping term of the original Hamiltonian,

neglecting correlations between neighboring sites. This
transforms the Hamiltonian into the site-decoupled form �8�,
with �i given by a sum of �aj� over the neighbors j of i.
These expectation values are then computed with respect to
the decoupled Hamiltonian, the self-consistency equations
leading finally to the same expression �9� of the free energy
per site as the variational approach; the latter has, however,
the advantage of being better controlled, in the sense that it
provides a rigorous bound on the true free energy of the
system. Finally, another reasoning yielding this mean-field
result consists in devising a model which has exactly Eq. �9�
as its free energy per site in the thermodynamic limit, instead
of taking it as an approximation for the finite-dimensional
case. As could be expected this model corresponds to the
fully connected version of Hamiltonian �1�, with the sum in
the hopping term running over all possible pairs of sites, with
a coupling constant J inversely proportional to the size N of
the system in order to have an extensive thermodynamic
limit. It has been shown rigorously in Refs. 21 and 22 that in
the thermodynamic limit the free energy of this fully con-
nected model converges indeed to Eq. �9�.

The above described mean-field treatment has limitations
both of a quantitative nature �the approximation cannot be
expected to be very precise for small dimensions� and of a
qualitative one. In particular the MI phase is rather trivial; as
the infimum in Eq. �9� is reached in �=0, the hopping of
particles is completely suppressed in this phase. This draw-
back is particularly severe in the case of the disordered Bose-
Hubbard model, for which it forbids the description of the
Bose glass phase predicted in Ref. 1. In order to cure this
defect of the mean-field treatment one has to account in
some way for the correlations between neighboring sites.
Thinking in terms of classical spin models, the mean-field
approximation is the lowest level of a hierarchy of descrip-
tions �known as cluster variation method,26 or Kikuchi
approximations36�, which treats exactly larger and larger re-
gions of the interaction graph. In this work we shall deal
with the Bose-Hubbard model at the next level of the hierar-
chy, known as the Bethe approximation, in which correla-
tions between nearest neighbors are explicitly taken into ac-
count. In the same way as the simplest mean-field
approximation was exact for the fully connected model, the
Bethe approximation is exact for a family of graphs, known
as Bethe lattices. In these graphs each site interacts with a
finite number c of neighbors, say, 2d in order to mimic a
d-dimensional hypercubic lattice, but the short loops present
in the latter are discarded: Bethe lattices have a local tree
structure, see Fig. 1 for a picture of the local appearance of a
Bethe lattice of connectivity c=4. For at least two reasons it
is, however, better not to picture a Bethe lattice as a finite
regular tree �usually called Cayley tree in this context�. In-
deed a regular tree is strongly inhomogenous, a finite frac-
tion of its “volume” being very close to its “surface,” and
only the center of the Cayley tree has the bulk properties one
is interested in. Moreover in the case of frustrated models the
boundary conditions imposed on the leaves of the Cayley
tree have to be chosen with particular care. For these two
reasons it has become customary in the community of statis-
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tical mechanics of disordered systems, following Ref. 29, to
define a Bethe lattice as a random c-regular graph,37 that is, a
graph chosen uniformly at random from the set of the graphs
on N vertices where all sites have precisely c neighbors.
These Bethe lattices are locally treelike, their loops have
typically a length diverging with the size N of the system, yet
they do not have any boundary, all sites playing the same
role �in the same way as periodic boundary conditions im-
pose translation invariance on a finite cubic lattice�. The ab-
sence of an underlying finite-dimensional structure gives
them a mean-field character, but their finite connectivity
leads to a richer content than the fully connected models.
The free energy of Bethe lattice models is self-averaging
with respect to their random character in the thermodynamic
limit. In other words for large enough N a single sample is a
good representative of the ensemble average. The so-called
cavity method has been developed to treat classical spin
models defined on such random graphs, and found important
applications for optimization problems of theoretical com-
puter science.30

III. OVERVIEW OF THE QUANTUM CAVITY METHOD

A. The cavity method for ferromagnetic Ising models

For the sake of pedagogy we shall begin our presentation
by the cavity method treatment of the ferromagnetic Ising
model on the Bethe lattice. We consider the following energy
function:

H��1, . . . ,�N� = − J�
�i,j�

�i� j − h�
i

�i, �10�

where the classical degrees of freedom �i can take the values

1, the first term describing ferromagnetic �J�0� interac-
tions between neighbors on a graph of N vertices, the second
one corresponding to a uniform magnetic field. We shall re-
peatedly use in the following the notation �i for the set of
vertices adjacent to a given vertex i, i.e., for the sites which
interact with i, and �i \ j for those vertices around i distinct
from j. The Gibbs-Boltzmann probability measure is

���1, . . . ,�N� =
1

Z
e−�H��1,. . .,�N�, �11�

with the partition function Z ensuring its normalization. The
goal is to compute the free energy per site f =−�ln Z� / �N��
and the local magnetizations ��i�, the brackets denoting an
average with respect to the law �11�.

Let us first consider the case where the interaction graph
is a finite tree. In this case the computation can be organized
in a very simple way, taking benefit of the natural recursive
structure of a tree. We define the quantity Zi→j��i�, for two
adjacent sites i and j, as the partial partition function for the
subtree rooted at i, excluding the branch directed towards j,
with a fixed value of the spin variable on the site i. We also
introduce Zi��i�, the partition function of the whole tree with
a fixed value of �i. These quantities can be computed accord-
ing to the following recursion rules, see Fig. 2 for an ex-
ample,

Zi→j��i� = e�h�i �
k��i\j


�
�k

Zk→i��k�exp �J�i�k� ,

Zi��i� = e�h�i �
j��i


�
�j

Zj→i�� j�exp �J�i� j� . �12�

It will be useful for the following discussion to rewrite these
equations in terms of normalized quantities which can be
interpreted as probability laws for the random variable �i,
namely, �i→j��i�=Zi→j��i� /���Zi→j���� and �i��i�
=Zi��i� /���Zi����. The recursion equations read in these no-
tations

�i→j��i� =
1

zi→j
e�h�i �

k��i\j

�

�k

�k→i��k�exp �J�i�k� ,

FIG. 1. A portion of a Bethe lattice of connectivity c=4, ap-
proximation of a square lattice.

σ1

σ2

σ3σ4

σ5 σ6 σ7

FIG. 2. Example of an Ising tree model on 7 vertices. The
definition of Z2→1 and its recursive computation reads

here: Z2→1��2�=��3,. . .,�7
e�h��2+�3+¯+�7�+�J��2��3+�4�+�4��5+�6+�7��

=e�h�2��3,�4
Z3→2��3�Z4→2��4�e�J�2��3+�4�.
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�i��i� =
1

zi
e�h�i �

j��i

�

�j

� j→i�� j�exp �J�i� j� , �13�

where zi→j and zi are normalization constants. On a given
tree the recursion equations on the �i→j for all directed edges
of the graph have a single solution, easily found by propa-
gating the recursion from the leaves of the graph. Moreover
the quantity �i��i� is exactly the marginal probability law of
the Gibbs-Boltzmann distribution �11�, hence the local mag-
netizations can be computed as ��i�=���i����.

The reasoning above was made under the assumption that
the interaction graph was a tree. One can, however, look for
a solution of the recursion Eq. �13� on any graph, even in the
presence of loops. This approach is known as belief propa-
gation in inference problems,38 and corresponds to the Bethe
approximation of statistical mechanics.39 The cavity method
is a set of prescriptions to use these local recursion equations
to predict the behavior of models defined on sparse random
graphs, that are locally treelike �the typical length of the
loops diverging in the thermodynamic limit�. In its simplest
version �known as the replica symmetric one� one makes the
assumption of the existence of a single pure state which im-
plies that the effect of the loops does not spoil the local
recursions Eq. �13�. Their presence simply provides self-
consistent boundary conditions and avoids the ill-defined be-
havior due to the dominant surface effects of trees. In the
case of unfrustrated ferromagnetic models it has been shown
rigorously40 that this assumption is correct, the predictions of
the cavity method being exact in the thermodynamic limit,
both for the local magnetizations and for the free energy per
site. Let us be more explicit for the case of the Bethe lattice,
where all vertices have the same connectivity c. The prob-
ability laws �i→j are then the same on all edges; denoting
�cav their common value, one finds the self-consistent equa-
tion

�cav��� =
1

zcav
e�h� �

�1,. . .,�c−1

�cav��1� . . . �cav��c−1�

�exp �J���1 + ¯ + �c−1� , �14�

with zcav a normalization constant. A pictorial representation
of this equation can be found in Fig. 3. The local magneti-
zation is then computed as

��� = �
�

����� ,

���� =
1

z
e�h� �

�1,. . .,�c

�cav��1� . . . �cav��c�

�exp �J���1 + ¯ + �c� , �15�

including the c neighbors of a central site as represented in
Fig. 4. The term cavity comes from the fact that in Eq. �14�
one site has been removed from the neighborhood of the
considered vertex. As the Ising variable � can only take two
values, each of the probability distributions �cav and � can be
parametrized by a single real number, a cavity �resp. effec-
tive� magnetic field,

�cav��� =
e�hcav�

2 cosh��hcav�
, ���� =

e�heff�

2 cosh��heff�
, �16�

solutions of

hcav = h +
c − 1

�
arctanh�tanh��J�tanh��hcav�� ,

heff = h +
c

�
arctanh�tanh��J�tanh��hcav�� . �17�

thus making the resolution of Eqs. �14� and �15� extremely
simple. In particular at zero external field h=0, one finds that
a phase transition occurs at �=�c, separating a high-
temperature paramagnetic phase �hcav=heff=0� from a low-
temperature ferromagnetic phase �hcav ,heff�0�. The critical
temperature is easily obtained linearizing the equation for
hcav around hcav=0 and is the solution of �c−1�tanh��cJ�
=1.

It is worth noting that one can compute explicitly the
spin-spin correlation function, which is given in the para-
magnetic phase by Cij = ��i� j�= �tanh��J��d�i,j�, where d�i , j�
is the distance between sites i and j, defined as the length of
the shortest path connecting sites i and j. The associated
correlation length is �=−log�tanh��J�� which is finite at the
transition point �=�c. Nevertheless, the associated magnetic
susceptibility �=N−1�id��i� /dh diverges: one can show us-
ing the fluctuation-dissipation theorem that �=�N−1�ijCij
=��d=0

� NdCd, where Nd is the number of points at distance d
from a given reference point and scales as �c−1�d for large d.
Therefore, if Cd decays slower than �c−1�−d, the correspond-

σ

σc−1

σ

σ1

σ

ηcavσc−1σ1

ηcav

FIG. 3. Pictorial representation of Eq. �14�. The bubbles on the
first panel represent subtrees of the graph; their effect on the spins
�1 , . . . ,�c−1 is summarized by �cav, represented as a bold arrow in
the second panel. Tracing over these c−1 spins leads to the third
panel.

σ1

σc

σ

σ1

σc

σ

ηcav

FIG. 4. Illustration of Eq. �15�; the local magnetization of one
site is computed by taking into account all the c neighbors.
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ing susceptibility is divergent; this is indeed consistent with
the equation for �c obtained above. Hence phase transitions
on Bethe lattices are always associated to diverging suscep-
tibilities and finite correlations lengths �see Ref. 41 for a
discussion of this fact in the context of quantum spin mod-
els�. For finite-dimensional lattices, Nd grows as a power of
d, and one needs a diverging correlation length to obtain a
diverging susceptibility.

B. Suzuki-Trotter formalism and quantum cavity method

We have just seen how the cavity method deals with clas-
sical spin models on locally treelike graphs. The extension of
the method to quantum models is based on the Suzuki-
Trotter formula. Generically speaking the resolution of a
quantum model amounts to compute its partition function
Z=Tr�e−�H�, where the Hamiltonian H is now an operator,
which can usually be split as H=H1+H2 with H1,2 two op-
erators which do not commute. For instance, in the case of
quantum spin 1/2 models one can have an interaction term
H1 involving only the z component of the spins, while H2 is
a transverse field acting in a perpendicular direction. In the
case of the Bose-Hubbard model this decomposition splits
the Hamiltonian between the hopping term HK and the on-
site potential energy HL. The noncommutativity of H1,2 can
be cured with the application of the Suzuki-Trotter
formula,42

Z = lim
Ns→�

Tr��e−�/NsH1e−�/NsH2�Ns� . �18�

The computation then proceeds with the insertion of Ns rep-
resentations of the identity between the Ns elements of this
product. It is convenient to express the identity operator in a
basis where one of the two operators is easily evaluated. In
the case of quantum spin 1/2 models one can, for instance,
use the eigenvectors of the Pauli matrix in the z direction; the
quantum partition function is then turned into the partition
function of a classical Ising spin model, where each quantum
spin is replaced by a set of Ns classical spins, indexed by
their position on the original graph and a supplementary
“discrete imaginary-time” coordinate �which becomes a con-
tinuous parameter in the Ns→� limit�. The important point
is that the spatial structure of the graph of interactions is
preserved in this construction, at the price of the introduction
of imaginary-time-dependent classical degrees of freedom.
In particular, if the interactions of the quantum model are
defined on a treelike graph, the cavity method still applies to
this extended classical model. This line of thought was first
followed for quantum spin models in Ref. 32 �see also Ref.
33� for a finite number Ns of Suzuki-Trotter slices, the con-
tinuous imaginary-time limit was then taken in Ref. 34. In
this paper we shall extend this method to deal with lattice
bosons models.

In this case the decomposition of the identity operator in
the Suzuki-Trotter can be expressed using either coherent
states or occupation numbers. The latter has the advantage of
being discrete, and we shall use it in the rest of the paper. For
the sake of clarity and in order to make contact with the
recently proposed B-DMFT,23,24 we discuss first the applica-
tion of the cavity method within the coherent states represen-

tation in the rest of this subsection. Inserting such a decom-
position of the identity for each of the N sites at each of the
Ns Suzuki-Trotter slices leads, in the continuous-time limit
Ns→�, to the coherent-state path-integral expression of the
partition function of the Bose-Hubbard model35

Z =� �
i=1

N

DaiDaie
−S, �19�

S = �
0

�

d�
�
i=1

N 
āi������ − ��ai��� +
U

2
�āi���ai����2�

− J�
�i,j�

�āi���aj��� + āj���ai����� . �20�

Here and in the following we use bold symbols to denote
imaginary-time-dependent quantities. ai��� and āi��� are two
�formally conjugate� complex numbers indexing the coherent
state at site i and imaginary time �, with DaiDai the path-
integral measure of this site. Following the same steps as in
the study of the Ising model, the cavity method for a Bethe
lattice of connectivity c leads to the following self-
consistency equation:

�cav�a,a� =
1

zcav
w�a,a�� �

i=1

c−1

DaiDai�cav�ai,ai�

�exp
J�
0

�

d��ā����
i=1

c−1

ai��� + a����
i=1

c−1

āi���	� ,

�21�

with the on-site weight of the path �a ,a� given by

w�a,a� = exp
− �
0

�

d�
ā������ − ��a��� +
U

2
�ā���a����2�� .

�22�

This self-consistent equation on �cav is formally similar to
the corresponding Eq. �14� of the Ising model. It is however
much more complicated: the Ising degree of freedom � could
only take two distinct values, whereas �a ,a� belongs to a
space of functions of the imaginary time �. Therefore
�cav�a ,a� is a functional measure whose representation is
much more difficult; a complete parametrization requires
the knowledge of all n ,m-points correlations
�a�t1�¯a�tn�a†�s1�¯a†�sm��. On the other hand, this is one
of the most interesting features of the quantum cavity
method: on-site quantum fluctuations are fully kept into ac-
count, without any truncation of higher order correlations.

Unfortunately, an exact solution of Eq. �21� can be easily
obtained only in the case of free bosons �U=0�. �cav acquires
in this case a Gaussian form, with averages and two-point
functions which can be computed exactly and reproduce the
results obtained by direct diagonalization of the adjacency
matrix of the Bethe lattice.43
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C. Large connectivity limit and the connection with B-DMFT

In the interacting case �U�0� a solution of Eq. �21� can
be looked for in the limit of large connectivity, and this is
precisely the road followed by the B-DMFT studies.23,24 For
completeness we shall explain in this subsection how to re-
cover the B-DMFT formalism from Eq. �21�, before turning
in the next section to the occupation number basis which will
allow to solve the model for any connectivity.

To state the large c expansion let us rewrite Eq. �21� in a
more convenient way, using the lighter Nambu notation
�†���= �ā��� ,a����, and consequently �†= �a ,a�. Then we
can rewrite Eq. �21� as

�cav��� =
1

zcav
w���e�c−1���J��,

���� = log
� D��cav���exp��
0

�

d��†�������	� .

�23�

���� is the generating functional of the connected correla-
tion functions of a and ā. It can be expanded as

���� = �
0

�

d���†����� + �
0

�

d�d���†���Ĝc�� − ��������

+ O��3� , �24�

where the averages � · � are with respect to �cav, we have used

the cyclic invariance in imaginary time, and Ĝc��−���
= ������†�����− �����†� is the connected part of the two-
point correlator of �.

In the large connectivity limit, the superfluid-insulator
transition happens for a critical value of J=J /c, with a finite
J. This can be argued by looking at Eq. �9�, where it is clear
that the dependence on hopping and connectivity is only
through J=Jc, which is the real control parameter. For large
c and J=J /c, the cumulant expansion of �c−1���J� /c�
thus becomes a systematic expansion in powers of 1 /c. By
keeping only a finite number of terms in the cumulant ex-
pansion, we obtain an expression of �cav��� that is not
Gaussian �because of the U term in w����; still, we can
obtain closed equations for the cumulants by computing
them self-consistently as averages over the non-Gaussian
�cav.

The leading order in c gives, assuming without loss of
generality that the average value of the order parameter is
real, ��†�= �� ,��,

�cav��� =
1

zcav
w���e�0

�d�J��†�����⇒

� =
1

zcav
� DaDaa�0�

�e−�0
�d��ā������−��a���+U/2�ā���a����2−J��a���+ā�����. �25�

This last equation can be rewritten in the operator represen-
tation, which gives back the equation for � corresponding to
the minimization of the variational free energy Eq. �9�, up to

a multiplicative constant in the definition of �. Note that a
generalization of the discussion above and of Eq. �25� to the
disordered case leads to the stochastic mean-field theory de-
vised in Ref. 44.

We will now show that the next-to-leading order in the
cumulant expansion of Eq. �24� gives the B-DMFT equations
recently derived in Refs. 23 and 24. Note that the truncation
at this two-point level was also used in the context of spin
models in Ref. 32. Plugging the expansion of Eq. �24� in Eq.
�23�, we obtain to order 1 /c

�cav��� =
1

zcav
exp�− Sloc� ,

Sloc = �
0

�

d�d���†���Ĝ−1�� − ��������

+ �
0

�

d�
U

8
��†��������2 − Jc − 1

c
��†������ ,

Ĝ−1�� − ��� =
1

2

�� − � 0

0 − �� − �
���� − ��� −

J2

c
Ĝc�� − ��� .

�26�

Then, ��†� and Ĝc��−���= ������†�����− �����†� have to
be computed self-consistently as averages with the local ac-
tion Sloc. This set of equations correspond exactly to the
B-DMFT of Refs. 23 and 24 for the special case of a Bethe
lattice.

Away from these two limits �U=0 and c→�� it seems
difficult to obtain a solution of the cavity Eq. �21� as written
in the coherent-state basis. As a consequence we shall turn in
the following to the representation number basis to apply the
Suzuki-Trotter formula and thus obtain a more tractable
equation for all values of U and c.

IV. THE QUANTUM CAVITY METHOD IN THE
OCCUPATION NUMBER BASIS

A. The equations and the procedure for their numerical
resolution

The insertion of a decomposition of the identity expressed
in the occupation number basis in the Suzuki-Trotter For-
mula �18� leads to an expression of the partition function of
the Bose-Hubbard model as a sum over occupation number
trajectories in imaginary time, �ni����. These trajectories are
defined on an imaginary-time interval of length �, with
the periodicity condition ni�0�=ni���. The weight �action�
of these trajectories has two origins: the local part of
Hamiltonian �1� yields a contribution of the form
exp�−�d�V�ni����� for each of the sites, where
V�n�=Un�n−1� /2−�n is the local energy term in the
Hamiltonian. In addition the hopping term of the Hamil-
tonian imposes constraints between the occupation number
trajectories: each time ni��� is raised �resp. decreased� by 1,
the occupation number nj��� of one of the neighbors j��i
must decrease �resp. increase� of 1, meaning one particle has
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jumped from j to i �resp. from i to j�. Moreover each hop-
ping event multiplies the weight of the trajectory �ni���� by J
and by a coefficient depending on the instantaneous occupa-
tion numbers of the sites involved in the hopping. An explicit
derivation of this representation shall be given in Sec. V.
Here we wish to present the results of the computation in a
lighter way for the ease of the reader not interested in the
technical details �we follow the methodology developed for
quantum spin models in Ref. 34�.

The recursion equations of the Bose-Hubbard model de-
fined on a tree �or on a locally treelike graph with the as-
sumptions of the cavity method� can be expressed in terms of
the probability distribution �cav�y� of the hopping trajectories
y defined on the edges of the graph. This quantity y encodes
the imaginary times at which a particle has crossed the edge,
and the directions of the jumps; examples are given in Fig. 5.
In the case of a regular Bethe lattice of connectivity c one
obtains the following self-consistent equation on �cav�y�:

�cav�y� =
1

zcav
wlink�y� �

y1,. . .,yc−1

�cav�y1� . . . �cav�yc−1�

�witer�y,y1, . . . ,yc−1� . �27�

For simplicity we denote here with a sum symbol what is
actually an integral over continuous degrees of freedom y.
The explicit expressions for the weights w shall be given in
Sec. V, see Eqs. �46� and �47�. Let us emphasize the formal
similarity with the Ising equivalent Eq. �14�, and of course
the greater complexity of the basic degree of freedom in the
Bose-Hubbard case, the hopping trajectory y assuming val-
ues in a much larger space than the Ising variable �� �+1,
−1�. We already mentioned this problem while discussing the
related Eq. �21� in the coherent-state basis. Compared to this
latter case we are, however, facing now an easier problem:
the number of hopping events on a given edge is a �random�
number which remains finite as long as the temperature is
positive �it is actually of order �J�. A single hopping trajec-
tory y can thus be encoded as an integer p, i.e., the number of
particle jumps occurring on this edge during the imaginary-
time interval �0,��, p reals precising the imaginary times

where these jumps occur, and p binary variables giving the
direction of the jumps, see Fig. 5. In contrast the coherent-
state trajectories were those of two continuous functions with
a priori no compact representation. This remark opens the
way to an efficient numerical method for the resolution of
Eq. �27�.45 We can indeed follow the population dynamics
strategy.28,29 The idea of this method is to represent numeri-
cally the probability distribution �cav�y� as a �weighted�
sample of a large number Ntraj of hopping trajectories,
namely,

�cav�y� = �
i=1

Ntraj

gi��y − yi� , �28�

where the Ntraj weights of the trajectories are normalized
according to

�
i=1

Ntraj

gi = 1. �29�

Sampling an element y from the probability distribution �cav
corresponds in this representation to extract an integer i
� �1,Ntraj� with probability gi, and setting y=yi. This repre-
sentation of �cav is an approximation, which yields better and
better numerical accuracy when Ntraj grows. The determina-
tion of a sample of weights gi and trajectories yi, which turns
the representation Eq. �28� into a good approximation of the
solution of Eq. �27�, can be performed iteratively. To explain
this point let us first rewrite the self-consistent Eq. �27� as

�cav�y� = �
y1,. . .,yc−1

�cav�y1� . . . �cav�yc−1�P�y�y1, . . . ,yc−1�

�
Z�y1, . . . ,yc−1�

zcav
, �30�

where we have defined

P�y�y1, . . . ,yc−1� =
wlink�y�witer�y,y1, . . . ,yc−1�

Z�y1, . . . ,yc−1�
,

Z�y1, . . . ,yc−1� = �
y

wlink�y�witer�y,y1, . . . ,yc−1� . �31�

Constructed in this way P�y �y1 , . . . ,yc−1� is a conditional
probability distribution over y. Given the values of the hop-
ping trajectories y1 , . . . ,yc−1 it is actually possible to perform
an exact sampling from P�y �y1 , . . . ,yc−1� and to compute the
normalization constant Z�y1 , . . . ,yc−1�. In fact this reduces to
a relatively simple single-site problem: one has to construct
the occupation trajectory n��� of a site, and the associated
hopping trajectory y toward one of its neighbors, given the
hopping trajectories y1 , . . . ,yc−1 on the other adjacent edges
�see Fig. 5 and recall the pictorial representation given for
the Ising case in Fig. 3�. The c−1 hopping trajectories on the
upper edges impose that n��� changes by 
1 at the times
particles arrive or depart from the considered central site.
Between these times we shall show in Sec. V that the single-
site problem is described by an effective Hamiltonian
V�n�−J�a+a†�; each change in the value of n��� provoked
by the creation/annihilation operators in this effective Hamil-

n

y1
y2

y

y3

y1 = ( �� τ in
1 , �� τ in

2 , �� τ in
4 )

y = ( �� τ out
1 , �� τ out

2 )

y2 = (∅)
y3 = ( �� τ in

3 )

0

1

2

τ in
1 τ in

4τ out
2τ out

1 τ in
2 τ in

3 β

n(τ)

τ

(b)(a)

FIG. 5. Example of the sampling process from the law
P�y �y1 , . . . ,yc−1� defined in Eq. �31� for c=4. The c−1 incoming
hopping trajectories �y1 ,y2 ,y3� impose jumps in �1

in��2
in��3

in��4
in,

a particle arriving on the central site at the first three imaginary
times, leaving at the fourth one, corresponding to the symbols in the
upper part of the rightmost figure. A trajectory n��� respecting these
constraints is shown; it contains two other jumps at �1

out��2
out, as-

sociated to hopping events in y. The symbols on the bottom are
reversed: particles leaving the central site will arrive on the next
level of the recursive equation.
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tonian is associated to an hopping event in the new �down-
wards� trajectory y. An example of this construction is given
in Fig. 5. The computation of Z�y1 , . . . ,yc−1� can be per-
formed recognizing it as the partition function of the single-
site effective Hamiltonian.

Suppose now a representation of �cav is available under
the form �28�; one can plug it into the right-hand side �rhs� of
Eq. �30� and construct a new set of trajectories and weights
corresponding to its left-hand side, let us call them
�y j� ,gj�� j=1

Ntraj. Independently and identically for each
j� �1,Ntraj�, this can be done by: �a� drawing c−1 integers
i1 , . . . , ic−1� �1,Ntraj�, each of them independently with
probability gi, �b� drawing y from P�y �yi1

, . . . ,yic−1
�, and

�c� setting y j�=y, gj�=Z�yi1
, . . .yic−1

�
The new weights gj� are then normalized to fulfill Eq.

�29�. This process can be iterated, plugging in the rhs of Eq.
�30� the newly obtained representation �y j� ,gj��, and so on
and so forth. After a certain number of steps, starting from an
arbitrary initial condition,46 a stationary solution is reached.

The physical observables can be computed from this rep-
resentation of �cav. Let us first explain the determination of
the average occupation number of one site. Following our
convention we denote n the occupation number imaginary-
time trajectory n���. Its probability distribution ��n� is ex-
pressed by considering the complete environment of a vertex
with its c neighbors, as was done for the local magnetization
of the Ising model in Eq. �15� and schematized in Fig. 4,

��n� =
1

zsite
�

y1,. . .,yc

�cav�y1� . . . �cav�yc�wsite�n,y1, . . . ,yc� .

�32�

The explicit expression of the weight wsite shall be given in
Sec. V. It is, however, intuitive that it will contain a factor
exp�−�d�V�n����� arising from the local part of the Hamil-
tonian, and requires a consistency between n and �y1 , . . . ,yc�.
In fact all the discontinuities in the occupation trajectory n���
are fixed by the hopping events on the c neighboring edges.
If the number of hoppings toward the considered site equals
the number of jumps outside, then the trajectory n��� is fixed
up to a global shift n���→n���+m with m independent of
time. Whenever there is an unbalanced number of hopping
toward/outside the vertex no periodic trajectory n��� can be
constructed, wsite=0 for such a configuration of �y1 , . . . ,yc�.
The average occupation number of a site is easily obtained
from this probability ��n�,

�a†a� = �
n

��n�n�0�

=

�
y1,. . .,yc

�cav�y1� . . . �cav�yc��
n

wsite�n,y1, . . . ,yc�n�0�

�
y1,. . .,yc

�cav�y1� . . . �cav�yc��
n

wsite�n,y1, . . . ,yc�
,

�33�

where in the last expression we have explicited the normal-
ization constant zsite. Note that the time �=0, where n���
evaluated is arbitrary because of the cyclic invariance along

the imaginary-time axis, hence n�0� can be equivalently re-
placed by the temporal average 1

��0
�d� n���. Given a repre-

sentation of �cav as a weighted sample �Eq. �28�� the numeri-
cal determination of �a†a� is straightforward. Both the
numerator and the denominator of Eq. �33� have the form of
the average of a function u�y1 , . . . ,yc� with the y’s indepen-
dently drawn from their distribution �cav. As already ex-
plained drawing from �cav a trajectory y amounts to draw an
index i� �1,Ntraj� with probability gi and picking the ele-
ment yi of the population. In formula this method of sam-
pling leads to

�
y1,. . .,yc

�cav�y1� . . . �cav�yc�u�y1, . . . ,yc�

=
1

Ntries
�
j=1

Ntries

u�yij,1
, . . . ,yij,c

� , �34�

where �ij,l� are integers drawn independently with the prob-
ability gi, with j� �1,Ntries� and l� �1,c�. The numerical
accuracy of the sampling is increased by taking a large value
of Ntries. Moreover one can interleave average steps with
iteration steps, determining a new set of weights gi and tra-
jectories yi and recomputing independent averages on this
new representation of �cav.

We shall show in Sec. V that all the other observables
defined in Sec. II �order parameter �a�, free energy, kinetic/
potential energy and Green’s function� can also be expressed
as averages of the form �34�, and thus can be efficiently
computed by the method developed here.

B. Results

In the following we present the results obtained for the
Bose-Hubbard model on the Bethe lattice solved with the
cavity method. We have shown in the previous sections that
in the thermodynamic limit the exact resolution of the model
amounts to solve Eq. �27� and we explained how this can be
done with arbitrary numerical precision using the population
dynamics algorithm described in Sec. IV A, encoding �cav�y�
as a population of a large number Ntraj of trajectories. We
typically used Ntraj=32 768 and checked that the results
were unchanged when using larger Ntraj. We recall that in the
thermodynamic limit the local observables �say, �ni�� are in-
dependent of the site i. In the following we focus on Bethe
lattices of connectivity c=4 and 6, which mimic the connec-
tivity of the two-dimensional �2D� and three-dimensional
square and cubic lattices, respectively.

Note that in order to implement the summations over n
involved in the computation of the various weights appearing
in Eqs. �27� and �32�, we have to introduce a cutoff on the
possible values of n, 0	n�Ncut. The technical details will
be discussed in Sec. V. Since all the results presented below
correspond to regions of the parameter space such that 0
	 �n�	3, we work with a cutoff on the occupation number
in the interval 4	Ncut	6. We have checked for various val-
ues of the parameters that all the results are stable with re-
spect to changes of the cutoff �in some cases also up to
Ncut�6�.

In this section we also compare our results with other
analytic approaches, such as the variational mean-field treat-
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ment described in Sec. II B and the bosonic dynamical mean-
field theory �B-DMFT�47 discussed in Sec. III C, that corre-
spond to the large c limit of our method.23,24 We also
compare them to Quantum Monte Carlo simulations on 2D
square lattice17 and 3D cubic lattice.18

1. Thermodynamic observables

Once the numerical iterative procedure has converged to a
fixed point solution, one can compute the thermodynamic
observables. Figure 6 shows the behavior of �n� and �a�, as a
function of the chemical potential, � /U for J /U=0.02, and
�J=1 for a Bethe lattice of connectivity c=4. We have also
computed �n� and �a� at lower values of the temperature
��J=2, 4, and 6�, but we find that the results are unchanged
within our numerical accuracy, except very close to the
lowest-� superfluid-insulator transitions, where a little tem-
perature effect is detected48 between �J=1 and 2 �while no
change is detectable above �J=2�. Hence, we can safely
assume that for �J�2 we are in the zero-temperature re-
gime.

The plot of Fig. 6 clearly shows a sequence of transitions
from superfluid phases �SF� to Mott insulators �MI�. The
superfluid phase is characterized by a finite value of �a�,
which corresponds to a finite condensate fraction fBEC
= �a�2 / �n�, while in the Mott insulator �a�=0. In the limit of
zero temperature in the MI regions the average number of
bosons per site, �n� is fixed to integer values, �n�
=1,2 ,3 , . . .. As a result, the compressibility of the system,
�=��n� /�� vanishes identically. At small but finite tempera-
ture, we expect the compressibility to be exponentially small
in the temperature, and indeed in Fig. 6 we observe that the
compressibility at commensurate density is practically zero
even at �J=1.

As shown in the inset of Fig. 6, the critical exponent for
�a����c−��� at the transition from the SF phase to the MI
is consistent with the mean-field value �=1 /2. As in the
classical case, the critical exponents found on the Bethe lat-
tice are equal to the mean-field ones �see Ref. 34 for a de-
tailed discussion in the case of the quantum spin-1/2 ferro-
magnet on the Bethe lattice�. Therefore, we also expect the
other critical exponents to coincide with their mean-field val-
ues.

In Fig. 7 we plot the total energy, e= �H� /N, as a function
of the chemical potential for the same values of the param-
eters as in Fig. 6. We have also computed the free energy of
the system, f , but we do not show it since at these low
temperatures the difference between the energy and the free
energy is very small, and practically undetectable within our
numerical precision, which confirms that we are effectively
in the zero-temperature regime and the system can be con-
sidered to be in its ground state. In the inset of Fig. 7 we
show the behavior of the kinetic energy, eK as a function of
� /U. The kinetic energy is, of course, lower in the SF phase
than in the MI. Moreover we find that eK does not vanish in
the MI phase, differently from the traditional mean-field ap-
proach, where hopping is completely suppressed in this
phase. Note that both the kinetic energy and the potential
energy show a discontinuity in the first derivative at the tran-
sition between the MI and the SF phases. On the contrary,

the first derivative of the total energy �and of the free energy
as well� is continuous at the transition; only its second de-
rivative shows a discontinuity.

2. Phase diagram

In Fig. 8 we present the “zero-temperature” �recall that
our method only works at finite temperature, hence we use
quotes to remind that an extrapolation to T=0 is needed�
phase diagram of the Bose-Hubbard model on the Bethe lat-
tice of connectivity c=4 �left panel� and 6 �right panel� in the
�J /U ,� /U� plane. The phase boundaries have been obtained
by computing �a� as a function of � /U at constant J /U. In
this case we used 4	Ncut	6 and 4	�J	6 �lower values
of �J and higher values of Ncut have been used at higher ��.
As already discussed, at these values of � we are effectively
in the zero-temperature regime. The lobelike shape of the
phase boundary between MI and SF phases is qualitatively
similar to the one found in the mean-field approach. In Fig. 8
we also compare the results found with the quantum cavity
method with the outcomes of Quantum Monte Carlo simula-
tions �on the square lattice for c=4, Ref. 17, and on the cubic
lattice for c=6, Ref. 18�, and with the results of other ana-
lytical approaches. This comparison shows that the cavity
method does a fairly good job in locating the lobelike con-
tours between the MI and SF phases and performs much
better than the mean-field approach. It also performs slightly
better than the B-DMFT �Ref. 24� for c=6, although the
difference between the cavity method and the B-DMFT is
expected to become small as the connectivity is increased. It
would be interesting in this respect to compare the cavity
method and B-DMFT for c=4.

In addition to the low-temperature phase diagram we have
computed the transition-temperature line from the “insulat-
ing” phase �which we defined by �a�=0, but has still a finite
conductivity at finite temperature� to the superfluid one �de-
fined by �a��0� at unit filling ��a†a�=1�, for Bethe lattices
of connectivity c=6. This result is plotted in Fig. 9 and com-
pared to the mean-field prediction and to the three-
dimensional Monte-Carlo simulations of Ref. 18.

3. Green’s functions and particle occupation statistics

As far as the results shown up to now are concerned, there
are no qualitative differences between the Bethe lattice and
the fully connected models �or equivalently the mean-field
approximation�. We shall now present the results for the one-
particle on-site imaginary-time Green’s function, which ex-
hibits a richer behavior with respect to the mean-field de-
scription. This quantity, defined in Eq. �6� as G���
= �Ta���a†�0��, is plotted in Fig. 10 for two sets of values of
the parameters �J /U ,� /U�, one in the MI phase, the other in
the SF, both very close to the tip of the first insulating lobe.

Let us first remark that the decay of the Green’s function
is independent of temperature in this temperature range, the
effect of temperature being only to cut the decay around ���
�� /2 due to periodicity. Therefore we can safely assume
that the Green’s functions reported in Fig. 10 are good esti-
mates of their zero-temperature limit.

For the interpretation of these curves it is worth recalling
the spectral representation of the Green’s function35 at zero
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temperature: for ��0, G���= ��a��2+�0
��p�E�exp�−E��,

where �p�E� is the �on-site� spectral density for particle ex-
citations. A similar expression holds for ��0 in terms of
hole excitations. The long-time limit of G��� is thus strictly
positive in the SF phase, and we checked that it is in agree-
ment with the value ��a��2 previously computed �see the dot-
ted line in the right panel of Fig. 10�.

Let us now turn to the discussion of the Green’s function
in the MI. In the mean-field description of this phase the
hopping is completely suppressed, hence particle �resp. hole�
excitations corresponds to the addition �resp. removal� of one
particle from the background of the commensurate filling of
immobile particles. To be concrete let us consider the first
lobe with �n�=1; the energy of these particle and hole exci-
tations are easily found to be Ep=U−� and Eh=�, hence
follows the expression of the Green’s function:49

Gmf��� = 
���2e−�U−��� + 
�− ��e−��. �35�

In other words the spectral density of particle excitations is
made of a single delta function �and similarly for the hole
excitations�. The mean-field Green function is reported in
Fig. 10 as a dashed black line; the comparison with the re-
sults of the Bethe lattice computations shows that the latter is
more complex. The decay of the latter is not a simple expo-
nential, thus reflecting a nontrivial spectrum of excitations.
Moreover the energy of particle and hole excitations is lower
on the Bethe lattice, as can be seen from their slower decay.
This happens because on the Bethe lattice, due to the local
finite connectivity, particles can still hop around even in the
MI phase, resulting in a gain of kinetic energy and a lower-
ing of the energy cost of the excitations. Note that different
improvements of the mean-field treatment, for instance, ran-
dom phase approximations �RPA�,13,14 provide a much better
description of the spectral density in the Mott phase, in par-
ticular a good approximation to the wave-vector dependence
of the excitation energies for finite-dimensional lattices. A
quantitative comparison with the predictions of the RPA is

beyond the scope of this paper. We focused instead on the
comparison with the fully connected result and B-DMFT,
because they are related to the Bethe lattice via a well-
controlled limit, namely, the large connectivity one.

We did not attempt to perform the inverse Laplace trans-
form to determine the spectral function, yet we performed
the following analysis to estimate the scale Ep of the slowest
decay in the ��0 part of the Green’s function. A plot of
log���G���� /� is seen to approach a constant at large � for
��1, suggesting that G��� decays as exp�−Ep�� /�, hence
that the spectral function �p�E� is finite at E=Ep and van-
ishes for E�Ep. This is consistent with the results of Refs.
13 and 14. For simplicity, we have chosen to fit the Green’s
function to G���=2e−Ep��1−e−�p�� / ��p��, corresponding to a
flat density of states in �Ep ,Ep+�p�. We stress that this is an
arbitrary choice that we made only to fit the long-time be-
havior of G��� and determine Ep. Note that at very small �
�1 /J, hopping is irrelevant and G����Gmf��� at first order
in �. This imposes a relation between �p and Ep, hence there
is a single free parameter in our fitting procedure.

In Fig. 11 we show the behavior of the Green’s function
on approaching the phase transition from the MI phase, close
to the tip of the first lobe by varying J /U at constant � /U
=0.39. We focus on positive � and fix �J=6, which accord-
ing to Fig. 10 is a low enough temperature, such that the
Green’s function is identical to its zero-temperature limit for
��� /2. We use the rescaled time variable �U, in such a way
that the mean-field result Gmf���=2 exp�−�U�1−� /U��
yields the same decay at all values of J /U. On the contrary,
the Bethe lattice Green’s function depends quite strongly on
J /U, and its decay slows down on approaching the transition.
The result of the fitting procedure explained above is shown
in the inset of Fig. 11 and shows that the parameter Ep is
smaller by a factor of 2 on the Bethe lattice compared to the
mean-field results; it decreases on approaching the transition,
but remains finite at the transition. Indeed we have computed
here the on-site Green’s function, which reflects only the
localized single-particle excitations, whereas the transition
toward the superfluid phase is toward a delocalized state
�small momentum in the finite-dimensional case18�. To detect
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FIG. 6. �Color online� �Main panel� �n� and �a� as functions of
� /U for J /U=0.02, at �J=1 and Ncut=6 for Bethe lattices of con-
nectivity c=4. Full lines are obtained by joining points measured
every �� /U�0.05, except close to the critical points where
�� /U�0.001. �Inset� Blow up of the region close to the first
SF-MI transition that happens at �c=0.0648U. Here �a� is plotted
as a function of �= ��c−�� /U �circles�. The full line is a fit to
�a��A�0.5 with A=2.9475.
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� /U for J /U=0.02, at �J=1 and Ncut=6 for Bethe lattices of con-
nectivity c=4. �Inset� Kinetic energy eK as a function of the chemi-
cal potential for the same values of the parameters.
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the signature of the transition in such a way it would be
necessary to compute the spatial and temporal dependence of
the Green’s function, which is in principle possible using the
cavity method �see next subsection�.

We expect �but did not check in detail� that also in the SF
phase the on-site Green’s function will decay exponentially
up to the transition point. This shows also that the BEC state
on the Bethe lattice has a peculiar nature as compared to the
finite-dimensional case: condensation happens in the uniform
state, which is separated from the other eigenvalues of the
connectivity matrix by a gap.50,51 In particular, one can check
explicitly by a Bogoliubov-type computation52 that the
single-particle excitation spectrum is gapped at small U /J.

The difference between the mean-field approach and the
Bethe lattice result is also unveiled by the analysis of the
probability distribution Pn, already studied recently in Ref.
19 using Monte Carlo simulations, defined as the probability
to detect n bosons on a given lattice site

Pn0
= ��n,n0

� =
1

Z
Tr��n,n0

e−�H� . �36�

This is another quantity sensitive to the occupation number
fluctuations. In Table I we report the values of Pn in the MI
and in the SF, for the same values of the parameters as for
Fig. 10.

These data clearly indicate that even in the MI phase the
occupation number of a given lattice site is not strictly fixed
to an integer value, as in the mean-field approach: there is
still a finite probability of finding a number of bosons differ-
ent from one within the lobe at �n�=1. Interestingly enough,
these quantities can be probed in experiments.53

4. One-particle density matrix

We present now our results for the one-particle density
matrix �ij = �ai

†aj�. Because of the invariance structure of the
Bethe lattice this will depend �in the thermodynamic limit�
only on the distance between the sites i and j, that we de-

noted as d�i , j� in the discussion of Sec. III A. In Fig. 12 we
report �d at different points in the �J /U ,� /U� plane, cross-
ing the insulator-superfluid transition around the tip of the
first lobe.

In the MI phase �d decays to zero, while in the SF phase
we checked that it correctly decays to ��a��2. The decay is
always quite fast, and in the SF phase we do not have enough
points to perform a reliable fit to extract a correlation length,
although it is clear that the decay becomes slower and slower
on approaching the transition to the MI. On the contrary, in
the MI phase it is very easy to extract the correlation length
by measuring the slope of log �d versus d for d�3. The
result is plotted in the inset of Fig. 12 and shows that the
correlation length increases also on the MI side.
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It might be surprising at first sight that the correlation
length stays finite at the transition, however, as we discussed
at the end of Sec. III A, this is a general property of Bethe
lattices that is related to the fact that the number of sites Nd
at distance d from a given one scales as �c−1�d for large d.
Despite this difference at criticality, we believe that the pos-
sibility of investigating spatial correlations on the Bethe lat-
tice is very interesting away from critical points, and is an
important improvement of the cavity method with respect to
the mean-field approximation.

V. DETAILED DERIVATION

A. Lattice boson models in the Suzuki-Trotter formalism

This section is devoted to a complete derivation of the
equations used in Sec. IV. We shall consider a slightly more
general Hamiltonian than �1�,

H = − �
�i,j�

J�i,j��ai
†aj + aj

†ai� + �
i=1

N

Vi�ai
†ai� , �37�

where the hopping strength J�i,j� is allowed to vary from edge
to edge and we consider arbitrary local potential energies
Vi�n�. This will be convenient both for notational reasons and
because part of the following discussion will also apply to
the disordered Bose-Hubbard model. The original model
�Eq. �1�� is recovered by taking J�i,j�=J on all links, and
Vi�n�= U

2 n�n−1�−�n. The Hilbert space of the model is
spanned by the occupation number vectors �n1 , . . . ,nN�,
where ni is a positive or null integer counting the number of
particles on site i. We shall use the more compact notation
�n� �= �n1 , . . . ,nN� to denote one of these basis vectors. For
completeness we recall the action of the annihilation ai and
creation ai

† operators in this basis,

ai�n� � = �ni�n1, . . . ,ni−1,ni − 1,ni+1, . . . ,nN� ,

ai
†�n� � = �ni + 1�n1, . . . ,ni−1,ni + 1,ni+1, . . . ,nN� . �38�

The number operators ai
†ai are diagonal on this basis, with

ai
†ai�n� �=ni�n� �. The partition function of Hamiltonian �37�

will be computed using the Suzuki-Trotter Formula �18�, cut-
ting the imaginary-time axis of length � in a number Ns
�ultimately sent to infinity� of slices. At each of these slices a
representation of the identity in the occupation number basis
is inserted. This yields
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FIG. 10. �Color online� Green’s function G��� as a function of the imaginary time at c=4. �Left panel� Results in the MI phase, at
J /U=0.0523, � /U=0.39, Ncut=4, and �J=2 �black dashed-dotted curve�, 4 �red dashed curve�, and 6 �blue continuous curve�. Also reported
is the mean-field result for the same parameters �black dotted curve�. �Right panel� Results in the SF phase, at J /U=0.0555, � /U=0.39,
Ncut=6, and �J=2 �black dashed curve� and 4 �blue curve�. Also reported is the long-time limit of G���, which corresponds to the value of
�a�2 for these values of the parameters.

0 10 20 30 40 50τ U
10

-7

10
-5

10
-3

10
-1

G
(τ

)

J/U=0.0540
J/U=0.0526
J/U=0.0500
J/U=0.0417
J/U=0.0333

0.04 0.05J/U
0

0.2

0.4

0.6

E
p/U
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Z = Tr�e−�H�

= lim
Ns→�

�
n�1,. . .,n�Ns

exp�−
�

Ns
�
�=1

Ns

�
i=1

N

Vi�ni
��	

��
�=1

Ns

�n���e�/Ns��i,j�J�i,j��ai
†aj+aj

†ai��n��+1� . �39�

The index � is the discrete coordinate between 1 and Ns
along the imaginary-time axis, and we use periodic boundary
conditions n�Ns+1=n�1. The quantum problem has thus been
transformed in a classical one, in terms of the imaginary-
time dependent classical variables n��. The expression above
of the hopping interaction is, however, unpractical for our
future needs, we shall thus transform it by introducing a set
of auxiliary variables y�

�= �yi→j
� �, which can take values 0 or

1, depend on the discrete time �, and are defined on the
directed edges of the graph �an edge �i , j� thus bears, for each
time �, two variables yi→j

� and yj→i
� �. It is simple to show that

�n���e�/Ns �
�i,j�

J�i,j��ai
†aj+aj

†ai��n��+1�

= �
y�

�
�
�i,j�


�J�i,j��nj
�+1ni

�

Ns
�yi→j

� 
�J�i,j��ni
�+1nj

�

Ns
�yj→i

�

��
i=1

N

1
ni
�+1 = ni

� + �
j��i

�yj→i
� − yi→j

� �� + O
 1

Ns
2� ,

�40�

where here, and in the following, 1�A�=1 if the condition A
is fulfilled and is otherwise 0. We take by convention xy=0

=1 for any value of x �including zero�. The justification of
Eq. �40� can be done by inspecting the behaviour of its left-
hand-side and right-hand-side order by order in 1 /Ns. The
leading term corresponds to n��=n��+1, and indeed all y’s must
vanish at this order. At order 1 /Ns a single y, say, yi→j

� , is
equal to 1, meaning that a boson has hopped from site i to
site j between the discrete times � and �+1. The term
�nj

�+1ni
� follows from the action of creation/annihilation op-

erators recalled in Eq. �38�. The kinetic energy part of the
partition function �Eq. �39�� can be transformed by using the
representation Eq. �40� for each time �; reordering the vari-
ous terms leads to a compact expression,

Z = lim
Ns→�

�
n� ,y�

�
�i,j�

w�i,j��y�i,j���
i=1

N

wi�ni,�y�i,j�� j��i� . �41�

Following the convention we already used in Sec. III bold
symbols stand for time-dependent quantities, with a discrete
time coordinate �� �1,Ns� as long as Ns is finite, or a con-
tinuous time �� �0,�� in the limit Ns→�. The correspon-
dence between the two notations is �=�� /Ns. We also use
the shorthand y�i,j�

� = �yi→j
� ,yj→i

� � for the pair of hopping vari-
ables on both directions of an edge �i , j�. The weight of a
configuration �n� ,y�� factorizes into a product over all edges
of

w�i,j��y�i,j�� = �
�=1

Ns 
�J�i,j�

Ns
�yi→j

� +yj→i
�

, �42�

the hopping strength J�i,j� is thus conjugated to the number of
hopping events between sites i and j. The second part of the
weight in Eq. �41� is a product over the sites of

wi�ni,�y�i,j�� j��i� = exp�−
�

Ns
�
�=1

Ns

Vi�ni
��	

��
�=1

Ns 
1
ni
�+1 = ni

� + �
j��i

�yj→i
� − yi→j

� ��
���ni

�+1��j��iyj→i
�

��ni
���j��iyi→j

� � . �43�

The first line arises directly from the local potential-energy
term of the Hamiltonian. The second line enforces the con-
sistency of the occupation-number trajectory ni

� with the
hopping events that occur on the adjacent edges, and incor-
porates the �n terms arising from the action of the creation/
annihilation operators.

The expression of the partition function in terms of a clas-
sical model with imaginary-time-dependent variables we just
obtained is valid for any underlying graph. We want to em-

TABLE I. Values of Pn in the MI and in the SF, for the same
values of the parameters as in Fig. 10, namely, J /U=0.0523,
� /U=0.39, Ncut=4 and �J=4 �in the MI phase� and J /U=0.0555,
� /U=0.39, Ncut=6, and �J=4 �in the SF phase�.

n 0 1 2 3 4 5

Pn �SF� 0.034 0.93 0.034 0.00027 5.7e-07 2.2e-11

Pn �MI� 0.023 0.95 0.023 0.00013

��
��

�
�� �� � �� �

0 1 2 3 4 5 6d

10
-4

10
-2

10
0

ρ(
d)

J/U=0.0333
J/U=0.0417
J/U=0.0500
J/U=0.0523
J/U=0.0549
J/U=0.0555
J/U=0.0588
J/U=0.0625�

0.04 0.05J/U

0.6

0.8

FIG. 12. �Color online� �Main Panel� One-particle density ma-
trix �d= �a0

†ad� at c=4, fixed � /U=0.39, �J=2, Ncut=4, and differ-
ent values of J /U crossing the tip of the first MI lobe in Fig. 8. In
the MI phase �d decays to zero, while in the SF phase it decays to
��a��2. �Inset� Correlation length as a function of J /U in the MI
phase. The vertical line marks the MI-SF transition.
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phasize that the spatial structure of the classical model is the
same as the original one: the variables ni are located on the
vertices of the graph, the y�i,j� on the edges, and in the
weights wi the interactions only occur between edges and site
variables which were adjacent in the original model. In par-
ticular, if the latter was locally treelike, this remains true for
the representation Eq. �41� on which the Bethe approxima-
tion can be performed, as we shall do in the next subsection.

B. The Bethe free energy

One can follow two roads to obtain the self-consistent Eq.
�27�. The first one corresponds to the reasoning presented in
the simpler case of the Ising model in Sec. III A. Assuming
the graph to be a tree, one can easily compute recursively
Zi→j�y�i,j��, the partial partition function for the subtree
rooted at i excluding j, for a given value of the hopping
trajectory y�i,j�. Introducing its normalized counterpart
�i→j�y�i,j��=Zi→j�y�i,j�� /zi→j, one obtains

�i→j�y�i,j�� =
1

zi→j
w�i,j��y�i,j��

� �
ni,�y�i,k��k��i\j

wi�ni,y�i,j�,�y�i,k��k��i\j�

� �
k��i\j

�k→i�y�i,k�� . �44�

The probability distribution of the occupation number trajec-
tory on site i is then expressed as

�i�ni� =
1

zi
�

�y�i,j��j��i

wi�ni,�y�i,j�� j��i� �
j��i

� j→i�y�i,j�� . �45�

These last two equations are the analogs of Eq. �13� of the
Ising model. If one considers now the homogeneous case of
a Bethe lattice of connectivity c, with the same hopping
strength J�i,j�=J on all edges and Vi�n�=V�n� for all sites, the
probability laws �i→j take a common value �cav on all di-
rected edges, which is the solution of Eq. �27�. In that equa-
tion y is an hopping trajectory on an edge, characterized
more explicitly as y= �y+

1 ,y−
1 , . . . ,y+

Ns ,y−
Ns�, where y+

�=1 �resp.
y−

�=1� means a particle has arrived �resp. leaved� the consid-
ered site at discrete time �. The expression of the weights
wlink and witer of Eq. �27� is found by specializing Eqs. �42�
and �43� to the homogeneous situation,

wlink�y� = 
�J

Ns
���=1

Ns �y+
�+y−

��

, �46�

and

witer�y,y1 . . . ,yc−1�

= �
n

exp�−
�

Ns
�
�=1

Ns

V�n��	�
�=1

Ns 
1
n�+1 = n� + y−
� − y+

�

+ �
i=1

c−1

�y+,i
� − y−,i

� ����n�+1�y−
�+�i=1

c−1y+,i
�

��n��y+
�+�i=1

c−1y−,i
� � .

�47�

Note that the direction of yi, for i� �1,c−1�, is reversed with
respect to y, hence the inversion of the signs on the variation
of n� from one discrete time to the next. Finally the weight
wsite used in Eq. �32� to obtain the probability distribution of
an occupation-number trajectory reads

wsite�n,y1 . . . ,yc�

= exp�−
�

Ns
�
�=1

Ns

V�n��	�
�=1

Ns 
1
n�+1 = n�

+ �
i=1

c

�y+,i
� − y−,i

� ����n�+1��i=1
c y+,i

�
��n���i=1

c y−,i
� � .

�48�

The second strategy to reach the Eq. �27� on �cav consists
in first writing the Bethe approximation39 for the free energy
of the model defined in Eq. �41� for an arbitrary graph. This
yields

F = −
1

�
ln Z

= −
1

�
�
i=1

N

ln
 �
ni,�y�i,j��j��i

wi�ni,�y�i,j�� j��i� �
j��i

� j→i�y�i,j���
+

1

�
�
�i,j�

ln��
y�i,j�

1

w�i,j��y�i,j��
�i→j�y�i,j��� j→i�y�i,j��	 . �49�

One can check that this relation is exact whenever the graph
is a tree, otherwise it corresponds to the Bethe approxima-
tion. An important property of this expression of the free
energy is its variational character: the stationarity conditions
with respect to the parameters �i→j are nothing but the local
recurrence Eq. �44�. This means that the computation of the
derivatives of the free energy with respect to its parameters
� ,� ,J�i,j� , . . . can be performed by considering only the ex-
plicit dependence on these parameters, discarding the im-
plicit dependence through the �i→j. We shall also show in
Appendix how to devise a further �static� approximation
based on this variational expression of the free energy. Con-
sidering the particular case of an homogeneous Bethe lattice
leads to the following free energy per site:

f = lim
N→�

− 1

�N
ln Z

= −
1

�
ln� �

n,y1,. . .,yc

wsite�n,y1, . . . ,yc��cav�y1� . . . �cav�yc�	
+

c

2�
ln��

y

1

wlink�y�
�cav

2 �y�	 , �50�

where we have used the fact that a regular graph of N verti-
ces and connectivity c has cN /2 edges. One can see that Eq.
�27� is the stationarity condition of Eq. �50� with respect to
�cav.

By using the recurrence Eq. �44� it is possible to rewrite
the Bethe approximation of the free energy, for an arbitrary
graph, as
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F = −
1

�
ln Z = −

1

�
�
�i,j�

ln��zi→jzj→i� +
1

�
�
i=1

N
ci − 2

2
ln zi,

�51�

where ci is the degree of vertex i, and the various z’s corre-
spond to the normalizations in Eqs. �44� and �45�. This form
does not have the variational property explained above; it
has, however, the advantage of being easier to compute nu-
merically. In particular for the homogeneous case it yields

f = lim
N→�

− 1

�N
ln Z = −

c

2�
ln zcav +

c − 2

2�
ln zsite, �52�

where zcav and zsite are the normalizations in, respectively,
Eqs. �27� and �32�.

C. The resolution of the cavity equation

As we have explained in Sec. IV A we use a weighted
sample representation of �cav to solve Eq. �27�. The point we
want to specify more precisely here is the method used to
sample hopping trajectories from the conditional law
P�y �y1 , . . . ,yc−1� and to compute the associated normaliza-
tion Z�y1 , . . . ,yc−1� �both defined in Eq. �31��. A similar con-
struction can be found for the slightly simpler case of quan-
tum spin 1/2 models in Ref. 34.

Let us begin with the computation of Z. A first important
remark, already mentioned above, is that in the continuous-
time limit �Ns→�� the hopping trajectories y typically con-
tain only a finite number �with respect to Ns� of hopping
events, i.e., of discrete times � where y


� �0. We can thus
assume without loss of generality that the hopping events for
the different trajectories occur at different values of the dis-
crete time. Let us call p the total number of hopping events
occurring in �y1 , . . . ,yc−1� and denote �1� ¯ ��p their dis-
crete time of occurrence. We consider the Hilbert space of a
single site, with a and a† the annihilation/creation operators,
and call bj =a �resp. bj =a†� if the hopping of time � j is
towards �resp. outside� the vertex under consideration. Fi-
nally we define c�=bj when �=� j, c�=1 �the identity opera-
tor� otherwise. A moment of thought reveals that

Z�y1, . . . ,yc−1� = �
y

wlink�y�witer�y,y1, . . . ,yc−1�

= �
n

�
�=1

Ns

�n��e�/Ns�−V�a†a�+J�a+a†��c��n�+1� ,

�53�

up to corrections of order Ns
−2. The sum over n can thus be

written as a trace of this product of operators. To perform the
continuous-time limit it is convenient to define � j =

�
Ns

� j,
which are the continuous times of the hopping events in

�y1 , . . . ,yc−1�. We also introduce Ŵ���=e��−V�a†a�+J�a+a†��, the
propagator of an imaginary-time evolution on an interval of
length � for a single-site Hamiltonian V�a†a�−J�a+a†�. We
thus obtain finally

Z�y1, . . . ,yc−1� = Tr�Ŵ��1�b1Ŵ��2 − �1�b2 . . .

Ŵ��p − �p−1�bpŴ�� − �p�� . �54�

The single-site Hilbert space is a priori infinite dimensional
because the number of particles is not bounded. Very high
occupation numbers are, however, unlikely because of their
prohibitive potential energy. We can thus safely put a cutoff
Ncut on the possible values of n, which will not change the
properties of the model if Ncut is sufficiently large with re-
spect to the average density of particles. This would amount
formally to take V�n�=+� for n�Ncut. In this case the di-
mension of the Hilbert space is reduced to Ncut, and Eq. �54�
is nothing but the trace of the product of a finite number of
finite-size matrices, whose numerical evaluation does not
present any particular difficulty.

We turn now to the problem of the generation of an hop-
ping trajectory y given the ones of the c−1 other neighbors,
according to the law P�y �y1 , . . . ,yc−1� stated in Eq. �31�. As
explained in Sec. IV A �see in particular Fig. 5�, we can
determine y by first drawing the occupation-number trajec-
tory n and then deduce y from its discontinuities not associ-
ated to hopping events in �y1 , . . . ,yc−1�. We stick to the no-
tation �1� ¯ ��p and b1 , . . . ,bp for the parametrization of
the hopping events in �y1 , . . . ,yc−1�. Let us call n0=n��=0�,
ni �resp. ni�� the value of n��� at a time just after �i �resp. just
before �i+1�, with the conventions np�=n0. The joint probabil-
ity law of these occupation numbers which arise from the
expressions of wlink and witer given in Eqs. �46� and �47�
reads in the continuous-time limit

P�n0,n0�,n1,n1�, . . . ,np�y1, . . . ,yc−1�

=
1

Z�y1, . . . ,yc−1�
�n0�Ŵ��1��n0��

��
i=1

p

��ni−1� �bi�ni��ni�Ŵ��i+1 − �i��ni��� , �55�

with �p+1=�. This probability law is well normalized accord-
ing to the above expression of Z�y1 , . . . ,yc−1�. Moreover be-
cause of the “unidimensional” structure of the imaginary-
time axis it is rather simple to generate a set of integer
numbers �n0 ,n0� ,n1 ,n1� , . . . ,np� according to this law. Once
these intermediate occupation numbers are known, the gen-
eration of the occupation trajectory n��� can be done inde-
pendently on each of the p+1 time intervals between the
imposed hopping events. On the i+1’th interval between �i
and �i+1 one has to generate the trajectory corresponding to a
path-integral representation of the effective Hamiltonian
V�a†a�−J�a+a†�, conditioned to begin in ni at time �i and to
end in ni� at �i+1.

To simplify the notation let us consider this problem for
an interval of imaginary time �0,��, with boundary condi-
tions n�0�=n, n���=n�. One way to justify the sampling pro-
cedure is to start with the identity

e��X+Y� = e�X + �
0

�

d�e�XYe��−���X+Y�, �56�

valid for any noncommutative operators X and Y. We apply it
with X=−V�a†a� and Y =J�a+a†�, which yields
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�n�Ŵ����n�� = �n�e−�V�a†a�

+ �
0

�

d�e−�V�a†a�J�a + a†�Ŵ�� − ���n��

�57�

=�n,n�e
−�V�n�

+ J�
0

�

d�e−�V�n��n��a + a†�Ŵ�� − ���n�� .

�58�

The interpretation of this formula is as follows: a path rep-

resentative of the matrix element �n�Ŵ����n�� is either a con-
stant trajectory �possible only if n=n��, or it is constant up to
a time �, where it jumps to n
1, and is followed by a path
of length �−� with boundary conditions n
1 and n�. We
can thus sample the path n��� according to the following
recursive procedure: if n=n� and with probability

e−�V�n� / �n�Ŵ����n�, set n���=n for �� �0,�� and exit the pro-
cedure, otherwise draw a time �� �0,�� with the probability
law written below in Eq. �59�. Draw �=1 with probability

�n�aŴ��−���n��
�n��a+a†�Ŵ��−���n��

, �=−1 otherwise set n����=n for

��� �0,��. Call the same procedure with initial condition n
+�, final condition n�, for the imaginary-time interval �� ,��.
The probability law for the time � of the first discontinuity in
the number occupation trajectory follows from
Eq. �58�; it is more convenient to express it as the probability
G�u� that �	u,

G�u� =

�
0

u

d�e−�V�n��n��a + a†�Ŵ�� − ���n��

�
0

�

d�e−�V�n��n��a + a†�Ŵ�� − ���n��
. �59�

Because of the cutoff on the possible number occupation one
can numerically compute this function by diagonalizing the
effective Hamiltonian �only once for each choice of the pa-
rameters U ,� ,J�. Drawing � then amounts to use a random
number G uniformly in �0,1� and set �=u−1�G� �the func-
tional inverse of G�u��.

D. The computation of the observables

We will show now that, as announced in Sec. IV A, all the
physical observables can be obtained as averages over �cav
of some functions of the hopping trajectories. The computa-
tion of such an average can then be done as a simple sam-
pling of the population representing �cav, as explained in Eq.
�34�.

Let us begin with the free energy. Using the Formula �52�
its computation amounts to the determination of the normal-
ization constants zcav and zsite. The former reads

zcav = �
y1,. . .,yc−1

�cav�y1� . . . �cav�yc−1�Z�y1, . . . ,yc−1� ,

�60�

which is readily evaluated since we obtained an explicit form
of Z�y1 , . . . ,yc−1� in Eq. �54�. The latter is seen from Eq. �32�
to be

zsite = �
y1,. . .,yc

�cav�y1� . . . �cav�yc��
n

wsite�n,y1, . . . ,yc� .

�61�

Using again the notation �1� ¯ ��p and b1 , . . . ,bp for the
parametrization of the hopping events in �y1 , . . . ,yc� and ex-
ploiting the expression �48� for wsite, we obtain in the
continuous-time limit

zsite = �
y1,. . .,yc

�cav�y1� . . . �cav�yc�

�Tr�Ŵ0��1�b1Ŵ0��2 − �1�b2 . . . bpŴ0�� − �p�� ,

�62�

where we defined Ŵ0���=e−�V�a†a�, the single-site propagator
without its hopping term. Indeed all the possible hopping
events to and from the considered site are fixed by the c
trajectories y1 , . . . ,yc. This trace is over a product of finite-
size matrices �thanks to the bound Ncut on the occupation
numbers� and hence computationally harmless. Note that
only configurations of y1 , . . . ,yc which encode the same
number of jumps toward/outside the central site do contrib-

ute, because Ŵ0 is diagonal in the number basis.
We consider now the thermal average �q�ai

†ai�� of an ar-
bitrary function q�n� of the number operator on one site.
From the expression �32� of the probability distribution ��n�
we obtain

�q�ai
†ai�� =

1

zsite
�

y1,. . .,yc

�cav�y1� . . . �cav�yc�

�Tr�q�a†a�Ŵ0��1�b1Ŵ0��2 − �1�b2 . . . bp

�Ŵ0�� − �p�� . �63�

This formula allows to compute the density of particles, the
average local energy eL, and the occupation probability Pn0
by taking q�n�=n, q�n�=V�n�, and q�n�=�n,n0

, respectively.
The order parameter �ai� is obtained by the insertion of an

annihilation operator in the effective single-site problem,

�ai� =
1

zsite
�

y1,. . .,yc

�cav�y1� . . . �cav�yc�

�Tr�aŴ0��1�b1Ŵ0��2 − �1�b2 . . . bpŴ0�� − �p�� .

�64�

One has indeed by definition �ai�=Tr�aie
−�H� /Z, where the

trace is here over the Hilbert space of the N-sites Hamil-
tonian. One can reproduce all the steps leading to the repre-
sentation �Eq. �41�� of the partition function, with the addi-
tional operator ai modifying the expression of the weight wi
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on the considered site. The other sites are, however, left un-
modified, and hence integrating over them leads to the same
equation on �cav. The presence of ai only shows up when the
sum over the degrees of freedom of site i is performed, and
leads to this insertion of the annihilation operator in the
single-site computation, Eq. �64�. We now come back on the
problem of the initial condition in the population dynamics
mentioned in Sec. IV A. One can indeed see that Eq. �64�
strictly vanishes whenever all hopping trajectories in the sup-
port of �cav have the same number of jumps in the two di-
rections of their edge. Moreover this symmetry is conserved
by the iterative Eq. �27�; we thus had to initialize the popu-
lation dynamics algorithm including asymmetric hopping
trajectories. In the “insulating” phase these trajectories dis-
appear during the iterations, while in the “superfluid” a finite
fraction of them keeps the asymmetry, thus allowing for a
nonzero value of �ai�.

The computation of the Green’s function G�
i ���

=Tr�e−��−��Haie
−�Hai

†� /Z can be done similarly, with now the
insertion of two creation/annihilation operators in the single-
site problem. Similar to Eq. �63�, and using the same nota-
tions, one obtains

G���� =
1

zsite
�

y1,. . .,yc

�cav�y1� . . . �cav�yc�

�Tr�aŴ0��1�b1Ŵ0��2 − �1�b2 . . . biŴ0�� − �i�a†

�Ŵ0��i+1 − ��bi+1 ¯ bpŴ0�� − �p�� , �65�

where the index i is such that �i����i+1.
We turn now to the computation of the average kinetic

energy eK= �HK� /N. By definition it is equal to the derivative
of the free energy per site with respect to J. Using the varia-
tional property of the expression �50�, we can thus write

eK = −
c

2�J

�
y

1

wlink�y�
�cav

2 �y��y�

�
y

1

wlink�y�
�cav

2 �y�
, �66�

where we have defined �y� as the total number of hopping
events in y. Indeed the only explicit dependence on J in Eq.
�50� is in the weight wlink given in Eq. �46�. Replacing one of
the �cav by its expression �27� both in the numerator and the
denominator, and reordering terms leads to

eK = −
c

2�J

1

zsite
�

y1,. . .,yc

�cav�y1� . . . �cav�yc�

��y1�Tr�Ŵ0��1�b1Ŵ0��2 − �1�b2 . . . bpŴ0�� − �p�� .

�67�

Finally we consider the computation of the one-particle
density matrix �d for two sites at distance d. For notational
simplicity we shall call them 0 and d, �d= �a0

†ad�. The unique
path linking these two sites is schematized in Fig. 13; we
have distinguished the hopping trajectories yi along the chain
for i� �0,d−1�, from the contribution of the edges outside
the chain, yi,j� . The index j runs from 1 to ci, with c0=cd=c
−1 and c1= ¯ =cd−1=c−2, as the extremities 0 and d have
one less neighbor in the chain. The computation of �a0

†ad� is
a generalization of the determination of �ai� explained above:
one writes �a0

†ad�=Tr�a0
†ade−�H� /Z and expresses the nu-

merator with the Suzuki-Trotter formula where the local
weights w0 �resp. wd� are modified with the insertion of a
creation �resp. annihilation� operator. Summing over all de-
grees of freedom outside the chain of sites between 0 and d
leads to

�a0
†ad� =

�
�yi,j� �

�
i,j

�cav�yi,j� ��
�yi�

�
i

wlink�yi��
�ni�

wsite
+ �n0,y0,�y0,j� ���

i

wsite�ni,yi−1,yi,�yi,j� ��wsite
− �nd,yd−1,�yd,j� ��

�
�yi,j� �

�
i,j

�cav�yi,j� ��
�yi�

�
i

wlink�yi��
�ni�

wsite�n0,y0,�y0,j� ���
i

wsite�ni,yi−1,yi,�yi,j� ��wsite�nd,yd−1,�yd,j� ��
, �68�

where in the numerator w
 are modifications of the vertex
weight Eq. �48� due to the insertion of the creation/
annihilation operators on sites 0 and d. Integrating progres-
sively the degrees of freedom along the chain one can easily
shows that the denominator of Eq. �68� equals zcav

d zsite.
To compute the numerator we shall define a sequence of
probability distributions �cav

�i� , as the law of the hopping tra-
jectories yi along a chain where the part between i+1 and d
is removed. This can be computed by recurrence on i, with

�cav
�0� �y� =

1

zcav
�0� wlink�y� �

y1,. . .,yc−1

�cav�y1� . . . �cav�yc−1�

��
n

wsite
+ �n,y,y1, . . . ,yc−1� , �69�

and
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�cav
�i+1��y� =

1

zcav
�i+1�wlink�y� �

y1,. . .,yc−1

�cav
�i� �y1��cav�y2� . . . �cav�yc−1�

��
n

wsite�n,y,y1, . . . ,yc−1� . �70�

These probability distributions can be encoded numerically
as weighted samples, in the same way as we did for �cav.
Once they have been determined up to distance d−1 we can
compute

zsite
�d� = �

y1,. . .,yc

�cav
�d−1��y1��cav�y2� . . . �cav�yc�

��
n

wsite
− �n,y1, . . . ,yc� . �71�

One then finds

�a0
†ad� =

zsite
�d�

zsite
�
i=0

d−1
zcav

�i�

zcav
. �72�

VI. CONCLUSIONS

In this paper we have extended the analytical tools of the
quantum cavity method to Bethe lattice bosonic models. The
cavity approach yields a self-consistent equation for the
probability of hopping trajectories in continuous imaginary
time, which can be efficiently solved numerically using the
population dynamics algorithm. Though this numerical step
is unavoidable to obtain quantitative predictions it is distinct
from a Quantum Monte Carlo algorithm, in particular, the
thermodynamic limit is taken analytically.

We have shown how this method allows to compute easily
several physical observables such as thermodynamic quanti-
ties �average occupation number, energy, free energy, con-
densate fraction,…� as well as imaginary-time Green’s func-
tions. Let us emphasize, in particular, that computing the free
energy �which is often difficult with other methods, requiring
for instance thermodynamic integration in Monte Carlo
simulations� is crucial to determine the location of first-order
phase transitions which can occur in generalized versions of
the model.

The finite connectivity of the Bethe lattice leads to two
kinds of improvements with respect to the mean-field de-
scription: a distance between two sites can be defined, which
allows the computation of spatial correlation functions.
Moreover the description of the Mott Insulator phase is
richer, with a nontrivial effect of the hopping of the particles.
The prediction for the zero-temperature phase diagram of
Bethe lattices with connectivities 4 and 6 is in reasonable
agreement with the Quantum Monte Carlo simulations in
two and three dimensions.17,18

Let us sketch some possible directions for future work. A
first possibility would be to explore the next levels of the
cluster variation method26 hierarchy of approximations,
which contains the mean field and the Bethe approximations
as its first two steps. This approach, similar in spirit to the
cluster DMFT,54 should improve the accuracy of the predic-
tions for small dimensions. It should also be interesting to

investigate the effect of disorder in the Bethe lattice model; if
the Bose glass phase1,27 is destroyed at the mean-field level,
it could be possible to describe it on the Bethe lattice, which
can indeed display localization properties.28 Another open
direction is the study of several generalizations of the Bose-
Hubbard model, including bosons with spin, multiple inter-
acting species of particles,23,24,55,56 and interactions between
nearest-neighbor sites.57 In particular in the latter case, we
expect that the presence of interactions inducing geometrical
frustration will give rise to glass phases, since the same hap-
pens in the classical limit of zero hopping.58 It would be very
interesting to check whether these glass phases could exhibit
Bose-Einstein condensation as it happens for their crystalline
counterparts.59 This would add some new elements to the
ongoing discussion on the relevance of disorder to induce
superfluidity,60 and might be important to interpret and un-
derstand recent experiments on supersolidity.61

We finally point out that, although in this paper we have
only focused on the very low-temperature regime �except for
the transition temperature at unit filling displayed in Fig. 9�,
the method presented here can be applied at higher tempera-
ture �and is even numerically easier in that case�, which can
be useful for the interpretation of cold atoms experiments.62

From this perspective the case of unidimensional systems
should deserve a special attention, as they fall in the category
of tree structure and could thus be solved with the cavity
method, even in the presence of a site-dependent chemical
potential modelizing the trapping field.
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APPENDIX: STATIC APPROXIMATION

We have obtained in Eq. �49� a variational expression of
the Bethe free energy, in terms of the parameters �i→j�y�i,j��.
A further approximation consists in restricting the �i→j to a
simply parametrized subspace, and finding the extremum of
Eq. �49� within this simpler ansatz. A possible choice for this
parametrization, inspired by the so-called static approxima-
tion developed for quantum spin models,34,63 consists in re-
taining in y�i,j� only the information on the number and di-
rection of the jumps, but assuming their times of occurrence
to be uniformly distributed. This corresponds in formula to
the ansatz

�i→j�y�i,j�� = �
ni→j,nj→i=0

�

�i→j�ni→j,nj→i�
1


 Ns

ni→j
�
 Ns

nj→i
�

�1
�
�

yi→j
� = ni→j�1
�

�

yj→i
� = nj→i� ,

�A1�
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where �i→j is the distribution probability for the number of
jumps from i to j and vice versa. The two terms of the
variational free energy �Eq. �49�� can be computed within
this ansatz. One obtains indeed in the limit Ns→�

�
y�i,j�

1

w�i,j��y�i,j��
�i→j�y�i,j��� j→i�y�i,j��

= �
ni→j,nj→i=0

�

�i→j�ni→j,nj→i�� j→i�nj→i,ni→j�
ni→j ! nj→i!

��J�i,j��ni→j+nj→i

�A2�

and

�
ni,�y�i,j��j��i

wi�ni,�y�i,j�� j��i� �
j��i

� j→i�y�i,j��

= �
�ni→j,nj→i�j��i

�
j��i

� j→i�nj→i,ni→j�Ai
�
j��i

nj→i, �
j��i

ni→j� ,

�A3�

where

Ai�N+,N−� =
1

�N++N−

dN+

dz+
N+

dN−

dz−
N−

Tr�e−��Vi�a
†a�−z+a†−z−a���z+=z−=0.

�A4�

As a simple illustration of this static approximation one can
recover the mean-field free energy �Eq. �9�� for the case of a
Bethe lattice of connectivity c with uniform hopping strength
J and the same potential energy V�n� on all sites. This is
indeed obtained after a short computation by taking a Pois-
son distribution of average �J� for the number of jumps in
each direction,

��n+,n−� = e−2�J� ��J��n++n−

n+ ! n−!
, �A5�

where � is proportional to the parameter � in Eq. �9�.
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