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We predict the appearance of a persistent spin current in a two-dimensional electron gas formed at the
interface of multiferroic oxides with a transverse helical magnetic order. No charge current is generated. This
is the result of an effective spin-orbit coupling generated by the topology of the oxide local magnetic moments.
The effective coupling and the generated spin current depend linearly on the magnetic spiral helicity which,
due to the magnetoelectric coupling, is tunable by a transverse electric-field offering thus a new mean for the
generation of electrically controlled persistent spin currents.
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I. INTRODUCTION

Nanoscience research is fueled by the spectacular func-
tionalities that emerge from the controlled composition
of different materials down to the atomic level. A recent
example is the appearance of a metallic phase with a high
carrier mobility confined to the interface between insulating
oxides1 such as LaTiO3 /SrTiO3 or LaAlO3 /SrTiO3.2

This sheet of two-dimensional electron gas �2DEG� has been
laterally confined and patterned3 to achieve nanometer-sized
tunnel junctions and field-effect transistors,4 thus paving the
way for oxide-based nanoelectronics3 with a multitude of
technological applications.5 Further functionalities are ex-
pected when utilizing the residual properties of the oxides.
For example, an important group of Mott insulating oxides
such as RMnO3 �R=Tb, Dy, Gd, and Eu1−xYx�6 and LiCu2O2
�Ref. 7� are multiferroics with a noncollinear magnetic
phase. The origin of the spontaneous electric polarization
is argued8 to be the spin current associated with the spiral
magnetic order. As shown experimentally, due to the magne-
toelectric coupling, the helicity associated with the spin
spiral structure of the multiferroics is tunable from clock-
wise to counterclockwise type by a small electric field
��1 kV /cm�.9

In this paper we show theoretically, that a 2DEG formed
at the surface of a multiferroic oxide �Fig. 1� such as the ab
plane of TbMnO3 �Ref. 6� experiences an effective spin-orbit
interaction �SOI� that linearly depends on the carriers wave
vector and on the helicity of the oxide’s magnetic order and
hence is controllable by a lateral electric field. As a result an
electrically tunable persistent spin current is shown to
buildup in the 2DEG. No charge current is generated. The
origin of this effect lies in the topological structure of the
local magnetic moment at the oxides interface. Spin currents
are actively discussed in the field of semiconductor-based
spintronics.10–14 There, SOI plays also a vital role. In semi-
conductors, however, a finite dissipative charge current is
also generated by the applied in-plane electric field. Hence,
the persistent spin current in insulator,15 as uncovered here,
has a decisive advantage, as compared with metals16 and
semiconductors12 and adds a new twist to oxide electronics.

II. THEORETICAL FORMULATION

As sketched in Fig. 1, we consider a 2DEG, as realized in
Refs. 1–4 at the interfaces of oxides layers, however, one of

the layers should be a spiral multiferroic oxide such as
TbMnO3 �Ref. 6� or LiCu2O2.7 The spiral structure defines
the x-z plane, whereas the 2DEG is confined to the x-y plane
�cf. Fig. 1�. At low temperature, the oxide local spin dynam-
ics is much slower than the 2DEG carrier dynamics and
hence we can treat the oxide local moments as classical and
static. A carrier in the 2DEG with a charge e experiences an
effective �real� internal magnetic field due to the magnetic
spiral and the embedding medium17–19 which results in a
nonlocal vector potential Ain. The effect of Ain on the charge
carriers dynamics is subsidiary compared to that of the ex-
change field Jnr, where nr is a local unit-vector field describ-
ing the geometry of the localized magnetic moments at the
oxides interface and J is the coupling strength. The exchange
interaction originates from the Coulomb repulsion at the sites
of the localized moments and from the Hund’s rule coupling
in the magnetically ordered phase.8,20,21 Thus, the single-
particle dynamics in the 2DEG is governed by the
Hamiltonian5

H = hk + hJ =
1

2m
P2 + Jnr · � , �1�

where m is the effective electron mass, � is the vector of the
Pauli matrices, and P is the momentum operator. nr is given
by the local magnetization at the multiferroic surface, i.e.,
nr= �sin �r ,0 ,cos �r�, where �r=qm ·r with qm= �q ,0 ,0� be-
ing the spin wave vector of the spiral. Ain is not included in
Eq. �1�.22

FIG. 1. �Color online� Schematics of the proposed system. The x
axis is defined along the direction of the spiral ordering, for ex-
ample, the �110� direction in TbMnO3. The spiral plane of multifer-
roic �below� is perpendicular to the 2DEG �above�. Due to magne-
toelectric coupling the spin helicity is controlled by the transverse
electric field Ez.
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Applying the unitary local gauge transformation in the
spin space Ug=exp�−i�r�y /2�, the spatially nonhomoge-

neous term hJ is transformed into the diagonal term24 h̃J
=Ug

†hJUg=J�̃z �Hereafter, transformed quantities are marked
by a tilde�. Physically, this amounts to a rotation of the local
quantization axis to align with nr at each site. �y = �̃y because
�Ug ,�y�=0. We find further �̃x= ��x cos �r−�z sin �r� and

�̃z= ��x sin �r+�z cos �r�. The simplicity of h̃J comes at the
price of introducing an additional gauge field Ag

=−i�Ug
†�rUg in the transformed kinetic energy h̃k.

25 The
gauge field Ag depends only on the geometry of the local
magnetization at the oxide interface. As shown below, Ag
acts as a q and momentum-dependent effective SOI that can
be changed electrically because q is tunable by a transverse
electric field, as shown in Fig. 1.

For clarity, we introduce the scaled variables �denoted by
a bar� r=r /a, q̄=aq, and k=ak, where a is the lattice con-

stant and k is the crystal momentum. The scaled energy Ē,
and the scaled exchange energy �m read

Ē = E/�0, �m = J/�0 with �0 =
�2

2ma2 . �2�

Then for the scaled Hamiltonian we find the expression

H̄ = ��i�x̄ +
q̄

2
�̃y�2

+ �i�ȳ�2	 + �m�̃z. �3�

For a realistic estimate of the parameters of the 2DEG at
oxides interfaces we choose the lattice constant a=5 Å. To
our knowledge, the effective mass m of 2DEG at oxide in-
terface is not yet determined. For insulators, however, m is
usually quite large, e.g., for SrTiO3 m is �100 times larger
than for GaAs.2 Here we choose m /me=10 with me being the
free-electron mass which sets the unit of energy to �0

15 meV. We can rewrite Hamiltonian �3� in the form26

H̄ = k̄x
2 + k̄y

2 + q̄k̄x�̃y + �m�̃z. �4�

This relation reveals the existence of a SOI that depends
linearly on q̄ and k, for the collinear spin phase �q̄→0� this

SOI vanishes. The dependence on k̄x resembles the case of a
semiconductor 2DEG in a perpendicular magnetic field with
the Rashba27 and Dresselhaus28 SOIs having equal strengths.
In this case, when the magnetic-field vector potential is taken
into account one obtains a resonant spin Hall conductance;
the spin current is carried by a charge Hall conductivity.29

Such a resonance behavior is present for a perpendicular spin
polarization. In our oxide system, however, all averaged val-
ues of spin polarization vanish due to a zero average magne-
tization in the original spin basis.

Explicitly diagonalizing Hamiltonian �4� we obtain the
eigenenergies

Ē��k� = k̄x
2 + k̄y

2 � ��m
2 + �q̄k̄x�2 �5�

with the eigenstates

��+
 = e−ik·r� cos
	

2

i sin
	

2
�, ��−
 = e−ik·r�i sin

	

2

cos
	

2
� , �6�

where

tan 	 =
q̄k̄x

�m
, cos 	 =

�m

��m
2 + �q̄k̄x�2

. �7�

Due to the effective spin-orbit coupling, the Fermi contours
are not parabolic but anisotropic having x̂ and ŷ as the sym-
metry axes, as depicted in Fig. 2. Although the spin states in
Eq. �6� are not independent of k, we still have a disappear-
ance of the Berry phase just as for the case without magnetic
field in Ref. 30. Thus implies that a spin current along the
spin ẑ direction does not exist in the absence or presence of
an electric field.

III. PERSISTENT SPIN CURRENT

The expectation value of the spin polarizations per elec-
tron evaluated using the eigenstates �6� are

��̃y
s
 =

sq̄k̄x

��m
2 + �q̄k̄x�2

�8�

��̃z
s
 =

s�m

��m
2 + �q̄k̄x�2

. �9�

Here s=�, the double sign corresponds to the two branches
of the energy dispersion Eq. �5�. In the original spin space,
��̃z

s
 corresponds to a spiral spin ordering induced by the
exchange interaction between the 2DEG and the local mag-
netic moments at the oxide surface. Obviously, the ŷ spin-

polarization component ��y
s
 is odd in k̄x and hence it van-

ishes upon summation over all occupied states. The spin
current in the x̂ direction is, however, generally finite when

FIG. 2. �Color online� Energy bands: �left panel� Ē� corre-

sponds to the two energy branches, respectively. When Ēf 
�m,

only the low-energy band Ē− is relevant for the Fermi contour �right

panel�. The arrows represent the effective SOI, q̄k̄x�̃y. The strengths
of the carrier coupling to the local magnetic order are chosen as

Ēf /�m=1 /2 and the spiral wave vector is q̄=2� /7.
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the Fermi level intersects only one of the two bands. To
prove this we consider the spin current operator, defined as

Ĵj
i =

�

4
��iv j + v j�i� , �10�

where the velocity operators at each k are given by vx

=�H /�px= �

2ma �2k̄x+ q̄�̃y� and vy =�H /�py =
�k̄y

ma . Considering

the symmetry Ēs�k�= Ēs�−k� of the eigenenergies �Eq. �5��, it

follows that only �Ĵx
y
 is finite and is determined by �in unit

of J0= �2

4ma �

�Ĵx
y
 = �

s=�
� d2k

�2��2 �2k̄x�̃y
s + q̄�f�Ēs�k�� , �11�

where f�Ēs�k�� is the Fermi-Dirac distribution, and k runs
over all occupied states. Introducing the wave-vector param-

eterization k= k̄�cos � , sin ��, it can be analytically shown

that �Ĵx
y
=0 when Ēf 
�m. However, as shown in Fig. 3, the

spin current is finite when only the low-energy band is inter-
sected by the Fermi level. Interestingly, the spin current is
related to the electron density, nf through the Fermi energy
Ef. More important, the key factor is the odd relationship
between the spin current and the geometrical spiral structure
of the magnetic ordering, being clockwise �q̄
0� or anti-
clockwise �q̄�0� �Fig. 3�. This is insofar important, as spin-
polarized neutron scattering experiments9 on multiferroics
evidently show that the helicity of the spiral magnetic order
is controllable by a small ��1 kV /cm� transverse electric
field, as illustrated in Fig. 3.

In the absence of an electric field, when the exchange
interaction is strong enough, i.e., for large �m, the spins of
the conduction electrons are initially aligned locally parallel
to nr at each site, ��̃z
=1. Using the Heisenberg equation for
the electron-spin motion,31 we find in the linear response
regime that the 2DEG develops a uniform spin polarization

��̃x
 = − q̄
eaEx

2�0�m
2 , �12�

when an external electric field is applied along x̂ direction.
Transforming back reveals that the solution for ��̃x
 corre-
sponds to the emergence of a spiral spin-density wave in the
2DEG that rotates in the x-z plane. The direction of the spin
polarization is orthogonal to the oxide local magnetic mo-
ment. Furthermore, the linear dependence on q of ��̃x
 allows
for an electric-field control of the induced spin helicity.

IV. HALL CONDUCTIVITY

The oxide magnetic order is usually not exactly coplanar
in the y-z plane but it has a small deviation. Here we simu-
late this noncoplanar modulation with a slowly varying spiral
order with a spin helicity given by �0,�q̄ ,0����1� along ŷ
direction. This results in an another effective spin-orbit cou-

pling term ��q̄k̄y�̃x with a strength �q̄. In analogy to the
semiconductor case, this amounts to the Rashba and the
Dresselhaus SOIs having different strengths. Therefore, we
expect in our case the existence of a Hall effect. To see this,
we diagonalize the resulting total Hamiltonian using the
transformation

T =�q̄ sin
	�

2
�− �k̄y + ik̄x

Fk̄
� cos

	�

2

cos
	�

2
q̄ sin

	�

2
��k̄y + ik̄x

Fk̄
� ,�

�13�

where

cos 	� =
�m

��m
2 + F

k̄

2
, Fk̄ = q̄�k̄x

2 + �2k̄y
2. �14�

The Hall effect in the 2DEG is related to the nontrivial to-

pology of the resulting eigenstates �k̄
 in the momentum
space,11,19,32 expressed through the gauge connection Ak̄

=−i�k̄��k̄�k̄
. The off-diagonal Hall conductivity is related to
Berry’s curvature11 �s

z=�k̄�Ak̄ pointing along the ẑ axis,
for which we obtain

�s
z = −

s

2

�

cos2 � + �2 sin2 �

1

k̄

� cos 	�

� k̄
. �15�

�s
z diverges along the ŷ axis at very small �, and is singular

at the origin k̄=0. The geometrical Berry phase factor �s is
given by the integral of the curvature over all wave vector

�s =� �s
zd2k = s��1 − I��, k̄s

f�� , �16�

FIG. 3. �Color online� The persistent spin current as a function
of Ef for positive �a� and negative �b� helicities when the Fermi
level intersects only the low-energy band. The parameters are cho-
sen as �0=15 meV, J0=a�0 /2, �m=�0, and q̄=2� /7. As illustrated
in the insets, depending on the direction of an applied transverse
electric field Ez the spiral helicity and hence the spin current direc-
tions are reversible due to the magnetoelectric coupling.
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I��, k̄s
f� =

1

2�
�

0

2� �

cos2 � + �2sin2 �

�m

��m
2 + F

k̄s
f

2
. �17�

The Fermi wave vector k̄s
f is given by the Fermi energy Ēf

= k̄2���m
2 +F

k̄

2
. At zero temperature, the off-diagonal Hall

conductivity �xy for a full band is equal to the integral over
the Brillouin zone of the component of the Berry curvature
parallel to ẑ and is thus proportional to the Berry phase,11,19

i.e.,

�xy
s =

e2

�
� �s

z d2k

�2��2 = s
e2

2h
�1 − I��, k̄s

f�� . �18�

For a small �, I�� , k̄s
f�→0 and �xy =− e2

2h is quantized when
only one of the two bands intersects the Fermi level. Gener-
ally, �xy is not quantized, but the transverse conductivity
should still be observable.

V. SUMMARIZING

A persistent spin current emerges in 2DEG at the interface
of a helimagnet due to the spiral geometry of the local mag-
netic order. The spin current is an odd function of the spin

helicity and hence electrically controllable by a small trans-
verse electric field that reverses the spin helicity, making thus
a link between spintronics and oxide electronics. For an in-
plane electric field along the spiral we predict the buildup of
a carrier spiral spin density wave. The spin Berry phase in-
duced by a chiral magnetic texture in a Kagomé lattice has
been discussed in Ref. 20. Due to a nonzero spin chirality
defined as the mixed product of three spins on a certain
plaquette, �ijk=Si · �S j �Sk�, they showed that the Berry
phase contribution to the Hall conductivity is quantized for
some values of the band filling �note, in our Fig. 1 �ijk=0�.
We also calculated the Berry curvature and obtained a finite
Hall conductivity for even a small derivation from the copla-
nar oxide helical magnetic order. The transverse conductivity

is determined by the chirality ���, the electron density �k̄s
f�,

and the strength of the exchange interaction ��m�, �xy can
thus be quantized, or possesses a nonmonotonic behavior
upon varying the relevant parameters.
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