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We study high-field phase diagram and low-energy excitations of three-dimensional �3D� quantum helimag-
nets. Slightly below the saturation field, the emergence of magnetic order may be viewed as Bose-Einstein
condensation �BEC� of magnons. The method of dilute-Bose-gas enables a quantitative analysis of quantum
effects in these helimagnets and thereby three phases are found: cone, coplanar fan, and a phase-separated one.
As an application, we map out the phase diagram of a 3D helimagnet which consists of frustrated J1-J2 chains
as a function of frustration and an interchain coupling. Moreover, we also calculate the stability of the
two-magnon bound state to investigate the possibility of the bound-magnon BEC.
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I. INTRODUCTION

Magnetic frustration introduces several competing states
which are energetically close to each other and thereby de-
stabilizes simple ordered states. One way to compromise two
or more competing orders is to assume a helical �spiral� spin
structure.1 In this paper, we discuss the high-field behavior of
a spin-1/2 Heisenberg model with generic interactions

H = �
�i,j�

JijSi · S j + H�
j

Sj
z. �1�

For the simplest case with one magnetic ion per unit cell, one
can easily find the classical ground state by minimizing the
Fourier transform of the exchange interactions

��q� = �
j

1

2
Jij cos�q · �ri − r j�� , �2�

where the summation is taken over all j sites connected to
the i site by Jij. When ��q� takes its minima �min at
q= �Q, helical order with the wave number Q or −Q ap-
pears ��Q are not equivalent to each other�.

When the external magnetic field is perpendicular to the
spiral plane, the spiral is smoothly deformed into the so-
called cone state �Fig. 1� and this persists until all spins
eventually get polarized at the saturation field Hc. When the
system has an easy-plane anisotropy and the external field is
applied in the spiral plane, on the other hand, the system
undergoes a �first-order� metamagnetic transition into a co-
planar fan phase.2

One of the simplest models which exhibit, at least in the
classical limit, the helical order is a three-dimensionally
coupled Heisenberg chains with nearest-neighbor �NN� J1
and next-nearest-neighbor �NNN� J2 coupling. Because of
strong quantum fluctuation in one dimension, the spin-singlet
ground state of a single decoupled S=1 /2 chain can be quite
different3,4 from its classical counterpart. However, it is gen-
erally expected that interchain couplings may eventually sta-
bilize the classical helical order. In fact, many compounds
which contain these one-dimensional �1D� chains as sub-
systems and display magnetic long-range orders are known

�see, for instance, Table I in Ref. 5�. Despite this naive ex-
pectation, even relatively mild quantum fluctuations in three
dimensions may destabilizes the classical ground state in
some frustrated systems.6,7 Therefore, it would be interesting
to explore the possibility that quantum fluctuation replaces
the classical cone state with other stable ones, e.g., a copla-
nar fan.

Another interesting feature peculiar to the quantum case is
that for a region slightly below the saturation field, we can
view the emergence of various kinds of �weak� magnetic
order as Bose-Einstein condensation �BEC� of magnons
which enables us to use the full machinery of many-body
theories.8 The concept of magnon BEC has been successfully
applied to explain various experimental results.9–11 By using
dilute-Bose-gas approach, Batyev and Braginskii12 discussed
magnetic structure near saturation from a general point of
view and concluded that this is the case if a certain condition
for the bosonic interactions is satisfied.

Recently, helimagnetism attracts renewed interest in the
context of multiferroicity13 and multiferroic behavior has
been reported for various helimagnets. For example, a heli-
magnetic material LiCuVO4 may be viewed as coupled
quantum S=1 /2J1-J2 chains and, as is expected from the
classical theories, exhibits helical spin order14 and
ferroelectricity15,16 simultaneously under moderate magnetic
field. When the field is very high, on the other hand, this
compound shows modulated collinear order,17 which contra-
dicts with the aforementioned classical prediction,2 and this
suggests that quantum fluctuation plays an important role. In

H

c

c

FIG. 1. �Color online� Two spin structures considered here:
“cone” �left� and “fan” �right�. In the fan structure, the spins are
lying in a single plane �coplanar�. The Q vector is pointing along
the c axis.
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these multiferroic materials, external magnetic field provides
us with a way of controlling polarization16 and it is crucial to
understand magnetic structures in high magnetic field. How-
ever, except for one-dimensional cases, only few reliable re-
sults are known for quantum systems so far. Our aim in this
paper is to determine the stable spin configurations of three-
dimenasional �3D� spin-1/2 helimagnets in a fully quantum-
mechanical manner.

The organization of the present paper is as follows. In
Sec. II, we describe how magnon BEC technique is used to
determine possible magnetic structures slightly below the
saturation field. Our dilute-Bose-gas approach predicts that
in general there are at least three types of quantum phases
�cone, fan, and an attraction-dominant phase; see Fig. 1� in
the high-field region. By mapping to an effective Lagrangian,
we study the low-energy properties of the cone and the fan
phases in Sec. III and show that, on top of the standard
Goldstone mode, there is a yet another gapless mode in the
fan phase which corresponds to translation.

In general, when Q is commensurate with the underlying
lattice, lattice symmetry allows several higher-order interac-
tions which may pin the above gapless translational motion.
In Sec. IV, we discuss the effects of commensurability on
these phases.

As a concrete example, the phase diagram of a model of
coupled S=1 /2J1-J2 chains �J1-J2-J3 model� is considered in
Sec. V. In this model, we also study the stability of two-
magnon bound state. If the bound-magnon BEC occurs, the
transverse magnetic moment vanishes. As a result, we find
that, on top of the above three phases, a spin nematic phase
appears.

II. GENERAL FORMALISM

A. Mapping to dilute-Bose gas

To apply the powerful Bose-gas technique, we first re-
write the original spin model in terms of bosons. When the
external field H is larger than the saturation field Hc, spins
are fully polarized along H �downward, here� and any spin-
flip excitations from this reference state can be expressed
exactly in terms of hardcore bosons. Specifically, we write
the spin operators as

Sl
z = − 1/2 + �l

†�l, Sl
+ = �l

†, Sl
− = �l. �3�

Then, the original spin Hamiltonian in general may be re-
written in the following way

H = �
q

���q� − ���q
†�q +

1

2N
�

q,k,k�

Vq�k+q
† �k�−q

† �k�k�,

�4�

��q� = ��q� − �min, � = Hc − H,

Hc = ��0� − �min, Vq = 2���q� + U� , �5�

where N is the number of lattice sites. In helimagnets, the
single-spin-flip excitation ��q� takes its minima �min at two
inequivalent q points �Q. The external field H controls the

chemical potential � and the on-site interaction U�→�� has
been added to impose the hardcore constraint.

In what follows, we consider a cubic lattice and assume
that helical—and ferromagnetic/antiferromagnetic order oc-
cur along the c axis and in the ab plane, respectively �i.e.,
Q= �0,0 ,Q� or �	 ,	 ,Q��. Also, in order to avoid confusion,
we use the indices �a ,b ,c� for the real-space coordinate and
reserve �x ,y ,z� for the spin directions.

We see that magnon BEC occurs when the external field
is smaller than the saturation field: H
Hc���0�. Although
the hard-core formulation is valid only for spin-1/2, it can be
generalized,18 with a little modification, to arbitrary spin S.

B. Ginzburg-Landau analysis

The thermal potential per site E /N of the dilute-Bose gas
is determined by the interaction among the condensed
bosons at q= �Q and the ground-state Boson densities ��Q
are obtained by minimizing E /N. If we denote the renormal-
ized interactions between the same bosons and that between
different ones respectively as 1 and 2, the energy density
E /N is given by

E

N
=

1

2
1��Q

2 + �−Q
2 � + 2�Q�−Q − ���Q + �−Q� ,

=
1

4
�1 + 2���Q + �−Q�2 +

1

4
�1 − 2���Q − �−Q�2

− ���Q + �−Q� �6�

where �q= ���q��2 /N. First we note that the energy function
E /N has discrete Z2-symmetry Q↔−Q. When the external
field H is sufficiently close to the saturation field Hc, we may
expect that the condensed boson is dilute and one can safely
use the ladder approximation8,19 to calculate the interaction
vertex �see Fig. 2�

q�k1,k2� = Vq −
1

N
�
q�

�
q��k1,k2�Vq−q�

��k1 + q�� + ��k2 − q�� − ��k1� − ��k2�
.

�7�

From this, one obtains the parameters 1 and 2 as7

1=0�Q ,Q�, 2=0�Q ,−Q�+−2Q�Q ,−Q�.

1. Cone phase

Different phases appear according to the values of 1,2. If
2�1�0, the ground state is given by �Q=�=� /1,
�−Q=0 �or vice versa� and E /N=−�2 / �21�. Hence, the spin
configuration is determined as

FIG. 2. Ladder approximation to the interaction vertex.
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��l� = 	� exp
�i�Q · Rl + ���,�Sl
z� = −

1

2
+ � ,

�Sl
x� = 	� cos�Q · Rl + ��,�Sl

y� = � 	� sin�Q · Rl + �� .

�8�

That is, the cone state �the left panel of Fig. 1�, which exists
already in the classical case,2 is favored for 2�1.

It is easy to see that this phase exhibits the multiferroic
behavior. According to the so-called spin-current mecha-
nism, a microscopic electric polarization Pij, which is asso-
ciated with a pair of sites i and j, is given by13,20

Pij = �eij � ��Si� � �S j�� , �9�

where � is a constant. When the external field H is parallel to
the a �or b� axis, the Q vector is in the spiral plane, which is
perpendicular to H, and the summation of the local polariza-
tion Pij over the lattice yields a finite polarization ��Q sin Q
parallel to Q�H. When H is along the c axis, on the other
hand, the local polarization sums up to zero and the system
shows no ferroelectricity.

2. Fan phase

If 1�2 and �1+2�0, on the other hand, the two
modes condense simultaneously and the ground state is de-
termined as: �Q=�−Q=��=� /, E

N =−�2 /,

��l� = 	��
ei�Q·Rl+�1� + ei�−Q·Rl+�2�� ,

�Sl
z� = −

1

2
+ 4�� cos2Q · Rl +

�1 − �2

2
� ,

�Sl
�� = 2	�� cosQ · Rl +

�1 − �2

2
�e�i��1+�2/2�. �10�

The two parameters �1 and �2 characterize arbitrary phases
of the two condensates ��Q� and ��−Q�, respectively
and lead to two different low-energy excitations. Since
�Sl

y� / �Sl
x�=−tan

�1+�2

2 , the spins assume a coplanar configura-
tion �fan� shown in the right panel of Fig. 1.

The ferroelectric property of this phase can be seen again
from Eq. �9�. If one moves from one site to the next along
the c axis, spins change their direction periodically within a
basal plane specified by the azimuthal angle ��1+�2� /2 �see
Fig. 1�. Although the vector chirality on each bond
��Si�� �Si+ec

�� is always pointing a fixed direction perpen-
dicular to the basal plane, it changes the sign within a period;
for the first half period, it is positive and for the latter nega-
tive. Hence the local polarizations ec� ��Si�� �Si+ec

��, when
summed up along the c axis, exactly cancel out and yield
zero macroscopic polarization �note that only bonds parallel
to the c axis give nonzero contribution�.

Here we would like to stress that the fan state here does
not require any kind of easy-plane anisotropy and should be
distinguished from its classical counterpart which exists only
in easy-plane helimagnets.2 It is interesting to observe that in
the second case �fan� the ordinary superfluid order

��S���0� and the spin-density wave, where Sl
z modulates

with momentum 2Q, coexist.

3. Attraction-dominant phase

When 1
0 or 1+2
0, low-energy bosons around
q= �Q attract each other. If the energy Eq. �6� is taken
literally, first-order transitions may be expected on general
grounds. In some cases, this scenario may be the case and, on
physical ground, we may expect bosons to “collapse” in real
space. It might well be that as a subsequent phase a cone or
fan phase appears via first-order transition. However, Eq. �6�
is based on the assumption that magnon BEC occurs in the
single-particle channel and may not work when we expect
magnon bound states stabilized by strong attraction. In fact,
this conditions for 1,2 implies nothing but instability in the
one-magnon condensates. In Sec. V, we calculate the energy
of the two-magnon bound state in the concrete model. As a
result, we see that the bound state tends to be favored in
attraction-dominant phase.

We summarize the �1 ,2� phase diagram in Fig. 3. In
Sec. V, we shall calculate 1,2 for a specific model and show
that all three possible phases appear.

III. LOW-ENERGY PROPERTIES

A. Effective Lagrangian

Thus far we have described the general results.12 Now we
study the low-energy properties of the two phases more
closely. To this end, it is convenient to introduce two inde-
pendent low-energy modes a and b through

�l � eiQ·Rla�R� + e−iQ·Rlb�R� . �11�

The mass parameters corresponding to these modes are ob-
tained from the low-energy dispersion. Defining k�q−Q,
we may expand ��q�=�min+kikj / �2mij�+¯, �i , j=a ,b ,c�
where the summation over repeated indices is implied. The
symmetric mass matrix mij can be diagonalized to give a

cone

fanunstable (i)

unstable (ii)

FIG. 3. �Color online� Phase diagram in �1 ,2� plane. When
1
0 or 1+2
0, the energy function E /N is, at least within
single-particle BEC, unstable �unstable (i) and unstable (ii)�. The
phase “unstable” �i� and �ii� are respectively characterized by for-
mal solutions ���Q→� ,��Q=0� and ��Q→�.
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standard form of the dispersion kikj /2mij =ki�
2 / �2mi��

��g�k��. We assume mi�0 �for all i� for the stability of the
minima at q= �Q. Below we omit the prime over mj for
simplicity. As a result, we write down the following effective
Lagrangian with the renormalized interactions

Leff =� d3x� i

2
�a��ta − a�ta

�� −
�� ja�2

2mj
+ �a�a +

i

2
�b��tb

− b�tb
�� −

�� jb�2

2mj
+ �b�b −

1

2
��a�4 + �b�4� − 2�a�2�b�2� .

�12�

We note that this effective Lagrangian has U�1��U�1� sym-
metry; one comes from the axial �around the external field�
symmetry and the other from an emergent translational sym-
metry which does not exist at the level of the lattice. When
1=2, this U�1��U�1� symmetry gets enlarged to U�2�. On
the fully saturated ground state, both a and b bosons have the
energy gap −�.

B. Cone phase

In the case of 2�1�0, the cone phase appears. Only
one of the low-energy bosons �say, a� condenses and we
parameterize it as: a=	�+��ei� with �Q=�=� /1. If we
integrate out the massive �� fields in the path integral, we
obtain the following effective Lagrangian

Lcone =� d3x�� ��t��2

21
−

�

2mj
�� j��2� +

i

2
�b��tb − b�tb

��

−
�� jb�2

2mj
+ �1 −

2

1
�b�b −

1

2
�b�4� , �13�

From this, we can read off the excitation spectrum of the
�-mode as

�cone�k� = 	2��g�k� , �14�

and that of b field acquires a gap ��
2

1
−1�.

C. Fan phase

The low-energy spectrum of the fan phase
�1�2, 1+2�0� exhibits quite a different behavior,
since two bosons a and b condense simultaneously and the
above-mentioned U�1��U�1� symmetry plays a crucial role.
To see this more clearly, let us parameterize a
=	��+��1ei�1, b=	��+��2ei�2 and integrate out the massive
��1,2 fields in the path integral. Then Leff reduces to

Lfan =� d3x�� ��t�u�2

2�1 + 2�
−

�

2mj
�� j�u�2�

+ � ��t�v�2

2�1 − 2�
−

�

2mj
�� j�v�2�� , �15�

where we have introduced �u���1+�2� /	2,
�v���1−�2� /	2. Now the meanings of the two angular vari-
ables appearing in Eq. �10� are clear; the field �u corresponds
to the Goldstone mode associated with the spontaneous

breaking of rotational symmetry in the x-y plane, while the
other �v describes the translational motion of the fan along Q
�phason of the spin �Sz� density wave�. The excitation
spectrum of the �u mode is readily obtained from Eq. �15� as

�u�k� = 	2�1 + 2����g�k� = 	2��g�k��=�cone�k�� .

�16�

This gapless excitation does not exist in the fan phase ap-
pearing in classical models with easy-plane anisotropy.2

Similarly, the excitation spectrum related to �v is given by

�v�k� = 	2�1 − 2����g�k� =	2
1 − 2

1 + 2
��g�k� .

�17�

At the transition point 1=2 from the cone to the fan, the
phonon velocity of the �v mode vanishes indicating an insta-
bility in the translational mode.

IV. EFFECTS OF COMMENSURABILITY

In this section, we consider effects of commensurability
on the ground state. Since our system is defined on a lattice,
any types of interactions which are allowed by the symmetry
may be added to the effective Lagrangian Eq. �12�. Specifi-
cally, we require invariance under

�i�global U�1�: �a,b� � ei��a,b�

�ii�lattice translation: a � aeiQ·�, b

� be−iQ·���:lattice period� .

�18�

For generic incommensurate values of Q, the effective La-
grangian Eq. �15� correctly describes the low-energy physics.
If Q is rational �i.e., Q=Q0=	n / l: l, n are coprime�, on the
other hand, the following terms in general appear to break
the translational U�1� symmetry explicitly

1

2
3�a†lbl + b†lal� � 3��l cos l��1 − �2� = 3�� cos�	2l�v� .

�19�

If we treat the problem in a classical manner, we can imagine
an infinite sequence of crystalline phases with superfluid or-
der �spin analog of supersolids�.

However, if we take into account quantum fluctuation,
this devil’s staircase structure is destroyed and only a finite
number of commensurate phases survive.21 To see this ex-
plicitly, we redefine the boson operator as

a�R� � e−i�Q·Ra�R� ,

b�R� � e+i�Q·Rb�R���Q � �0,0,Q − Q0�� . �20�

Then, the effective Lagrangian is given as,
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Leff2 =� d3x� i

2
�a��ta − a�ta

�� −
��− i� j − �Qj�a�2

2mj
+ �a�a

+
i

2
�b��tb − b�tb

�� −
��− i� j + �Qj�b�2

2mj
+ �b�b

−
1

2
��a�4 + �b�4� − 2�a�2�b�2 −

3

2
�a�lbl + b�lal�� .

�21�

From now, we concentrate on the fan phase where both a
and b condense. As before, we integrate out the massive
��1,2 fields in the path integral, and ignore the terms which
do not matter for low-energy physics when the superfluid
density � is dilute and l�3. For l=2 case, 3 term is the
same order as 1 and 2 term in E /N and therefore fan phase
appears for22 1+ �3��2. Thus, our approximation may not
be justified for l=2 case. Now, Leff2 reads,

Leff2� �� d3x�� ��t�u�2

2�1 + 2�
−

�

2mj
�� j�u�2� + � ��t�v�2

2�1 − 2�

−
�

2mj
�� j�v − 	2�Qj�2 − 3�l cos 	2l�v�� . �22�

Classically, if �Q is small, the 3 term seems to pin the
translation mode �v at the expense of the elastic energy. If �v
is pinned, on the other hand, the gapped zero-point fluctua-
tions around the pinned value yield the �positive� quantum
correction to the ground-state energy and thereby a soliton
lattice with gapless excitations23 may be favored. From Eq.
�14� in Ref. 21, an incommensurate soliton lattice is stable
for any �Q if the following inequality is satisfied

l2 � Min�16 �

mi�1 − 2��
1/2� , �23�

where Min�¯ � means that the minimum value with respect
to i=a ,b ,c should be taken. Therefore, at least in the dilute
gas limit, i.e., just below the saturation field, a commensura-
bility locking does not occur for l�3. When � grows further,
Eq. �23� may be violated for some small commensurability l
and the locking occurs; the pitch Q is locked to its commen-
surate value Q0 until �Q exceeds the critical value21

�Qc
2 = �8/	2�2mc�3��l−1
1 − �l2/16�	mc�1 − 2�/��2.

�24�

It is interesting to see that the first term, which is obtained by
classical calculation, has the same character as a classical fan
phase in an easy plane, which has a width proportional to24

�Q2� �H−Hc�l−1.
Before concluding this section, we would like to give a

remark on the validity of our treatment. Above discussions
assume the dilute-gas limit, where the scattering length is
much smaller than the average interatomic distance �−1/3.
Specifically, our approximation is valid when
i�mambmc��1/3�1 is satisfied for i=1 or 2.

V. COUPLED J1-J2 MODEL

A. Phases of a single J1-J2 chain

Before presenting our results for a 3D model �J1-J2-J3
model�, let us briefly review the known results for the
S=1 /2J1-J2 chain �the case with J3=0� and discuss the con-
nection to the phases found in Sec.II. In the case J1�0, near
saturation, two dominant phases are found:25 �i� “chiral
phase �VC�” with finite vector chirality parallel to the mag-
netic field25,26 and �ii� “TL2” phase where the system is de-
scribed by two Tomonaga-Luttinger �TL� liquids.25,27 Obvi-
ously, the former turns, after switching on an interchain
coupling, into the cone phase. A close inspection of the two
gapless TL modes near saturation tells us that the TL2
phase should evolve into the fan phase in three dimensions
where we have two Goldstone modes. Yet another dominant
phase “TL1,” for which a single-component TL gives a
good description,25,26 is located in a region where we
expect a more conventional single-component BEC at
Q= �0,0 ,	��J3
0� or �	 ,	 ,	��J3�0�.

The ferromagnetic side J1
0 is much more subtle as we
expect BECs of n-bound-magnon states �n�2� to occur. In
one-dimension �J3=0�, on top of the VC phase described
above, various phases related to bound n-magnons
�2�n�4� have been found;28 �a� TL phases of two-magnon
bound states “nematic” and “SDW2,” whose dominant corre-
lation occur in respectively superfluid–and SDW channel, �b�
three-magnon TL “triatic” and “SDW3” �the meanings of
them are evident� and �c� “quartic” corresponding to four-
magnon bound states. Our dilute-gas analysis predicts that
inside the domes of the attraction–dominant phase �phase
�iii� in Fig. 4� one-magnon BEC becomes unstable toward
various kinds of magnon bindings as has been discussed in
Sec. III and we may expect that the above n-magnon-based
phases correspond to the attraction-dominant phase. We also
study the stability of the two-magnon bound state by the
traditional approach29 and discuss in later part of this section.

(iii)

(ii)

(i) cone

(ii)

(ii)

(iii) Γ1<0 (i)
(ii) fan

0.2

0.1

0.05
0.01
-0.01

-0.05

-0.1
-4 -2 0 2 4

J3/J2

J1/J2

(i) (ii)

(iii)

(i)

-0.1

-1

-2

-3
-4 -2 0 2 4

FIG. 4. �Color online� Phase diagram slightly below saturation
�H�Hc� mapped out in �J1 ,J3� plane obtained from the one-
magnon-BEC approach �J2��0� is used to set the energy unit�. Note
that only the region −4�J1 /J2�4, where cone structure with in-
commensurate Q is expected classically, is shown. Two Bose-
condensed phases �i� cone phase and �ii� coplanar fan phase as well
as the phase �iii� which is characterized by 1
0 or 1+2
0 are
shown. The region is omitted �see the text�. Inset: the same phase
diagram for the large negative interchain coupling �J3
−0.1�.
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B. 3D phase diagram

Having established the formalism, we now consider a
frustrated spin-1/2 model on a simple cubic lattice whose
Hamiltonian is given by

H = �
r,i=a,b


J1Sr · Sr+êc
+ J2Sr · Sr+2êc

+ J3Sr · Sr+êi
� ,

�25�

where we label the three crystal axes by �a ,b ,c� and the
spiral vector Q is pointing the c direction. The J1-J2 chains
are running in the c direction and J3 controls the coupling
among adjacent chains.

If we replace the spin-1/2 by hardcore bosons, we obtain
the bosonic Hamiltonian Eq. �4� with ��q� given by

��q� = J1 cos qc + J2 cos 2qc + J3�cos qa + cos qb� . �26�

The mass parameters are given by ma=mb=1 / �J3�, and
mc=1 / �4J2−J1

2 /4J2�. The wave number Q characterizing the
condensate is given either by Q= �0,0 ,Q��J3
0� or by
Q= �	 ,	 ,Q��J3�0� where Q=arccos�−J1 /4J2�. We solved
Eq. �7� to determine the spin structure of our J1-J2-J3 model
�see Appendix for the details�. As a result, we obtained the
phase diagram shown in Fig. 4.

On top of the ordinary cone phase, strong quantum fluc-
tuation in S=1 /2 systems stabilizes two new phases: the co-
planar fan �ii� and the attraction-dominant phase �iii�. In the
phase �ii�, both gauge symmetry and translation symmetry
are broken simultaneously and as a consequence we have
two different low-energy �Goldstone� modes �u�k� �Eq.
�16�� and �v�k� �Eq. �17��. In the phase �iii�, strong attrac-
tion may imply instabilities toward other phases, e.g., con-
ventional ferromagnetic one or more exotic multipolar
ones.28 For J3→0, low-energy quantum fluctuation destabi-
lizes  and our approach cannot be extended to J3=0 con-
tinuously � becomes O�J3

1/2� and 1→2 at the leading or-
der in J3�.

For the ferromagnetic J3, the cone phase �region �i�� gets
wider and wider and the boundary between the cone—and
the phase-separated phases approaches the classical phase
boundary J1 /J2=−4 as �J3� is increased �see the inset of Fig.
4�. This is easily understood since for very large negative J3
all spins sitting on each ab plane behave such as a single
large spin to which classical analysis is applicable and the
system may be thought of as a single chain running in the c
direction. For the antiferromagnetic coupling �J3�0�, these
novel phases ��ii� and �iii�� appear only in the weak-coupling
�J3�J1,2� region.

To see the possible magnon binding more clearly, we plot
i in Fig. 5. Although s behave regularly in the most part of
the phase diagram, 1 has poles on the boundary between the
fan phase �ii� and the phase �iii� as is seen in Fig. 5. This
implies that near the boundary between the phases �ii� and
�iii� the interaction among bosons becomes singularly large
which may lead to new phases. Actually, a pole of a interac-
tion between two particles in general imply an existence of
stable bound states. Thus, the one-magnon-BEC approach is
not sufficient to see the ground state near this boundary.

To highlight this point, we study the instability of the
two-magnon bound state. On the fully saturated ground-state
�FM�, the wave function of the two–magnon bound state is
given by �i,j��i , j�Si

+Sj
+�FM�, and the energy of this wave

function can be exactly obtained by solving the two-body
Schrödinger equation.29 If the gap of the bound state closes
earlier than that of the one magnon, the bound-magnon BEC
will occur, and the nematic order emerges in the transverse
direction. We show the region of the stable bound state in
Fig. 6. As a result, the nematic phase completely masks the
fan phase which would have appeared on the ferromagnetic
side J1
0. At a rough estimate, for −2.7�J1 /J2, the lowest
mode of the bound state is commensurate and for
J1 /J2�−2.7 the one is incommensurate in the same way as
in the 1D J1-J2 chain.30,31

Detailed results on the bound magnons will be reported
elsewhere.32

VI. SUMMARY

By using the dilute-Bose-gas technique, we studied the
high-field magnetic structures and low-energy excitations of
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three-dimensional quantum �S=1 /2� helimagnet. The
method used is asymptotically exact when magnetization is
close to saturation �we gave a criterion of “proximity” in the
end of Sec. IV� and enables us to obtain reliable results for
three-dimensional frustrated systems.

In Sec. II, we discussed various phases emerging from the
BEC of hard-core magnons slightly below the saturation
field. Although only the cone phase is expected in the clas-
sical helimagnets,2 quantum fluctuation can stabilize the fan
or attraction-dominant phases as well according to the renor-
malized interactions �1 ,2�.

Then, the low-energy excitations of the cone and the fan
phases were studied in Sec. III The hallmark of quantum
helimagnets is that one has two low-energy modes at
k= �Q and the low-energy physics is described by the ef-
fective Lagrangian with U�1��U�1� symmetry; one comes
from the axial �around the external field� symmetry and the
other from an emergent translational symmetry. In the cone
phase, only one of the two bosons condenses and there is one
gapless Goldstone mode. Meanwhile, the fan phase breaks
both symmetries and has two types of gapless Goldstone
modes.

In Sec. IV, we considered effects of commensurability
on the helical modulation vector Q. If Q is rational
�i.e., Q=Q0=	n / l: l, n are coprime�, additional interactions
appear in the effective Lagrangian and favors the gapped
commensurate phase. By examining the correlation due to
the gapped zero-point fluctuations, we found, for l�3, that
slightly below the saturation field quantum fluctuation de-
stroys the commensurate order.

We studied a concrete three-dimensional S=1 /2 model
�J1-J2-J3 model� in Sec. V and mapped out its �high-field�
phase diagram in Figs. 4 and 6. An analysis assuming the
single-magnon BEC predicts the existence of a fairly large
region where single-magnon BECs may be unstable �phase
�iii�� as well as the cone and the fan shown in Fig. 1. To get
an insight into the nature of this “phase,” we consider the
possibility of a BEC of two-magnon bound states, which
leads to the nematic order in the transverse direction. In fact,
in a large portion of the phase �iii� �a region marked as �iv� in
Fig. 6�, we have a stable two-magnon bound states which
condense first when the external field is decreased. In the 1D
J1-J2 model �i.e., J3=0�, it is known that one has multiple-
magnon bound states up to four body28 and some parts of the
new phase �nematic �iv� in Fig. 6� could be replaced by the
condensed phases of these bound states.

Finally, we comment on the relevance of our study to real
systems. Interests in multiferroicity sparked an intensive
study of various helimagnetic materials, among which one
can find many examples of coupled J1-J2 chains. For ex-
ample, LiCuVO4 is characterized by edge-sharing CuO2
plaquettes and may be modeled by the S=1 /2J1-J2 chain
with negative J1. Neutron diffraction and ab initio calcula-
tions suggested,14 as well as J1 and J2, various kinds of in-
terchain interactions J3 , . . .J6. Although the stacking of J1-J2
chains is different from what is assumed here, our method
can be readily generalized to include more realistic cases and
we hope our approach will shed some light on magnetism of
these quantum helimagnets.

ACKNOWLEDGMENTS

We thank S. Furukawa, A. Furusaki, T. Hikihara, T. Mo-
moi, T. Nishino, M. Sato, and N. Shannon for discussions.
One of us �K.T.� was supported by Grant-in-Aid for Scien-
tific Research �C� No. 20540375 and that on Priority Areas
“Novel States of Matter Induced by Frustration”
�No.19052003� from MEXT, Japan. This work was also sup-
ported by the Grant-in-Aid for the Global COE Program
“The Next Generation of Physics, Spun from Universality
and Emergence” from MEXT of Japan.

APPENDIX: HOW TO TREAT THE LADDER DIAGRAM

For convenience, we briefly summarize the method of
calculating . To obtain 1=q=0�k1=Q , k2=Q� and
2=0�Q ,−Q�+−2Q�Q ,−Q�, we solve the following
integral equation in the case of k1,2= �Q���k1,2�=0�

q�k1,k2� = Vq −
1

N
�
q�

q��k1,k2�Vq−q�

��k1 + q�� + ��k2 − q��
, �A1�

where Vq=2���q�+U�. In what follows, we do not write the
argument k1,2 of  explicitly, and denote 1

N�q as � �. Since
���=0, we sum up the both side of Eq. �A1� with respect to
q and obtain,

�� = 2U�1 −
1

N
�
q�

q�

��k1 + q�� + ��k2 − q��� , �A2�

Using this equation, Eq. �A1� is simplified to,

q = 2��q� + �� −
1

N
�
q�

2��q − q��
��k1 + q�� + ��k2 − q��

q−q�.

�A3�

Additionally, if we assume the limit U→�, Eq. �A2� reads

1 −
1

N
�
q

q�

��k1 + q�� + ��k2 − q��
= 0. �A4�

Now, the problem is reduced to solve Eqs. �A3� and �A4�
simultaneously, which are free from the infinite term U.
Next, we expand q in lattice harmonics. Since

��q − q�� = J1�cos qc cos qc� + sin qc sin qc��

+ J2�cos 2qc cos 2qc� + sin 2qc sin 2qc��

+ J3�cos qa cos qa� + sin qa sin qa� + cos qb cos qb�

+ sin qb sin qb�� , �A5�

we introduce

q = �� + J1A1 cos qc + J1A2 sin qc + J2A3 cos 2qc

+ J2A4 sin 2qc + J3A5�cos qa + cos qb� . �A6�

We note that �� and Ai are independent of q, but depend on
�k1 ,k2� implicitly. If we substitute this, Eq. �A3� reduces to,
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J1A1 +
1

N
�
q�

2J1cos qc�

��k1 + q�� + ��k2 − q��
q� − 2J1�cos qc + J1A2 +

1

N
�
q�

2J1 sin qc�

��k1 + q�� + ��k2 − q��
q��sin qc

+ J2A3 +
1

N
�
q�

2J2 cos 2qc�

��k1 + q�� + ��k2 − q��
q� − 2J2�cos 2qc + J2A4 +

1

N
�
q�

2J2 sin2 qc�

��k1 + q�� + ��k2 − q��
q��sin 2qc

+ J3A5 +
1

N
�
q�

J3�cos qa� + cos qb��
��k1 + q�� + ��k2 − q��

q� − 2J3��cos qa + cos qb� = 0, �A7�

where we use the relation

1

N
�
q�

sin qx,y�

��k1 + q�� + ��k2 − q��
q� = 0. �A8�

To satisfy the Eq. �A7� for arbitrary q, the coefficients of trigonometric function of q must be 0. For convenience, we define

�ij�k1,k2� =
1

N
�
q�

Ti�q��Tj�q��
��k1 + q�� + ��k2 − q��

, �A9�

where

T�q� = �1,cos qc,sin qc,cos 2qc,sin 2qc,cos qa + cos qb� . �A10�

Then, Eqs. �A4� and �A7� are put together into

�
�11 J1�12 J1�13 J2�14 J2�15 J3�16

2�21 1 + 2J1�22 2J1�23 2J2�24 2J2�25 2J3�26

2�31 2J1�32 1 + 2J1�33 2J2�34 2J2�35 2J3�36

2�41 2J1�42 2J1�43 1 + 2J2�44 2J2�45 2J3�46

2�51 2J1�52 2J1�53 2J2�54 1 + 2J2�55 2J3�56

�61 J1�62 J1�63 J2�64 J2�65 1 + J1�66

��
��
A1

A2

A3

A4

A5

� =�
1

2

0

2

0

2

� �A11�

This equation can be solved by calculating �ij numerically. If we evaluate at �k1 ,k2�= �Q ,Q�, A2=A4=0 due to the symmetry
and we obtain,

1 = �� + J1A1 + J2A3 + 2J3A5. �A12�

If we evaluate at �k1 ,k2�= �Q ,−Q�, we obtain

2 = ��� + J1A1 + J2A3 + 2J3A5� + ��� + J1A1 cos�− 2Q� + J1A2 sin�− 2Q� + J2A3 cos�− 4Q� + J2A4 sin�− 4Q� + 2J3A5� ,

�A13�

Although above we review the straightforward method, we can calculate 2 more simply if we introduce,

q−Q�Q,− Q� + −q−Q�Q,− Q� = 2�� + J1A1� cos qc + J2A2� cos 2qc + J3A3��cos qa + cos qb� . �A14�

The following procedure is the same as in the former case, and 2 is given by,

2 = 2�� + J1A1� cos Q + J2A2� cos 2Q − 2�J3�A3�. �A15�
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