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The magnetostatic interactions of colloidal particles, “capped” with radially magnetized Co/Pt multilayers,
are modeled. Motivated by experiment the particles are arranged in microscopic two-dimensional clusters on a
hexagonal lattice and are free to rotate. The thermodynamically stable states of clusters containing up to 108
particles are calculated theoretically by means of Monte Carlo simulations in the framework of multipole
expansion. It is shown analytically that radially magnetized hemispheres have higher-order multipole moments
beyond the dipole. Depending on geometrical details also even order moments appear. The even order mo-
ments break the inversion symmetry of the magnetic potential of a single particle. For a specific mixing ratio
of dipole and quadrupole moments, the experimentally observed antiferromagnetic 120° Néel state in the
clusters is found.
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I. INTRODUCTION

Recent experiments on colloidal clusters, consisting of
particles that are covered by Co/Pt multilayers,1 have shown
a 120° Néel state that was unexpected for particles with mag-
netic moments interacting via stray field. In particular, this
structure cannot be understood by only taking dipole mo-
ments into account. When describing the stray field interac-
tion in the framework of multipole moments and multipole-
multipole interaction, the 120° Néel state requires the
consideration of higher-order moments. As each order of
multipole moments has a different lattice-dependent ground-
state symmetry, mixing different orders gives rise to compet-
ing interaction and complex structure formation.2

Even if for a single type of interaction the pair interaction
is well understood, the ground state of a large system may
not be clear intuitively. An example is the simple
quadrupole-quadrupole interaction of linear quadrupoles,
e.g., hydrogen molecules.3 The pair interaction prefers or-
thogonal orientation. This relative orientation can be realized
in linear chains or two-dimensional �2D� square �rectangular�
lattices. However, this configuration is frustrated on a 2D
hexagonal lattice and the ground state is the complicated
pinwheel structure.4,5 If the quadrupole is forced in plane, a
herringbone structure is formed.6

On the other hand the linear quadrupole still is simple in
the sense that it has inversion symmetry. Not necessarily but
very often also the ground state shows inversion symmetry if
the single particle and the underlying lattice show inversion
symmetry.7–9

Breaking inversion symmetry of the single-particle poten-
tial makes things more complicated. If the interaction can be
described by long-range multipole moment interaction,10 the
lowest-order possibility of breaking inversion symmetry in
finite systems is the combination of monopole and dipole.
However, a nonvanishing monopole would result in an infi-
nite energy in an infinite system. Therefore, this combination
is forbidden in the thermodynamic limit and the first non-
trivial combination is the dipole-quadrupole system occur-
ring, e.g., in H2O or H3N molecules.11,12

A quadrupolar contribution to the dipole-dipole interac-
tion has interesting effects. While a pure dipolar system on
an infinite square lattice has a degenerate ground state, a
small quadrupole moment lifts the degeneracy and intro-
duces an energy gap for the low-energy excitations.13 In clus-
ters of particles that are free to move in three dimensions, the
quadrupole moment destroys planar configurations and leads
to three-dimensional clusters.14

It will be shown in the following that the noncollinear
120° Néel state, recently found in systems of colloidal
particles,1 can be attributed to a quadrupole moment that
breaks the symmetry of the presumably dominant dipole mo-
ment. The inversion symmetry of the pure dipole is broken
and the resulting ground state—the 120° Néel state—also
does not exhibit inversion symmetry.

After shortly summarizing the experiments and the ex-
perimental results �Sec. II� the theoretical tools will be pre-
sented in Sec. III. A simple model of the magnetic cap jus-
tifying the existence of a quadrupole moment is introduced
and the Monte Carlo method, utilized to find the thermody-
namically stable states, is explained. The results are pre-
sented and discussed in Sec. IV.

II. EXPERIMENT

Magnetic colloidal clusters of so-called “capped” colloi-
dal particles with artificially designed magnetic moments
were formed by aggregation in water solution. In order to
produce the capped colloidal particles, a closely packed
monolayer of silica spheres �diameter d=4.75 �m� was
formed on a glass substrate; the self-organization of colloidal
particles in arrays with hexagonal symmetry has, e.g., been
used as a deposition mask for nanostructure formation and
for soft lithography.15 The magnetic moment of the spheres
was provided by deposition of the multilayer stack
Pt�1 nm� / �Co�0.3 nm� /Pt�0.8 nm��8 /Pt�5 nm� onto a self-
assembled monolayer of particles �Fig. 1�a��, as has been
described elsewhere.1,16 The Pt/Co multilayer exhibits out-
of-plane magnetic anisotropy. Deposition of the metallic
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films on the surface of the spheres leads to the formation of
hemispherical metallic “caps” on every particle as displayed
in the SEM image �Fig. 1�b��. The multilayer of Co/Pt ex-
hibits strong magnetic anisotropy perpendicular to the plane
of the film following the spherical shape of the particle. In
addition, reduction in the thickness of magnetic films from
the top of the sphere toward the equator causes the decay of
the magnetization along the particle’s surface16 �Fig. 1�c��.
An external magnetic field was applied to saturate the par-
ticles in the z direction, thus assuring equivalent magnetic
states and magnetic moments for all spheres. To suspend the
particles in distilled water they were detached from the glass
substrate using an ultrasonic bath. The colloidal suspension
was placed in a measurement cell for carrying out the experi-
ments. The metallic capping introduces a strong optical in-
homogeneity that allows visualization of the magnetic ar-
rangement and growth of clusters via video microscopy. The
good optical resolution allows the determination of the ori-
entations of the magnetic caps �see Fig. 2 and inset of Fig.
5�. Hence, as the magnetic moments of the silica particles
coincide with the axis of the capping, the orientations of the
magnetic moments can be measured solely by this optical
method. The growth of the clusters was carried out by
gradual addition of the particles using laser tweezers.1,17 It
should be noted that every single colloidal particle, attached

to the cluster, was free to move and free to rotate in order to
find the state corresponding to the minimum energy. Thus, it
was demonstrated that grouping of the capped colloids leads
to the formation of a series of the magic clusters,1,18 stabi-
lized by the noncollinear quasiantiferromagnetic order.19

These clusters �see Fig. 2� were found to be purely two di-
mensional, meaning that all colloidal particles were arranged
in a single layer and all macrospins of the particles lied
strictly in the plane that is coplanar to the substrate. The
arrangement of the magnetic moments in clusters, shown in
Fig. 2, is consistent with the 120° Néel state for spin lattices
with triangular symmetry.19

III. THEORETICAL TOOLS

The thermodynamically stable states of the clusters are
calculated theoretically by means of Monte Carlo simula-
tions in the framework of multipole expansion. In order to
estimate the contribution of the multipole components, the
moments of an ideal dipole cap were calculated. The refer-
ence energy scale is chosen as the pair interaction E↑↑ of two
spheres, both pointing in the z direction �↑↑� and separated
by a unit distance û in the x direction �see Fig. 1�. This
choice is somewhat arbitrary, but it can be extended from
pair interaction to the whole cluster, whereas, e.g., a head-to-
head configuration �→←� would be frustrated. The highest
pair interaction energy is given by the head-to-head configu-
ration, while the lowest energy depends on geometrical and
magnetic details of the cap. To compare results for caps with
different properties, the energies are normalized in such a
way that the pair interaction E↑↑ of two spheres, both point-
ing in the z direction and separated by a unit distance in the
x direction �↑↑�, defines one energy unit. The diameter of the
spheres is 1û.

A. Calculating the multipole moments

To calculate the multipole moments we use spherical co-
ordinates. The coordinate system is chosen in such a way
that the z direction is the symmetry axis of the cap, which is
assumed to have rotational symmetry. Although the spheres
are magnetic the moments are defined via charge, i.e., we
define a magnetic surface charge �,

��r�� = �0n��r�� · M� �r�� , �1�

where n� is the outward surface normal of the cap. Hence, we
are not using vector spherical harmonics; all steps are
equivalent to electric charge—except that the total charge
must be zero. The moments are given by the surface integral

Qlm = �
S

dS��r��Rlm�r�� , �2�

where Rlm is the regular normalized solid spherical
harmonic.20 It is known from micromagnetic simulations that
the magnetization vector field is radially pointing outward,21

which would give a constant surface charge. As the cap has a
very small thickness, the volume charge
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FIG. 1. �Color online� Properties of the capped particles. �a�
Metallic layers are deposited on top of silica spheres by thermal
evaporation and molecular beam epitaxy; �b� scanning electron mi-
croscope �SEM� image illustrates capped colloids—particles with
metallic hemispheres �green� on top; and �c� sketch of capped par-
ticles in the parallel orientation that is used to normalize the inter-
action energy. The direction of magnetization stays normal to the
surface of the metal film.

FIG. 2. Magnetic colloidal clusters with 2D arrangements of
macrospins, which resemble a 120° Néel state, observed for anti-
ferromagnets on triangular lattices.
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��r�� = − �0�� · M� �r�� �3�

is neglected. Furthermore, the thickness is decreasing when
going to the edges of the magnetic cap. As an approximation
we take the latter effect into account by decreasing � propor-
tional to cos � �see Fig. 1� toward the edge. As the thickness
d of the cap is small compared to its radius, we make the
typical dipole limits d→0 and �→�, which allow us to
express the results in terms of the cap’s total saturation mo-
ment �0MSV, where V is the cap volume. Hence, this mo-
ment is different from the cap’s dipole moment Q10 as the
cap is not homogeneously magnetized. The dipole limit ap-
proximates an infinitely thin dipole layer with decreasing
dipole strength toward the equator proportional to the cosine.

In contrast to standard conventions, we chose the center
of the sphere as origin, although it is not the center of charge.
This simplifies the simulation as otherwise a rotation of a
sphere not only changes the orientation of the multipoles but
also their position in space. It would also be possible to
calculate the multipole moments in a coordinate system
where origin and center of charge coincide. Afterward the
moments can be transformed by a change of origin. The
general transformation of multipole moments upon a change
of origin by a vector x� has the form20

�− 1�L+MQLM
new

��2L + 1�!
= �

l+�=L

m+�=M

Qlm
oldR���x��

��2l� ! �2��!
� l � L

m � − M
	 , �4�

where the expression in the last parentheses is the Wigner 3j
symbol.22 Note that all orders l�L contribute to the trans-
formed moment QLM. The dipole, as well as the quadrupole,
contributes to an octopole �and higher orders� in the shifted
system and the calculation of interaction energy might re-
quire higher-order moments. As it is estimated that the octo-
pole and higher moments are small when choosing the center
of a sphere as origin �see Appendix�, this choice does not
only simplify the simulation by keeping the intermoment dis-
tances constant but also reduces the required order of expan-
sion.

Due to the rotational symmetry only Qlm with m=0 can be
different from zero. The moments have the form

Ql0 = �0MSVAl��c�rS
l−1l , �5�

where rS is the radius of the sphere. The coefficients Al��c�
are given in Appendix. As the thickness of the cap decreases
toward the edge, the angle �c takes into account that the cap
may only be magnetic up to this critical angle. In this ap-
proximation of Qlm the main contribution to energy is the
dipole-dipole interaction, but the quadrupole has a strong
influence. Higher-order components are important for proper
visualization of the magnetic potential ��r��, which fulfills
−�� ��r��=H� �r�� �see Fig. 3�, but they contribute only little to
the total energy if �c	
 /3.

In conclusion, in the natural system of the sphere, the two
most important energy contributions are due to dipole and
quadrupole.

B. Monte Carlo simulation

The thermodynamically stable states are found via Monte
Carlo simulations. The code accepts multipole moments up
to arbitrarily high order as well as any combination of mo-
ments. The interaction is calculated without cutoff, i.e., even
for high orders the full long-range character of the interac-
tion is taken into account. The utilized code is a standard
Metropolis algorithm, accepting each new state with prob-
ability p=1, if it has lower energy than before, and with p
=exp�−��E�, if its energy is higher by �E. The starting
temperature Tstart is chosen such that kBTstart=�start

−1 	2E↑↑.
The final temperature fulfills �final

−1 5�10−3E↑↑. The high
temperature is sufficient to destroy any ordered state while
the system freezes for the low temperature. The decrease in
temperature is performed in at least 103 steps in such a way
that the number of steps per temperature decade is constant.
For each temperature several 103 Monte Carlo steps were
performed. Consequently, the number of performed steps for
one cooling procedure was larger than 106.

In experiment the particles are to some extent free to
move but form a densely packed 2D cluster, i.e., a hexagonal
structure. Therefore, we perform the simulation with fixed
particle position on a perfect hexagonal lattice, but the
spheres and therefore the multipole moments are allowed to
rotate freely on their lattice sites.

Theoretically, it is possible to calculate the moments up to
any desired order assuming the dipole cap with cosine-
decreasing charge density. It is, however, doubtful that the
high moments describe the real experimental system. The
model is too idealized to describe the moments quantita-
tively. Qualitatively, it shows that the main contribution to
the interaction of the spheres should be due to the dipole and
the quadrupole moments. Therefore, we restrict the simula-
tions to these lowest orders. In detail the strength of the
dipole compared to the quadrupole depends on several un-
known parameters: the critical angle �c, whether the cap re-
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FIG. 3. �Color online� Contour plot in the x-z plane of the mag-
netic potential � �with arbitrary scaling� of a cap with �c=
 /2 and
��cos �. Negative equipotential lines are white, while constant
��0 A are shown in black. The potential is evaluated from the
multipoles up to order 32. The contour line with �=0 A—the al-
most horizontal one in the right-hand side of the figure—is shifted
in direction of larger z if �c decreases. The dipole cap is indicated
by a red-green double line.
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ally has rotational symmetry, the angular distribution of the
magnetization vector field, i.e., if the magnetization is radi-
ally aligned, etc. To take this uncertainty into account, we
have tested several combinations of dipole-quadrupole
strengths. When comparing the strength of dipole and quad-
rupole, we refer to the energy of the dipole-dipole and the
quadrupole-quadrupole interactions in the above mentioned
↑↑ configuration. To combine the moments we use the con-
tinuous parameter s� �0,1� and construct the dipole and
quadrupole moments as

Q10 =
�1 − s�D̂

�1 − 2s +
13

4
s2

, Q20 =
sD̂û

�1 – 2s +
13

4
s2

, �6�

where D̂ is a unit dipole moment and û is the aforementioned
unit distance. The parameter space is confined by the pure
cases, pure dipole �s=0�, and pure quadrupole �s=1�. The
denominator is a normalization. In Fig. 4 it is shown how the
relative energy contribution changes from dipole-dipole to
quadrupole-quadrupole energy as a function of s. For s
=0.4 both energy contributions are identical.

C. Insight derived from symmetry

Apart from the analytic results for the multipole moments,
the experimental observation clearly justifies the appearance
of even order moments in addition to the odd order dipole.
Looking at the symmetry of the experimentally found ground
state, it is clear that the interaction is not purely dipolar.
First, the particles are grouped together manually forming a
hexagonal arrangement. The dipolar ground state at T=0 K
in an infinite hexagonal lattice is quasiferromagnetic, i.e., all
dipoles align in one direction.8 In a finite sample usually a
vortex is formed. Second, the odd parity of a dipole would
give the same energy to the ground state if all dipoles are
reversed. Obviously, this would change the experimentally
found images. The energy of the reversed state is probably
higher and, therefore, not observed. The explanation via the
parity of the dipole also holds for combinations of moments
of higher order if all have the same parity. The observed
symmetry cannot be explained by combining dipole, octo-
pole, and higher-order odd moments. These moments would
increase the tendency to form a collinear state and a vortex
would become less favorable.23 If all moments would have

even parity again the reversed state would have the same
energy. Therefore, it is clear that a combination of even and
odd moments is required.

IV. RESULTS AND DISCUSSION

The smallest nontrivial cluster consists of three particles
on a triangle. In this case always a vortex is formed but the
angle between the magnetic moments changes with s. In case
of the pure dipole the dipole vector is a tangent to the cir-
cumcircle of the triangle, i.e., it is parallel to the opposite
edge and has a 60° angle to the distance vector to its neigh-
bor �see inset of Fig. 5�. This high-symmetry state does not
change energy if all dipoles are reversed; it has the lowest
stray field. In contrast to this the stray field is not important
for the quadrupole, as quadrupoles interact with the field
gradient. Furthermore, the lowest pair interaction is achieved
if two neighboring axial quadrupoles �type Q20� form the
so-called T structure, i.e., one is parallel and the other one is
perpendicular to the distance vector. Therefore, with increas-
ing quadrupole contribution the dipoles turn inward by an
angle �. The optimal angle �opt that minimizes the energy as
a function of s is shown in Fig. 5. Both, dipole and quadru-
pole, are frustrated on a triangle and cannot reach their low-
est possible pair interaction. However, the pure quadrupole
almost reaches its 90° T configuration and turns by �s=1
=arccos�15 /28
0.75=43° out of the position of the pure
dipole. Hence, the angle to its neighbor is 86°. Although it is
difficult to extract precisely the turning angle from the ex-
perimental pictures of a three-particle cluster, it is roughly
estimated to be 30° �5°, which corresponds to 0.27s
0.5. This includes the values that give the Néel-type struc-
ture in larger clusters.

The low energy states for a symmetric 12-particle cluster
for different s are shown in Fig. 6. This cluster type is also
studied experimentally �see Fig. 2�. The pure dipolar case
forms the expected vortex. Increasing the quadrupole contri-
bution the vortex state is destabilized. There are two typical
low energy orientations for a pair of dipoles. The lowest
energy is achieved by parallel dipoles with a distance vector
parallel to the dipole vector �→→�. The lowest energy for
antiparallel alignment is achieved if the distance vector is
perpendicular to the dipole vector �↑↓�. The quadrupole in-
creases the energy of both configurations. Hence, the quad-
rupole suppressed the collinear states of the dipole. For s
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FIG. 4. The relative difference between dipole-dipole and
quadrupole-quadrupole energies as a function of s for two spheres
�with a diameter of one unit distance� pointing in the z direction
separated in the x direction by one unit distance.
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FIG. 5. �Color online� Optimal angle � �see text� for a three-
particle cluster as a function of quadrupole contribution s. The pure
dipole case �solid arrows� corresponds to �=0 rad.
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=0.3 the dipole contribution still forces the formation of a
vortex, but the influence of the quadrupole is already visible.
In a simplified way this influence can be described as a ten-
dency to form a zigzag, as all quadrupole dominated con-
figurations show some characteristics of a herringbone struc-
ture. One example is the herringbone ground state of
xy-quadrupolar systems on a hexagonal lattice as mentioned
in Sec. I. In case of the 3d-pinwheel state the zigzag forms
along an in-plane row �see Fig. 7�. Within the Néel state it is
visible when removing one sublattice.

Between s=0.35 and s=0.5 the Néel-type state is ob-
served. As can be seen from Fig. 4, at 0.35�s�0.45 the
dipole-dipole and quadrupole-quadrupole interactions con-
tribute almost identically to the energy. For s=0.45 the vor-
tex configuration is energetically not preferred anymore. To

show this quantitatively, we forced particles with s=0.45 into
the solution found for a 12-particle cluster and s=0.0. The
energy of the forced states has been evaluated to be Evortex

forced

=−1.60E↑↑, ENéel=−23.58E↑↑, i.e., Evortex
forced	ENéel. As it is not

possible to assign a direction to a quadrupole, we do not
compare the energy to the forced pinwheel state but the s
=0.8 state �see below�. Forcing the moments into this struc-
ture results in an energy of Es=0.8 state

forced =−19.07E↑↑. Hence, the
120° Néel state for s=0.45 has a significantly lower energy
than the pure dipole or pure quadrupole structures. However,
in the latter case the energy per particle increases only by
0.38E↑↑, while it is 1.8E↑↑ for the vortex state.

If s exceeds 0.45 the 120° Néel state disappears and out-
of-plane components emerge. At s=0.8 the pinwheel state6

has formed. However, in this small cluster the pinwheel state

s�
0.
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s�
0.

3

s�
0.

35

s�
0.

4

s�
0.

45

s�
0.

6

s�
0.

8

s�
1.

0

FIG. 6. Monte Carlo simulations of 12-particle clusters and varying quadrupole contribution. The dipolar state �s=0� shows the typical
vortex state. In case of the pure quadrupole �s=1� the equatorial plane is plotted as the parity is even and the up and down directions are
degenerate. Hence, in this case it does not make sense to interpret the black caps as magnetic material. The cluster represents a section of
the well-known pinwheel structure �Refs. 4 and 5�. For intermediate s the 120° Néel structure appears similar to the ground state observed
in experiments.
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FIG. 7. �Color online� Monte
Carlo simulation of 108-particle
clusters. In case of s=0 each sex-
tant shows a collinear state, which
is, therefore, called quasiferro-
magnetic. For s=0.4 almost the
full area shows the 120° Néel
state but at the edges some weakly
bound spheres have deviating ori-
entations. The three arrows in the
lower right corner schematically
show the high symmetry of the
unit cell. Choosing this unit cell,
the cell boundaries are given by
the honeycomb lattice drawn on
top of the simulated structure
�dashed line�. At s=1 the pin-
wheel state forms, for which—as
in Fig. 6—only the equatorial
plane is drawn.
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of the quadrupole �s=1� differs from the state formed in case
of s=0.8. In the latter case the small dipole moment contri-
bution still prefers a vortex flux closure. Note that the sym-
metry of the triangle, formed by the pinwheel centers �Fig. 6,
s=0.8�, is consistent with the cluster symmetry. This symme-
try allows the formation of three vortices coupling via an
additional vortex in the center. For the pure quadrupole the
triangle, formed by the pinwheel centers, is rotated by 
 /6.
This position allows a complete pinwheel in the lower part of
the cluster �Fig. 6, s=1.0�. However, this difference is only a
size effect and vanishes with increasing cluster size due to
frustration, i.e., in large systems it is geometrically impos-
sible to form a perfect dipole vortex at every pinwheel at the
same time.

Obviously, the 120° Néel state only appears in a small
region of 0.35�s�0.5, i.e., where dipole-dipole- and
quadrupole-quadrupole-interaction energies are almost equal.
The borders of this region might change with cluster size and
due to the influence of higher-order moments. However, for
the investigated clusters the size has an influence below the
presented resolution of �s=0.05. The lower and upper
boundaries of the 120° Néel state are within the intervals
0.35s0.4 and 0.45s0.5, respectively. This applies to
the edge-dominated 12-particle clusters �75% edge�, to the
27-particle clusters with almost equal amount of edge and
center spheres �55%/45%�, as well as to the area dominated
108-particle clusters �70% area�. From this we deduce that
the parameter space of stability only weakly depends on
cluster size even for larger clusters. This can be supported by
the following consideration. Due to the local quasiantiferro-
magnetic order the long-range dipole-dipole interaction is
suppressed, which then only acts at short range. The
quadrupole-quadrupole interactions drop faster with dis-
tance. Additionally, in one unit cell with quasiantiferromag-
netic order all quadrupole moments with m= �2 sum up to
zero.24 The nonvanishing Q20 does not contribute to a long-
range dipole-quadrupole interaction. Hence, the forces of
long-range interactions on the structure are suppressed and
finite-size effects are basically only local boundary effects.

On the other hand, the narrow region of s that shows
stability of the 120° Néel state suggests that this state is
sensitive to perturbations. Weakly bound spheres at the edges
of a cluster may easily point in a non-ground-state direction.

This is observed experimentally1 as well as in all simulations
with cluster of 27 particles or larger. An example demonstrat-
ing this behavior is shown in the upper right graph of Fig. 7.
For s=0.40 the 120° Néel state has formed on a 108-particle
cluster. As for large clusters it is likely �83%� that the 120°
Néel state does not freeze symmetrically with respect to the
cluster shape; some edge particles even point in the z direc-
tion.

The 120° Néel state is a superstructure on the triangular
lattice that has the full symmetry of a triangle itself. To em-
phasize the high symmetry, the honeycomb lattice is added
�Fig. 7�. Note that in a simple picture of point charges, pure
dipoles ��—�� would introduce three negative charges in
the center of the unit cell. The point-charge representation of
the quadrupole has the form ��−2� � −��. Combining di-
pole and quadrupole with s=0.4 results in a point-charge
distribution �inside-out� � 1

5 � � − 4
5 � � −1� ��. Hence, the

center charge that would strongly increase the energy is de-
creased. Additionally, the “ring” of the outer charges over-
laps with the neighboring unit cell, therefore, further decreas-
ing the magnetostatic energy.

The unit cell is made of three outward pointing spheres.
At the vertices of the honeycomb lattice three neighboring
spheres build a vortex. The sense of rotation alternates when
cycling through the corners of a hexagon.1 The ground-state
symmetry is, therefore, much higher than that of the pure
dipole. At first glance the symmetry of the pure quadrupolar
ground state is also very high, as it has, e.g., sixfold rota-
tional symmetry. On the other hand the latter one exhibits
chirality, which forbids mirror operations. Although we do
not want to measure symmetry, intuitively it seems that the
120° Néel state has the highest symmetry. One could say that
by decreasing the symmetry of the pair interaction, i.e., de-
stroying the parity, one increases the symmetry of the ground
state.

The transition from the high symmetry 120° Néel state to
the pinwheel state is realized via a state that is seemingly
disordered �see Fig. 8, left�: when increasing the quadrupole
strength, i.e., increasing s, the influence of the border de-
creases as the quadrupole-quadrupole interaction is less long
range than the dipole-dipole interaction. Furthermore, an out-
of-plane component emerges as the quadrupole tries to estab-
lish the pinwheel state. However, as the quadrupole becomes

s�
0.

55
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FIG. 8. Monte Carlo simulation of 108-particle clusters with s=0.55. In the left graph the state is shown using the standard representation
of capped spheres, while in the right graph the orientation of the dipole is neglected, i.e., only the orientation of the quadrupole is shown via
the white line of the sphere’s equatorial plane. While the left graph seems rather disordered the right one shows domains of a pinwheel state
coexisting with herringbone structure domains.
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the dominating part, it is already interesting to look at the
ordering of the quadrupole moments or in other words to
forget about the sign of the dipole. To do so one can use the
representation of quadrupoles used in the last graph of Fig. 6
even in the case of a non-negligible dipole moment. This
representation is realized in the right graph of Fig. 8. Some
pinwheels have formed in the upper right and lower left,
while the center and lower right form a herringbone struc-
ture. As shown above for 12-particle clusters the energy per
particle with s=0.45 is only slightly higher when forced
from a 120° Néel onto a pinwheel state. Obviously at s
=0.55 the transition to the pinwheels state, where 25% of the
particles have an out-of-plane component �pinwheel axis�,
takes place. Additionally, the directional order of the dipole
is gradually lost. As the dipole is sensitive to the presence of
edges there is a difference between center and rim. Hence,
the transition state depends on cluster size.

When on the other hand the dipole is increased, the inter-
action becomes more long range and the system has to
change from a quasiantiferromagnetic to a quasiferromag-
netic state �see Fig. 7�: in this situation the compromise be-
tween collinear and noncollinear states is a herringbone
structure �see Fig. 9�. As mentioned before, this structure is
rather typical for quadrupoles on a hexagonal lattice. Accord-
ing to the pole avoidance principle, on every finite cluster the
dipole eventually forces a flux closure and, consequently, the
herringbone structure cannot be monodomain but the domain
size will depend on cluster size. Hence, the occurrence and
the size of these domains are also a property depending on
system size.

In contrast to this, the states with a long-range order, i.e.,
the vortex of pure dipoles, the pinwheel state of pure qua-
drupoles, and of course the 120° Néel state at s
0.4, are
well characterized even by small clusters like the ones pre-
sented in Fig. 6. Hence, finite-size effects are important when
investigating phase transitions, critical exponents, domains,
and domain walls, while typical ground-state symmetries can
already form for very small clusters. As the simulations are
supposed to describe the experiment presented in Ref. 1,
where the clusters are rather small as well as gradually con-
structed, which suppresses domain formation, very large
clusters and domain formation are not discussed here.

Finally, the question arises to what extent the decision to
neglect higher-order multipole moments is justified. The ana-
lytical calculations give a small positive octopole moment.
The calculated quadrupole moment, however, is smaller than
the one required to form the 120° Néel state. The smaller
quadrupole would probably require a negative octopole that
reduces the dipole’s tendency toward a collinear state and,
therefore, to re-establish the 120° Néel state. A negative oc-
topole moment is not expected from a dipole layer shifted in
the positive z direction. Furthermore, only the dipole-
octopole interaction would decrease the stability of the col-
linear state, while the octopole-octopole interaction favors a
collinear state as well. Beyond these considerations of plau-
sibility we assume that the 120° Néel state is easily affected
by higher-order moments and that nonzero higher-order mo-
ments should be small compared to the quadrupole. Hence,
the interaction of the spheres cannot be modeled by an off-
center dipole inside the sphere as proposed earlier.1 When
shifting a dipole off center, higher-order moments emerge. If
a dipole of the form Q10 is shifted in the z direction, i.e., the
coordinate system in −z, and utilizing Eq. �4�, a quadrupole
Q20=2Q10z, an octopole Q30=3Q10z

2, and higher orders ap-
pear. As the spheres are separated by one unit distance, the
sphere radius is û /2. To get a quadrupole similar to s=0.4,
the dipole must be shifted by z= û /3, making the dipole-
dipole and the quadrupole-quadrupole energies identical.
Note that the dipole would still be inside the sphere. How-
ever, the emerging octopole would result in an octopole-
octopole energy that would be 70% of the dipole-dipole en-
ergy. Hence, the octopole would significantly change the
energy and the ground state, as both, dipole and octopole,
prefer a collinear state. The detailed influence of higher-order
moments, especially the octopole, is part of ongoing investi-
gations.

V. SUMMARY

It has been shown that hemispherical radially magnetized
caps have multipole moments beyond the dipole. A radially
magnetized hemisphere with constant capping thickness and
constant surface charge would have a potential with inver-
sion symmetry, i.e., a hemisphere with magnetic material on
the opposite side has the same magnetic potential. This can-
not explain the experimental results. If, on the other hand,
the magnetization or the magnetic surface charge decreases
toward the edge of the cap or the cap is magnetic only up to
a critical angle �c a quadrupole moment emerges. The quad-
rupole moment is the first and most important correction
term to the typical dipole approximation. The quadrupole’s
even parity is required to destroy the inversion symmetry,
ensuring that upon rotation of the spheres—interchanging
capped and noncapped hemispheres—the energy changes. As
the presented model for the magnetic cap is an oversimplifi-
cation, it has not been used to extract quantitative values for
the quadrupole moment. In lieu thereof the mixing from di-
pole and quadrupole was evaluated from the pure dipole to
the pure quadrupole and for magic cluster sizes up to 108
particles.

The 120° Néel state observed in experiment is stable only
in a small region of mixing ratios where dipole-dipole and
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FIG. 9. �Color online� Monte Carlo simulation for a 108-particle
cluster with s=0.3. The cluster shows several domains with a her-
ringbone structure. The largest domain is highlighted.
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quadrupole-quadrupole interactions are comparable. Assum-
ing that moments beyond the quadrupole are negligible, it
has been possible to estimate the relative strength of the
quadrupole moment—compared to the dipole—from the cap
orientations in a three-particle cluster. The result is in good
agreement with the required strength of the quadrupole mo-
ment to form the 120° Néel state in larger clusters.
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APPENDIX: THE COEFFICIENTS Al

To calculate the coefficients Al��� one starts with integrat-
ing Eq. �2� over the cap surface, including a charge density
varying with cos �. When the integration stops at � the co-
efficients have the form

Al��� =
Pl−2�cos �� − Pl�cos ��

�2l − 1��2l + 1�

+
cos � �Pl−1�cos �� − Pl+1�cos ���

2l + 1

−
Pl�cos �� − Pl+2�cos ��

�2l + 3��2l + 1�
, �A1�

where Pl is the Legendre polynomial of order l. If �=
 /2
Eq. �A1� simplifies to

Al�


2
	 =�

1

3
, l = 1

1 + �− 1�l

8�

�− 1�l/2+1

�
l − 1

2

�
l + 4

2

, l 	 1.� �A2�

The first factor is only nonzero if l is even. Hence, for �
=
 /2 the only odd moment is the dipole moment. All
higher-order moments are even. The main correction to the
dipole is given by the second order, the quadrupole moment.
If � differs from 
 /2 additional odd moments—like the oc-
topole in Fig. 10—emerge but are negligible for �	
 /3.
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FIG. 10. The coefficients Al��� as a function of �: l=1 �solid
line�, l=2 �dotted dashed�, and l=3 �dotted�. Note that for decreas-
ing � the influence of A2��� increases relative to A1���, i.e., the
quadrupole becomes more important.

MIKUSZEIT et al. PHYSICAL REVIEW B 80, 014402 �2009�

014402-8


