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We report an experimental measurement of Landau-Zener transitions on an individual flux qubit within a
multiqubit superconducting chip. The method used isolates a single qubit, tunes its tunneling amplitude � into
the limit where � is much less than both the temperature T and the decoherence-induced energy level broad-
ening, and forces it to undergo a Landau-Zener transition. We find that the behavior of the qubit agrees to a
high degree of accuracy with theoretical predictions for Landau-Zener transition probabilities for a double-well
quantum system coupled to a nonMarkovian 1 / f magnetic flux noise.
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Adiabatic quantum computation �AQC� is a quantum me-
chanical method for solving hard computational problems.1

In AQC one encodes a computational problem in a suitable
physical system. If one can somehow place the system in its
ground or lowest-energy state, the structure of that ground
state then reveals the answer to the problem. To find that
ground state using AQC, one starts by engineering a simple
Hamiltonian or energy functional for the system and by plac-
ing the system in the ground state of this simple Hamil-
tonian. Then one gradually deforms the Hamiltonian of the
system from the simple form into a complex Hamiltonian
whose ground state encodes the answer to the problem. If
this deformation is sufficiently gradual, then the transforma-
tion of the state of the system is adiabatic, and the system
remains in its ground state throughout the deformation. AQC
is known to be a universal model of quantum computation.2

A key question of AQC is whether adiabaticity can be
maintained throughout the computation. The Landau-Zener
�LZ� transitions may take the system out of its ground state,
unless the time over which one transverses the point of the
minimum energy gap during the course of a computation is
longer than the instantaneous coupling between ground and
excited states divided by the minimum gap squared. This is
the case for both isolated systems3,4 and systems with dissi-
pation and decoherence.5 Just which hard problems can be
encoded in such a way so that adiabaticity can be maintained
over reasonable times remains an open question. Moreover,
for some optimization problems, an excited final state with
sufficiently low energy could provide an acceptable solution
and therefore the adiabaticity condition may be relaxed.

Equally important question is whether interactions be-
tween the computer and its environment can spoil the com-
putation. Unlike in the gate model of quantum computation,6

the effects of an environment on AQC are less understood.
While it is now clear that AQC has fundamental advantages
over the gate model in regards to robustness against
decoherence,7–9 there does not yet exist an equivalent of the
threshold theorem6 although fault tolerant schemes for AQC
have been proposed.10 Nonetheless, a clear understanding of
how LZ transitions are affected by an environment represents
an important step forward.

For large-scale hard problems, it is inevitable that any
implementation of AQC will encounter minimum gaps that

are smaller than temperature T and decoherence rate. In or-
der to understand the effects of environment in this limit, we
attempt to first understand in detail how environment affects
LZ transitions in individual qubits. We purposely operate in a
regime in which the decoherence time scale �� is much
shorter than the adiabatic passage, and in which T��, where
� is the tunneling amplitude. While evidence of LZ transi-
tions has been reported before in molecular nanomagnets11

as well as superconducting qubits,12–14 this Brief Report re-
ports, direct measurement of LZ transitions in a supercon-
ducting flux qubit in the high T and strong decoherence re-
gime.

In the original LZ problem, the system Hamiltonian is

HS = − ���x + ��z�/2, �1�

with �=�t, where �x,z are the Pauli matrices and � is the
sweep rate for the energy bias. We take �0� and �1� to be
eigenfunctions of �z, denoting the “left” and “right” states in
a double-well potential which can represent the two flux
states in a superconducting flux qubit. If at t=−� the system
starts in state �0�, then the probability of finding it in the
same state at time t=+� is exactly given by3,4

PLZ = e−	�2/2�. �2�

If Hamiltonian �1� describes the dynamics of the two low-
est energy states in a multiqubit adiabatic quantum computer
close to the energy anticrossing, then Eq. �2� has the prob-
ability of failing to reach the final ground state in the
decoherence-free system. Now suppose that the qubit is
coupled to an environment. The total Hamiltonian H=HS
+HB+Hint comprises system �1� and environment HB parts,
and an interaction Hamiltonian

Hint = − Q�z/2 �3�

that provides coupling between the qubits, and an operator Q
that acts on the environment. Here, we only consider longi-
tudinal coupling to the environment, which represents flux
noise affecting the flux bias in a flux qubit. We do not specify
HB explicitly because if environmental fluctuations obey
Gaussian statistics then all averages can be expressed in
terms of the spectral density S�
�=�−�

� dtei
t�Q�t�Q�0��.
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Here, � . . . � denotes the averaging over environmental de-
grees of freedom. Hamiltonian �3� is what one expects for
the effective interaction Hamiltonian for a large-scale AQC
at the anticrossing, regardless of the type of coupling of in-
dividual qubits to the environment.9

An immediate consequence of coupling to the environ-
ment is that the relative phase between the two terms in the
wave function that correspond to the two energy levels be-
comes uncertain after some time; an effect known as dephas-
ing or decoherence. Due to energy time uncertainty, the pure
dephasing time �� is inversely related to the uncertainty in
the energy eigenvalues or so called broadening W of the
energy levels: ���1 /W. If W ,T��, then the system will
have a well-defined ground state separated from the excited
state by a well-defined gap and thermal transitions will be
suppressed. One would then expect that Eq. �2� holds even in
the presence of noise although � may be renormalized by
high-frequency modes of the environment.15,16 The important
question now is what happens when W ,T�� so that the
broadened ground and first excited states merge into each
other and thermal transitions completely mix them up. Here,
we answer this question both theoretically and experimen-
tally.

In the regime ��W, the dynamics of the system becomes
incoherent. Using second-order perturbation in � and assum-
ing that the environment is dominated by low-frequency
Gaussian noise, the incoherent tunneling rate from �0� to �1�
is given by17

01��� =�	

8

�2

W
exp�−

�� − �p�2

2W2 	 , �4�

W2 =
 d


2	
S�
�, �p = P
 d


2	

S�
�



, �5�

with backward transition given by 10���=01�−��. The tran-
sition rates therefore exhibit a Gaussian peak with a center
shifted away from the resonance point �=0. The width of the
transition region, W, which is a measure of the environmen-
tally induced broadening of the energy levels, is thus given
by the rms value of the noise. In thermal equilibrium, the
width W and the position �p of such macroscopic resonant
tunneling �MRT� peaks are related by17

W2 = 2T�p. �6�

These predictions have been experimentally confirmed using
superconducting flux qubits.18 Let us now return to the LZ
problem. Suppose at t= ti the system starts from �0� with
probability P0�ti�=1. In the incoherent tunneling regime
���W�, the off-diagonal elements of the density matrix van-
ish much faster than the evolution of the diagonal elements
�within timescale ���1 /W�1 /01,10�. Thus to find P0�t�,
one needs to solve the equation19

Ṗ0 = − 01P0 + 10�1 − P0� . �7�

In the low-temperature regime T�W �but can be ���,
Eq. �6� requires that W�2�p, thus separating the peaks of
01 and 10 such that 01�−�p��01��p�. One can therefore
neglect the second term in Eq. �7�; because at points where

10 is peaked, 1− P0�0, and at all other points, 10�0. The
probability P0 will then be approximately given by

P0�tf� = exp�− 

ti

tf

01���d�	 = e−�	�2/2���, �8�

� =
1

�2	W



�i

�f

exp�−
�� − �p�2

2W2 	d� . �9�

For �i→−�, this equation becomes

� =
1

2�1 + erf � f − �p

�2W
�	 . �10�

If also � f →�, then �=1, yielding �2�, which is exactly the
LZ transition probability in a completely coherent system, in
agreement with previous studies of dissipative Landau-Zener
transitions.5 If the condition W�T does not hold, then one
must keep all of the terms in Eq. �7� and calculate P0 nu-
merically.

We have experimentally tested the above predictions by
examining LZ transitions using a single decoupled qubit in a
28 qubit chip designed for adiabatic quantum computation.
The sample was cooled down in a magnetically shielded di-
lution refrigerator with heavily filtered lines to a base tem-
perature of about 10 mK. The qubits on the chip were com-
pound Josephson-junction �CJJ� rf-superconducting quantum
interference device �SQUID� qubits as schematically shown
in Fig. 1�b� and described in Ref. 18. Each qubit consists of
a main loop and a CJJ loop subjected to external flux biases
�x and �x

cjj, respectively. The CJJ loop is interrupted by two
nominally identical Josephson junctions connected in paral-
lel. This device can be operated as a qubit for �x

cjj

� �0.5,1��0 and �x�0, where �0 is the flux quantum. The
two oppositely circulating persistent current states corre-
spond to the states �0� and �1�. The bias energy is �
=2�Ip��x, where the Ip is the persistent current. The param-
eter � is the amplitude of the flux tunneling between the two

FIG. 1. �Color online� Schematics of �a� the pulse sequence for
the LZ measurements, �b� a CJJ rf-SQUID qubit, and �c� the qubit
potential during the measurement.
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states. Both �Ip� and � are controlled by �x
cjj. Maximum �

�
p�20 GHz, where 
p is the plasma frequency of the rf
SQUID, is obtained at �x

cjj=�0 /2. For �x
cjj��0, �→0 and

the system becomes localized in �0� or �1�. One can then read
out the qubit by measuring the flux via an inductively
coupled dc SQUID �not shown�.

We isolated one of the qubits by tuning the coupling be-
tween that qubit and its neighboring qubits to zero, which
allowed us to perform single qubit LZ measurement. The LZ
measurement is performed using the pulse sequence shown
in Fig. 1�a�: the qubit is first initialized in one of the states
�0� or �1� at a bias �x=�x,i �Fig. 1�a� regions i to iii� and then
the bias is linearly swept from �x,i to a final value �x,f
�regions iv and v�, at which point the qubit is measured �re-
gion vi�. A cartoon of the qubit potential during the pulse
sequence is shown in Fig. 1�c�. The probability P0�tf� of
finding the qubit in the same state �0� as it started from was
measured by repeating the above process 2048 times for each
value of the sweep rate �. Figure 2 shows the probability

P0�tf� in logarithmic scale as a function of 1 /�. The result
shows exponential dependence upon 1 /�, in agreement with
Eq. �8�.

Next we experimentally verify Eq. �10�. We first deter-
mine �, W, and �p by measuring 01 and 10, as described in
Ref. 18. Figure 3�a� shows example plots of 01 and 10 as a
function of bias �x for the above qubit at �x

cjj=−0.749�0.
The line shape of the resonant peak fits very well with the
Gaussian function �4�, providing �, W, and �p as fitting pa-
rameters. The deviation from the Gaussian fit at the tails
���x��2.5m�0� is due to transition to the second energy
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FIG. 2. �Color online� LZ probability as a function of inverse
sweep rate for different values of �. The lines are linear fits to the
data. �x

cjj /�0=−0.7395, −0.742, −0.7445, −0.747, −0.7495, and
−0.752 from top to bottom. −3 −2 −1 0 1 2 3
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FIG. 3. �Color online� �a� First MRT peaks in 01 and 10 and
their best fits with Eq. �4�. �b� The experimental value of � as
defined in Eq. �8� as a function of the final bias � f. The solid line
shows the theoretical curve Eq. �10� using the parameters obtained
from the best fit in �a�. Deviations from the fits at ��x,f�
�2.5 m�0 are a result of tunneling to the second level in the target
well.
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FIG. 4. �Color online� �a� Plot of � vs flux bias �x
cjj applied to the compound junction. The lower curve is � measured with MRT and

the upper curve is � measured with LZ. In the region where the two curves overlap they agree within the error bars. �b� Experimental �dots�
and theoretical �line� ground-state probabilities Pg=1− PLZ for fixed �=0.05�0 /�s as a function of �. The dashed line indicates the
crossover between the incoherent and coherent regime defined by W��.
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level in the target well.18 For the data shown in Fig. 3�a�, we
found �=0.082�0.002 mK, W=123�2 mK, and �p
=354�3 mK. Equation �6� then gives the effective tem-
perature of the sample to be T=21�1 mK. Notice that the
condition T�W�2�p is approximately satisfied and there-
fore Eq. �8� should be sufficient to describe the LZ probabil-
ity.

The transition probability as a function of flux bias was
then measured for the same CJJ setting as in Fig. 3�a�. Figure
3�b� shows �=−ln P0 / �	�2 /2�� as a function of �x,f using
the extracted �. The data start from zero where �x,f ��x,i
and show a plateau at ��1, in agreement with the theory.
We have also plotted, on the same graph, the theoretical pre-
diction of Eq. �10�, using �p and W extracted from the MRT
in Fig. 3�a�, and found very good agreement with the experi-
ment with no extra fitting parameters.

The measurements of the transition rates and the LZ prob-
ability allow us to extract � as a function �x

cjj for a large
range of �.20 Exponential dependence on �x

cjj is evident in
Fig. 4�a�. Figure 4�b� plots the LZ probability, for a fixed
value of �, as a function of � for a quite wide range of �
�from 27 �K to 1.25 K� together with the theoretical
prediction.21 In the figure we have identified a line �=W,
which separates coherent from incoherent tunneling regime.
Excellent agreement with theory is observed.

We have reported on an experimental probe of the dynam-
ics of a flux qubit in the practically interesting regime for
adiabatic quantum computation, where the energy gap � is
much smaller than both the decoherence-induced energy
level broadening W and temperature T. We find that the tran-
sition probability for the qubit quantitatively agrees with the
theoretical predictions. In particular, we demonstrate that in
this large decoherence limit, the quantum mechanical behav-
ior of this qubit is the same �except for possible renormal-
ization of �� as that of a noise-free qubit, as long as the
energy bias sweep covers the entire region of broadening W.
The close agreement between theory and experiment for a
single qubit undergoing a LZ transition in the presence of
noise supports the accuracy of our dynamic models, includ-
ing both the noise model and the model of a single supercon-
ducting qubit. Future experiments will test the behavior of
multiple coupled qubits undergoing a LZ transition in the
presence of noise.
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