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Pulsed-field magnetization experiments extend the typical metamagnetic staircase of CuFeO2 up to 58 T to
reveal an additional first-order phase transition at high field for both the parallel and perpendicular field
configuration. Virtually complete isotropic behavior is retrieved only above this transition, indicating the
high-field recovery of the undistorted triangular lattice. A consistent phenomenological rationalization for the
field dependence and metamagnetism crossover of the system is provided, demonstrating the importance of
both spin-phonon coupling and a small field-dependent easy-axis anisotropy in accurately describing the
magnetization process of CuFeO2.
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Metamagnetism typically refers to any material that, upon
variation in the externally applied magnetic field, exhibits an
abrupt change in magnetization. In general, the phase dia-
grams of materials undergoing field-induced magnetic tran-
sitions can be rationalized according to the degree of mag-
netic anisotropy in the materials.1 In highly anisotropic
systems, spins are effectively restricted to align �anti�parallel
to the magnetic easy-axis and magnetic transitions typically
involve discontinuous spin reversals, leading to first-order-
type metamagnetic transitions. As for isotropic �weakly an-
isotropic� systems this directional restriction is relieved
�strongly reduced�, transitions in such materials often reflect
the onset of a continuous, second-order-type reorientation of
the local spins. Another source of exotic magnetic transitions
is geometrical magnetic frustration, which occurs when a
specific lattice geometry prevents the simultaneous minimi-
zation of all magnetic exchange interactions, thus introduc-
ing a high spin degeneracy.2 The simultaneous occurrence of
both these phenomena and the interplay between them leads
to intricate, diverse, and rich physics, yielding many capti-
vating magnetic phases ranging from spin liquids and ices to
multiferroic spiral phases.3–6

Here the focus is on the delafossite semiconductor
CuFeO2, an arche-type triangular lattice antiferromagnet, in
which the Fe3+ ions stack in hexagonal layers along the c
axis �Fig. 1�a��. In spite of the expected Heisenberg nature of
the Fe3+ spins �3d5, S=5 /2, and L=0�, CuFeO2 does not
order in the noncollinear 120° spin configuration at low tem-
perature. Instead, after undergoing successive phase transi-
tions at TN1�14 K and TN2�11 K, lowering the symmetry

from hexagonal �R3̄m� to monoclinic,7–9 the system adopts a
collinear, two-up two-down order, with moments aligned
�anti�parallel along the c axis �Fig. 1�b�� �Ref. 10�. The col-
linear ground state is supposedly stabilized through the
strong spin-lattice coupling in CuFeO2,7–9,11 which induces a
structural distortion through the “spin Jahn-Teller” effect.12,13

Alternatively, this scalene triangle distortion has been argued
to induce an easy-axis anisotropy, which was also used to
account for the observed Ising-type magnetism.14–16 An in-
triguing behavior arises when CuFeO2 is subjected to an ex-

ternal magnetic field B below TN2. With B �c, the spin system
has been found to successively assume a proper helical-
ordered ferroelectric phase, a collinear three-up two-down
ordered phase, a phase with a magnetization plateau at one
third of the saturation value and a phase with steadily in-
creasing magnetization.5,15–18 Particular attention has gone to
the ferroelectric helical-ordered phase,5,19–21 which has since
also been stabilized in zero field through Al3+ or Ga3+

substitution.22–24 With increasing B�c, the magnetization
has been found to first increase steadily, then halt at a one-
third plateau before resuming a �quasi�linear increase at
higher fields.15,16 This paper presents pulsed-field magnetiza-
tion experiments, which extend the metamagnetic staircase
of CuFeO2 up to fields exceeding 58 T.25 An additional high-
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FIG. 1. �Color online� �a� Schematic crystal structure of CuFeO2

�R3̄m, a=b=3.03 Å, and c=17.17 Å�. To avoid confusion, crystal
directions are referred to using the hexagonal description through-
out the paper. ��b�–�e�� Spin structures and lattice symmetries in
various field-induced phases of CuFeO2 �B �c�, �b� collinear four-
sublattice phase, �c� ferroelectric helical phase, �d� collinear 5SL
phase, and �e� collinear 3SL phase.
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field first-order phase transition is observed for both parallel
and perpendicular configurations, above which virtually
complete isotropic behavior is retrieved, indicating the re-
covery of the undistorted triangular structure. Moreover, a
consistent phenomenological interpretation is provided, com-
bining all magnetic terms deemed to be important in
CuFeO2.

As depicted in Fig. 2, the magnetization process for both
B �c and B�c shows a cascade of phase transitions, in ex-
cellent agreement with literature.5,15–18,26 As B� increases, the
spin system successively rearranges to the helical-ordered
phase at Bc1

� �7.2 T �Fig. 1�c�� and the collinear three-up
two-down phase at Bc2

� �13.0 T �Fig. 1�d��. Recent synchro-
tron x-ray diffraction studies up to 40 T revealed the strong
correlation between the spin Jahn-Teller lattice distortion and
the magnetization process in CuFeO2; as M increases, the
extent of the distortion decreases accordingly.16,18 Since the
induced magnetic anisotropy �D� is directly coupled to the
distortion, one may assume it also diminishes correspond-
ingly with B; exhibiting steps at first-order transitions and
continuously decreasing in �quasi�linear phases. Moreover, at
Bc2

� , the symmetry of the distortion is increased, yielding a
lattice of isosceles triangles.9 At Bc3

� �19.7 T, the magneti-
zation jumps to a plateau phase at one-third of saturation,
signaling a collinear two-up one-down order �Fig. 1�e��,16,18

which is consistent with an expected nonzero D and pulsed-
field nuclear forward scattering experiments.27 At Bc4

�

�32.4 T, the system undergoes a second-order transition,
above which M starts growing continuously, indicating
gradual canting of the spins away from collinearity. By ex-
tending the experimental field of view to higher fields, the
persistence of this �quasi�linear increase up to Bc5

� �53.3 T
could be determined, where an additional metamagnetic tran-
sition is identified. Above this transition, up to 58.3 T, M
grows steadily once more, with slightly different slope. In
short, below Bc4

� magnetic transitions are of first order, ex-
hibiting significant hysteresis and large magnetization steps.
From Bc4

� on �second-order transition�, M mostly increases
continuously with B� and magnetization plateaus are absent.
In terms of metamagnetism, this corresponds to a crossover
from a highly anisotropic regime �with abrupt spin flips� to a

weakly anisotropic regime �continuous spin reorientation�,
which is in line with the notion of progressive symmetry
increase and thus magnetic anisotropy reduction upon in-
creasing B.

For B�c, the magnetization process is quite different.
Starting from the zero-field collinear two-up two-down
phase, M shows a steady increase up to Bc1

� �24.8 T, where
a first-order transition brings the system in a plateau phase at
one-third of saturation, implying a three-sublattice �3SL�
structure. Above Bc2

� �30.0 T, the system exhibits a steady
increase in M after undergoing a second-order phase transi-
tion, indicating a continuous spin reorientation. The data in
Fig. 2 show this behavior persists up to Bc3

� �51.6 T, where
the system undergoes an additional first-order transition,
similar to that at Bc5

� for B �c. Contrary to previous claims,16

the behavior clearly remains anisotropic up to these transi-
tions. Though left unaddressed, a corresponding feature can
also be observed around 52 T in the �dM /dB� vs B data
previously recorded in a single turn-coil measurement up to
100 T �8 K�.26 At fields above both these transitions, M
shows virtually isotropic behavior, growing �quasi�linearly
up to 58.3 T. This absence of anisotropy suggests a full sym-
metry recovery and thus retrieval of the undistorted triangu-
lar lattice at these fields.

To elucidate the nature of the high-field spin structures,
we introduce a simple classical spin model for a single tri-
angular sheet, which includes the primary terms in the spin
Hamiltonian

H = − g�B · �
i

Si + �
i,j

JijSi · S j − �
	i,j


bJij�Si · S j�2

− D�B��
i

Siz
2 , �1�

where Jij is the exchange coupling between sites i and j, b is
an effective �nearest neighbor only� biquadratic interaction
originating from the spin-lattice coupling �bond-phonon
model�,3,28 and D�B� is the anisotropy constant ��0 for an
easy axis along z�. The first �Zeeman� and last �anisotropy�
terms sum over all sites i in the magnetic unit cell while the
summation in the exchange and biquadratic terms includes
all interactions within that unit cell. The high-field magneti-
zation process is qualitatively similar for both field configu-
rations; first the spin system exhibits a one-third magnetiza-
tion plateau, implying a 3SL structure, after which M starts
increasing steadily, indicating a continuous reorientation of
the 3SL spins. To capture this magnetic behavior, we thus
study the spin Hamiltonian of the 3SL structure on a single
sheet. As the lattice distortion persists up to at least 40 T for
both field configurations,16 a nonzero D may be expected up
to these fields. Having three inequivalent spins, there are
three unique first-�J�, second-�J†�, and third-neighbor �J‡�
couplings per spin in one magnetic unit cell �Fig. 3�a��. The
Hamiltonian becomes �using g=2, Si=eiS �unit vector e,
classical spins� and pij =ei ·e j�

H = − 2�BSB · �
i

ei + CS2�p12 + p13 + p23� + 9J†S2

− GS4�p12
2 + p13

2 + p23
2 � − D�B�S2�

i

ei,z
2 , �2�

where the exchange constant C= �3J+3J‡� and the spin-

FIG. 2. �Color online� Pulsed-field magnetization process for
both B �c �red/light gray� and B�c �blue/dark gray� at 1.5 K. Inset:
Zoom in on high-field region.
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lattice constant G=3bJ. The anisotropy D�B� is approxi-
mated to be “antiproportional” to M�B�; as M approaches
saturation, D vanishes accordingly. Note that the inclusion of
further neighbor interactions has only a trivial effect; the
third-neighbor interactions merely add to C while the
second-neighbor interactions only shift the total energy as a
whole.

We determined the spin directions e1, e2, and e3 corre-
sponding to the minimum energy per unit cell at a given field
B by performing numerical minimization of Eq. �2�. In ex-
amining the corresponding simulated magnetization curves,
one finds that having both the anisotropy constant D�B� and
the spin-lattice constant G nonzero is a prerequisite for good
qualitative agreement with experiment; with D=0 the mag-
netization process becomes isotropic while a nonzero G is
required to stabilize a magnetization plateau for B�c.
Matching the simulated magnetization curves with experi-
ment yields estimates for the exchange, anisotropy, and spin-
lattice constants of C=1.32 meV, D�25T�=0.021 meV,
�plateau� and G=0.0074 meV, respectively, the resulting
curves are plotted in Fig. 4. Taking only first-neighbor inter-
actions, we can estimate JS2 as �2.76 meV �32.0 K� and DS
�at 25T� as �0.052 meV �0.6 K�, in line with previous

estimates.11,14,15 For GS4 we estimate �0.29 meV �3.4 K�,
yielding a dimensionless biquadratic coupling b of �0.0056
�compared to �0.008 using estimates from Ref. 11�. With
these parameters the simulations are in striking agreement
with experiment. The spin-lattice interaction G �nondirec-
tional� stabilizes the one-third magnetization plateau in both
configurations while the directional anisotropy interaction D
widens the plateau for B �c and narrows it for B�c, leading
to the difference in plateau widths and above plateau in-
crease in M. Moreover, a nonzero G also induces a positive
�2M /�B2 in the latter, as is observed in experiment.

According to the minimum-energy solution the three spins
evolve as follows for B �c: below Bc4

� , the system is in the
collinear 3SL state, with two spins �S1 and S2� parallel to B�,
and one �S3� antiparallel. As depicted in the upper inset of
Fig. 4, from Bc4

� on, the “down” spin starts continuously
tilting from down to “up,” thereby increasing M. In optimiz-
ing the overall magnetic energy, the two up spins respond by
first moving slightly away from the c axis in the opposite
direction, before gradually returning after the down spin has
passed the basal plane. Due to the finite D and G, the two up
spins remain collinear �Fig. 3�b�� and the system also ac-
quires a small in-plane magnetization, which quickly grows
and slowly decreases with B� above Bc4

� �Fig. 4�. Although
the process is qualitatively similar for B�c �Fig. 3�c��, quan-
titatively it differs slightly due to the orthogonality of the
field and anisotropy directions in this case.

The model does not directly account for the additionally
observed high-field transitions; it predicts continuous evolu-
tion toward full saturation. However, the model assumes a
distortion-induced finite anisotropy D�B� while the associ-
ated elastic energy cost is not included in the all-magnetic
Hamiltonian. The amount of magnetic energy the system
gains upon having a distortion �and thus finite D� can be
approximated by taking the difference between the energy of
an isotropic spin configuration �e.g., a canted 120° configu-
ration, with all three spins tilted away from the field direction
while their projections in the orthogonal plane keep mutual
120° angles� and the minimum-energy solution of Eq. �2�
�lower inset of Fig. 4�. The first-order transitions at Bc5

� and
Bc3

� can then be identified as the point where the magnetic
energy gain no longer outweighs the elastic cost of the dis-
tortion, upon which the system reverts to the undistorted tri-
angular lattice, which is corroborated by the observed isot-
ropy in M above Bc5

� �Fig. 2�. We note the estimated
magnetic energy gain at this point is �0.42 meV per unit
cell �3 spins�, which is approximately the temperature scale
of the experimental data �3kT at 1.5 K is �0.39 meV�. This
is consistent with the fact that Bc5

� and Bc3
� are observed to

shift toward lower fields with increasing temperature. For an
isotropic lattice above Bc5

� , the model predicts a degenerate
set of spin structures, among which the aforementioned
canted 120° structure.

Despite its satisfactory and intuitive results, our simple
model has its limitations. Though the low-field collinear
phases can be modeled using Eq. �1�, being a phenomeno-
logical model meant to describe the high-field phases, it does
not capture the complex helical ferroelectric phase. A full
quantitative description of CuFeO2 would require the inclu-
sion of finite temperature, three dimensionality �recent work
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FIG. 3. �Color online� �a� Exchange interactions in the 3SL
structure on the two-dimensional isosceles triangle lattice.
Minimum-energy solutions of Eq. �2� for a 3SL structure with finite
D are depicted for �b� B �c and �c� B�c.

FIG. 4. �Color online� Simulated magnetization process �Eq.
�2�� in CuFeO2 for both B �c �thick, red� and B�c �thin, blue�. M is
plotted in the both the field direction �left axis, M�� and the plane
perpendicular to B �right axis, M��. Thick dark �thin light� gray
lines depict offset experimental data for B �c �B�c�. Upper inset:
field dependence of z components of individual spins for B �c.
Lower inset: estimated magnetic energy gain w.r.t. isotropic spin
structure �see text�.
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showed the significance of interplane couplings14,15,29,30�, a
more refined phonon model, quantum spins, and possibly
other interactions.31

Concluding, through pulsed-field magnetization experi-
ments, the metamagnetic staircase characteristic of CuFeO2
was extended to up to 58.3 T, revealing an additional first-
order phase transition for both magnetic field configurations,
which is proposed to be due to a reversed spin Jahn-Teller
transition. Above this transition, virtually complete isotropic
behavior is retrieved. A highly consistent phenomenological
rationalization for the magnetization process in both mag-
netic field configurations is developed, combining all mag-
netic terms deemed of importance in CuFeO2. Numerical
simulations based on the corresponding classical model
prove the pertinence of both spin-lattice and field-dependent

anisotropy interactions in CuFeO2. Combined with the mag-
netization measurements, a recovery of the undistorted trian-
gular lattice structure is anticipated at high fields. The under-
lying intuitive concept of progressive symmetry increase as
the degree of frustration in spin Jahn-Teller distorted systems
diminishes is rather universal, as it relies solely on energy
arguments. Indeed, a similar high-field transition has been
observed recently in HgCr2O4 and corresponding transitions
may be expected in related spinel systems.6
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