PHYSICAL REVIEW B

VOLUME 8, NUMBER 3

1 AUGUST 1973

Spin Correlation Functions in Cu(NH,),PtCl, f

Z. G. Soos* and T. Z. Huang
Department of Chemistry, Princeton University, Princeton, New Jersey 08540
J. S. Valentine

Department of Chemistry,
Douglass College, Rutgers University, New Brunswick, New Jersey 08903

R. C. Hughes
Sandia Laboratories, Albuquerque, New Mexico 87115
(Received 12 March 1973)

The angular dependence of the exchange-narrowed Lorentzian EPR line in Cu(NHj),PtCl,, a
crystal with magnetically equivalent square planar Cu(NHj),* sites, is shown to provide a
direct evaluation of several high-temperature Fourier components of the spin autocorrelation
function C(t)=4(S§()S5(0)) and of C%(t). The angular dependence of the “10/3” effect observed
at X and @ bands supports the Blume-Hubbard model for spin correlation functions., The en-
hanced w=0 Fourier components are consistent with largely one-dimensional exchange in
Cu(NH;),PtCl, and the w=0 component of the four-spin correlations (S§(t)S%,, (t)S%,,(0)S$(0))
satisfies a numerical bound due to Carboni and Richards for finite one-dimensional chains.
The method is applicable to any exchange-coupled paramagnetic crystals with magnetically
equivalent sites and provides a direct test for theoretical models of spin correlation functions.

I. INTRODUCTION

Isotropic, or very nearly isotropic, exchange in-
teractions occur in a wide variety of inorganic
crystals? containing paramagnetic ions and in many
organic free-radical solids.? An effective Heisen-
berg exchange Hamiltonian®

3e= 20 J34S; + Sy (1)
i<j

describes the electrostatic interactions between
weakly overlapping orbitally nondegenerate sites
with spins §,. In most cases of interest, the ex-
change constants J;; are significantly larger than
spin-spin interactions such as dipolar or hyperfine
couplings, The exchange then dominates the spin
dynamics. Both neutron-diffraction* and magnetic-
resonance® studies sample Fourier components of
spin correlation functions and have focussed at-
tention on the general questions of spin dynamics
arising from 3C,. The normalized two-spin cor-
relation function

Cy;(t)=[3/S(S+1)](S%(2)S%(0)) (2)

has been investigated primarily for the case i=j,
with C(#)=Cy;(¢). The two-spin autocorrelation
function C(#) has been computed by Windsor® for
classical spins, by Blume and Hubbard’ at high
temperature, and by Carboni and Richards® for fi-
nite linear chains. A Gaussian form for C(¢) was
originally suggested by ‘Anderson and Weiss® for
exchange-coupled spins. The time evolution of
S(¢) is given by 3C,,

S:(t)=em,wn S:(O) e"xe“" . (3)

loo

In Eq. (2), () denotes the thermal average. The
two-spin correlation function C;;(#) thus occurs in
a variety of paramagnetic solids. Neutron diffrac-
tion involves the two-spin correlation functions and
is consequently simpler to analyze than the ex-
change narrowing of EPR lines, where electron di-
polar interactions require four-spin correlations.
The analysis of EPR linewidths has nevertheless
provided information about spin correlations, es-
pecially in the special case of one-dimensional ex-
change encountered in (CH,;),NMnCl, (TMMC) ! and
various copper salts, !

We show here that the angular dependence of the
high-temperature EPR linewidth provides a sim-
ple direct method for obtaining Fourier compo-
nents of spin correlation functions in exchange-
coupled systems, The method is illustrated for
Cu(NHj;),PtCl,, hereafter called CTP. CTP pro-
vides several important advantages over previously
studied copper salts, the most important of which
is that the square-planar copper tetrammine (CT)
complexes are magnetically equivalent.

The central idea of the present method is to take
advantage of the isotropy of 3C, in spin space, re-
gardless of the form of the exchange constants Ji;
=J(f;;). The spin correlation functions then sat-
isfy’

(S¢(2)85(0)) = 845 (S(2)S5(0)) 4)

for @, B=x,y,2. The general theories of magnetic
resonance®'® relate the width of an exchange-nar-
rowed line to the amplitude of local (dipolar and
hyperfine) fields and, for #T >J;;, to Fourier com-
ponents of spin correlation functions. The angular
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dependence of the local-field amplitudes can readily
be computed via the second moment and are sum-
marized in Table I for CTP. Since the spin corre-
lations arising from 3C, are isotropic, the angular
dependence of the EPR linewidth provides equations
in which the only unknowns are Fourier components
of various spin correlation functions. In Sec. IV
we obtain Fourier components of C(¢) and of C?(t)
which, for w #0, are in agreement with either the
Blume-Hubbard’ or the Anderson-Weiss® function.
The w =0 components are not correctly predicted
by these models and reflect the largely one-dimen-
sional exchange expected for stacked CT complexes.
The w=0 component of the four-spin correlation
(S%(t)S%,,(#)S%,,(0)S%(0)) is in qualitative agree-
ment with the Carboni-Richards® calculation for
finite linear chains.

There are other Cu(NH,)," crystals with magnet-
ically equivalent CT complexes'? and there are un-
doubtedly many other copper crystals with magnet-
ically equivalent sites, But previous careful line-
width studies, for example in Cu(NH;),SO,* H,0
(CTS)®® and in K,CuCl,+ 2H,0, }* were on crystals
with two inequivalent sites and were regtricted to
a few orientations of the external field Hy at which
the Larmor frequencies were equal. While such
complications can be treated theoretically, 5 it is
clearly advantageous to study spin dynamics first
in systems such as CTP or TMMC, '° with the max-
imum simplicity.

A second advantage of CTP is the occurrence of
a diamagnetic PtCl,~ complex between successive
CT’s, as seen in the crystal structure'® shown
schematically in Fig, 1. The PtCl,” complexes
provide a degree of magnetic dilution and lead to
comparable hyperfine and dipolar local fields. The
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FIG. 1. Schematic representation of the CTP crystal
lattice; the tetragonal ¢ axis is the crystal-needle axis.

in xy plane

analysis of the hyperfine interaction requires al-
most exclusively the two-spin autocorrelation func-
tion C(?) and is consequently straightforward. Di-
polar fields, by contrast, lead to the far more
complicated four-spin correlation functions,

A third advantage of CTP is that the exchange
falls conveniently between the standard X- and @-
band frequencies. Our experiments provide the
first detailed angular study of the “10/3” effect® !
named after the % linewidth ratio expected in an
isotropic powder when the Larmor frequency wy is,
respectively, much smaller and much larger than
J;;/%. Previous “10/3” studies in CTS'® pointed to
one-dimensional exchange, while those in
K,CuCl, - 2H,0" must be reinterpreted in view of
the unexpected temperature dependence.!” The
angular dependence of the “10/3” effect in CTP pro-

TABLE I. Local fields in Cu(NHj3),PtCl, (10~ G?).

Direction Dipolar second moment?®
of Hy secular nonsecular Hyperfine second moment?
0° intrachain interchain Am=+1 Am=x+2 secular nonsecular
Y 6.7 23.5 20.1 16.3 2.0 28.6
60° (yc) 0.5 21,2 30.1 13.8 16.9 21.1
45° (yc) 1.7 18.5 36.6 13.0 30.6 14.3
30° (yc) 10.7 11.1 34.0 12.9 43.3 7.9
¢ 26.8 5.9 28.2 12.2 55.1 2.0
30° (ac) 10.7 11.1 35.2 11.6 43.3 7.9
45° (ac) 1.7 14.3 41.2 12.5 30.6 14.3
60° (ac) 0.5 12.5 38.9 13.4 16.9 21.1
a 6.7 6.9 38.5 14.5 2.0 28.6

4=2.11 and spins quantized along gH,.
b, =2,216, g,=2.050; A,=210G, A,=40 G,

°p is the azimuthal angle in the yc plane (yc) or in the ac plane (ac).



vides strong evidence that, at least for high fre-
quencies, the diagonal four-spin correlation func-
tions are adequately represented by the Fourier
components of C2(¢).

The paper is organized as follows. The width of
the exchange-narrowed Lorentzian EPR line in
CTP is the principal experimental data presented
in Sec. II and shown in Figs. 2 and 3. The line-
width is analyzed in Sec. III in terms of hyperfine
and dipolar local fields, whose amplitudes are
summarized in Table I. The angular dependence
of the “10/3” effect is used in Sec. IV to obtain the
nonsecular components of the spin correlations.
The secular (w=0) Fourier components are then
obtained and interpreted in terms of one-dimen-
sional exchange along the CT stacks, and the re-
sults are compared with several choices for C(t).

II. EPR OF CTP

Deep-purple needles (maximum size about 3X0, 2
mm) of CTP were prepared by diffusing dilute
aqueous solutions of K,PtCl, (0.10 g in 5 ml of H,0)
and Cu(NH,),SO, (0.06¢ in 4 ml of H,O plus 1 ml of
concentrated NH,OH) at 4 °C for 5 days into oppo-
site ends of a 12-cm tube containing 11 ml H,O.
The crystal structure!® of CTP indicates infinite
alternating stacks of square planar CT and PtCl,™"
complexes, as shown in Fig. 1, and the long axis of
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FIG. 2. Peak-to-peak derivative EPR linewidth in

CTP at room temperature for ITIO in the ac and yc planes
at X band (@) and at @ band (I).
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FIG. 3. Peak-to-peak deriv_a_ltive EPR linewidth in
CTP at room temperature for Hy in the xy plane at X
band (@) and at @ band (I).

the tetragonal prisms is the needle axis. The para-
magnetism is associated with the 34° configuration
of Cu** and, for a square planar complex, the un-
paired electron is primarily in the d,2.,2 orbital.
As shown in Fig. 1, all the CT complexes are in the
xy plane perpendicular to the needle axis. The CT
and PtCl,"" complexes thus form interpenetrating
body -centered tetragonal lattices.

All EPR spectra were taken with a standard
Varian X-band (9.5-GHz) or @-band (35-GHz)
bridge at 100-kHz modulation. A single absorption
was observed for any orientation of ﬁo, and the line
was completely Lorentzian to at least five line-
widths, the experimental limit for single scans.
Particular attention was given to the shape of the
@ band line for Hyll¢, where the interchain secular
linewidth is small and nonsecular terms are sup-
pressed by the large w,. The cavity was purged
with a steady flow of N, gas to remove asymmetries
due to O, resonances. A more direct comparison
with theory (cf. Fig. 2 of Ref. 10) is given by the
shape of the absorption I(w) rather than the deriva-
tive I’(w). Since the CTP samples were too small
to observe I(w) directly with good signal-to-noise
ratio, I'(w) was recorded directly on a Fabritek
signal averager, averaged to good signal-to-noise
ratio and symmetry and then integrated in the Fab-
ritek. Good absorption line shapes were obtained
and were found to deviate negligibly from a Loren-
tzian. For example, at three half-widths from the
center, a Lorentzian I(w) is down by a factor of 10
from I(0), TMMC is down by a factor of 25 [as ex-
pected!® for I(w) between Lorentzian and Gaussian],
and a Gaussian is down by about 500, CTP is down
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by 12+1 and the deviation is even smaller closer

to the center of the line. Thus the absorption in
CTP is Lorentzian to within the experimental er-
ror. The extreme simplicity of a one-line spec-
trum was essential to establish Lorentzian behavior
far into the wings.

The X-band EPR spectra were unchanged at liquid
N,, and a 120 °K run at @ band also failed to change
the linewidth. A Weiss constant of 13 °K has been
estimated!® for CTP from susceptibility data down
to 77 °K, and lower temperature x data!® require a
smaller Weiss constant by about an order of mag-
nitude. A Weiss constant!® of about 3 °K is consistent
with a nearest-neighbor exchange of about 5000 G
in CTP, and thus with the J values deduced below
from the EPR linewidth, It should be noted, how-
ever, that the Weiss constant is a preliminary es-
timate'® and, further, that it can be related quan-
titatively to the exchange parameters J;;=J(r;;)
only if their distance dependence is known. The
high-temperature limit (27 > J) was thus expected
to hold for CTP at both 300 and 77 °K and the low-
temperature results were primarily to rule out any
anomalous effects as observed in K,CuCl, - 2H,0."

The coincidence of the CTP needle axis, of the
crystallographic tetragonal axis,'® and of the CT
g-tensor principal axes greatly simplified orienting
the crystal in the applied field ﬁo. Room-tempera-
ture peak-to-peak derivative linewidths at X and @
band are shown in Fig. 2 for ﬁo in the ac and yc
planes defined in Fig. 1. The linewidth anisotropy
in the xy plane, where the position of the line is
constant at g,, is shown in Fig. 3 for both X and
@ band.

Since all the S=3 CT complexes are magnetically
equivalent, the Zeeman interaction reduces to

ch=“8ﬁo'?§.l‘§l=“8ﬁ0"§'§’ (5)

where pp is the Bohr magneton, ITIO is the applied
static field, and 3= E,§, is the total electronic spin.
The Larmor frequency w, for ﬁ(,:Ho(sinO cosy,
sinfsing, cos#b) is axially symmetric for square-
planar CT complexes

Two(6) = ppHyg(6) = npHyl gk cos?6 + g2sin®6)/? ,

(6)
The position of the EPR line leads to g, =2.22
+0,01 and g,=2.05+0.01 and to principal g-tensor
axes that coincide with the crystallographic unit
cell axes. The g values are in complete agree-
ment with previous CT studies, 12:20

III. EXCHANGE NARROWED LINEWIDTH

The general theories of magnetic resonance®®
in exchange-coupled systems start with a zeroth-
order Hamiltonian

3Co =30z +3C; (7)

consisting of the Zeeman interaction (5) and the ex-
change interaction (1). Although the Larmor fre-
quency wo(6) in (6) depends on the orientation of the
external field, all the CT complexes in CTP have
the same Larmor frequency and ¥z is simply pro-
portional to a component of the total spin. The res-
onance absorption I(w — wg) is then given by®'®

Iw —wo)= (1/27) [_dt p(t) et @0t | @)

¢(t) is the correlation function for the decay of the
transverse magnetization

¢(t)=exp[-f;(t-7)zp('r)d1'] . )

Local dipolar and hyperfine fields are taken as per-
turbations to 3¢, and lead to small deviations Aw
from wy, with Aw <wy. The local-field correlation

function®'®'#

(1) ={Aw (1) Aw(0)) (10)

is the basic quantity to be computed. Its magnitude
$(0) is given by the second-frequency moment. Its
time dependence is governed by 3¢z +3C,, but the
Zeeman contribution can readily be treated exactly
and leads to the familiar secular and nonsecular
contributions.®

Exchange narrowing occurs if §(7) decays rapidly
in comparison to the times of interest in ¢(#).
When the stronger approximation

o (1)=olt)=exp[ -1 [~ 9(7)d7] (11)

holds, a peak-to-peak derivative width A H and
half-width at half-power I is obtained from (8) with

$V3AH=T= ["y(r)ar . (12)

The approximation (11) requires that 7, of the or-
der of %#/J, be much less than I'?, the times of in-
terest in ¢(#). It also requires that §(r) be inte-
grable, which is not the case, for example, in one-
dimensional!®! spin diffusion, when p(r)c 772,
The expression (12) for I" is basic to the analysis
of the CTP linewidth data summarized in Figs. 2
and 3. For one-dimensional motion, when (11)
fails, deviations from Lorentzian behavior are ex-
pected® and observed in TMMC!® and several Cu
systems. 11 The best chance for observing non-
Lorentzian behavior in CTP is at @ band with ﬁo
along the ¢ axis. There the secular dipolar inter-
actions are almost entirely due to spins in the same
stack, while the nonsecular interchain contribu-
tions are suppressed for wy>J/%. No deviations
from Lorentzian behavior were observed to about
seven linewidths, the experimental limit. As has
been shown? for several nearly one-dimensional
systems, very small interchain interactions are
sufficient to suppress the deviations and to give a
Lorentzian exchange-narrowed line. Thus, the
approximation (11) is consistent with the CTP
data.
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A. Hyperfine Field

The local-field correlation (7) contains both di-
polar and hyperfine contributions, We begin with
the hyperfine contribution, where (7) is simply
proportional to C(7) in the absence of transfer hy-
perfine terms.?! The hyperfine interaction between
the unpaired electron and the I= § Cu nucleus, for
either ®Cu or %Cu, is

}c,,_Z)I, .S . (13)

The pr1nc1pa1 axes of the hyperfine tensor coincide
with the g tensor and are, respectively, A,, 4,,
A, in the x, y, z coordinates of Fig. 1. Typical
values for CT are A,=210 G and A, =30 G.?* Fritz
and Keller?® doped CT into the isomorphous MGS
lattice and report A, =225 G, A,=30 G, without
presenting details of either their data or analysis.
We have used 4,=210 G, A, =40 G in computing the
hyperfine second moments in Table I. The larger
A, value represents in part the small but observ-
able I=1 nitrogen hyperfine of a CT complex.
The hyperfine field in the approximation (12) has
full axial symmetry about the tetragonal (need!:)
axis.

Neglecting the slow nuclear spin relaxation, we
obtain

r,= fou(a(°)+a(“coswut)C(t)dt (14)

for the linewidth contribution of the hyperfine inter-
action, The time evolution due to 3¢; is contained
in the cosw,t coefficient of the nonsecular term,
The secular and nonsecular contributions a‘® and
a'? represent, respectively, hyperfine fields par-
allel and perpendicular to the effective field gﬁo
along which the electronic spins are quantized.

The high-temperature second moments a‘© and a®’
for axially symmetric g and A tensors with collin-
ear principal axes are?®

© -5 k2(0)/g%6) , (15)

a® =34} AL /g(6)+ AL+ E*(6)] (16)
for spin I=3%; g(6) is given in (6), while

K?%(0)=A%g%cos?0+ g2 A}sin® (17)

E(6)= (A% -A%)g,g,sinfcosb/K(6)g2(6) . (18)

Except for 6=0 and 37, H, is not parallel to g,
and it is important to use the complete expressions
(15) and (16) for computing the second moments
a® and @ listed in Table I.

In the high-temperature limit, C(#) is an even
function’ and T', reduces to

I=a"g0)+a%glw,) , (19)

where g(w) are Fourier components of the autocor-
relation function
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2gw)= [T et C(t)at . (20)

The Larmor frequency w, is experimentally fixed,
while the magnitude of Hy, with Hy much larger than
either the dipolar or hyperfine fields, is varied to
satisfy the resonance condition (6). X- and @-band
EPR data thus provide the 9.47- and 34.9-GHz Fou-
rier components, respectively, as well as the sec-
ular component at w =0,

B. Dipolar Fields

Since electron dipolar interactions usually dom-
inate in paramagnetic crystals, the dipolar con-
tributions to () and to the linewidth I have been
analyzed in detail,®?® We follow here the treat-
ment of both secular and nonsecular contributions
given by Carboni and Richards, ® and focus attention
on the approximations that lead to the familiar Van
Vleck?® second moments, *+2

Dipolar interactions between point dipoles lead
to four-spin correlation functions® for o(r),

Comt)~(g587g)) (STNSIDSIOSTO)
(21)
where ¢, j, k, I refers to various CT sites in the
crystal and ¢#j, k#I, In the high-temperature
limit of uncorrelated spins, the £=0 result is

[3/25(5+1)]¢S57(0)S5(0)) = b . (22)

Using this result for ¢ >0 in (21) restricts C;;,;(¢)
to diagonal correlations of the form C;;;,(¢) or

C;;;: (1), whose dipolar coefficients are just the
terms in the usual second moment expressions.
The secular contribution for S= 3 is

5,8,25

9
MO = %’;—g(uos by - 1278, (23)

where the sum is the same for any CT site ¢ in
CTP, g=2.11 1s the average g value, and L i is the
angle between T; ; and the effective field gHo For
an orientation (6, ¢) of Ho, the effective field angles
®, @) are

cosp=[g,/g(6)]cosb . (24)

Thus gﬁo and ﬁo are parallel for 6= 0 and 3 7, when
(23) reduces to the usual expression® mvolvmg the

angle between Ho and T; j» The corresponding sec-

ond moment for A =+1 transitions is

w _ 90F*(up)*
MY = —2 "B

Tok ,%3 778 sinY;; cos?yy, (25)

and for Am =+ 2 transitions,

514 4

AMP = —ng (Ks) 2o ri¥sinty,; . (26)
167 o

The various dipolar second moments are listed in

Table I for g=2.11, with MS® further separated in-

to contributions from CT complexes in the same
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and in different stacks.

The dipolar entries in Table I contain several ap-
proximations beyond the restriction to diagonal
four-spin correlations. It is of course straight-
forward®'2® to retain g, and g, explicitly, and the
complete analysis never changes the g plus effective
field gH, result by more than a few percent.?® The
complete (secular and nonsecular) dipolar second
moment retains its axial symmetry about ¢. Ex-
cept for the small nitrogen hyperfine, 2° the CTP
linewidth is thus axially symmetric for w,<J/7
and the smaller xy anisotropy at X band shown in
Fig. 3 is expected. The point dipole approxima-
tion for (23), (25), and (26) can introduce 5% er-
rors, since the unpaired electron is largely in a
nonspherical d,2.,2 Cu orbital, The actual electron
distribution must eventually be reflected in the di-
polar second moments, as in the case of fully de-
localized 7 electron in organic solids.?2?

We now multiply each term in M, M, and
Méz’ by the appropriate diagonal four-spin correla-
tion function C,;;;(¢). Then we substitute into (12)
to obtain the dipolar contribution to the linewidth.
Finally, we use the high-temperature limit to ob-
tain the 0, wg, and 2w, Fourier components of
C;;1;(t). Each diagonal C,;;,(¢) contains, in the
most approximate decoupling, the square of the au-
tocorrelation function,

(81()S3(+)S7(0)55(0))

= (S1(2)S7(0)2C?(t) , (27)

which is independent of the site index i. The di-
polar linewidth then reduces to

Td= (M - M) £(0)+Mf,(0)+ MY flwo)
+MP f(2w,), (28)

where f(w) is a Fourier component of C(¢),
2fw)= [ C¥t)e'“tat . (29)

We have retained in (28) the possibility of different
intrachain secular contributions, denoted by
M;£,(0). As already mentioned, the analysis of di-
polar linewidths is complicated by the occurrence
of a variety of four-spin correlations, ® C; ,,(#),

all with potentially different Fourier components.
The diagonal correlations C;,;;(¢) in CTP can be
analyzed in terms of j=i+ (0, 0, +¢) in Fig. 1 for
nearest-neighbor intrachain correlations, with
Fourier components f; (w) related to the transform
of (S3(¢)S7.,1(#)S7.,,(0)S;(0)). The eight second-
neighbor interchain diagonal correlations arise for
j=i+(+3a, £3a, +3c) in Cyy,(t). Their Fourier
coefficients are approximated by f(w) in (29), since
we expect largely intrachain exchange in CTP and,
for spins in different chains, the strong decoupling
(27) is exact for vanishing interchain exchange.
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We approximate diagonal correlations for more
distant neighbors by f(w) as well and further as-
sume that f(w)=flw) for v #0. While it is plausi-
ble that corrections to the decoupling (27) should be
largest near w =0, where the long-time behavior is
important, our present motivation is to retain the
fewest number of adjustable parameters in (28).

In particular, the observed CTP linewidths are
given below to within experimental error with only
four dipolar Fourier components: f(0) and f;(0) for
interchain and intrachain secular components and
Sflwg), f(2wy) for nonsecular components. Thus, we
cannot extract corrections to the strong decoupling
(27) for w #0 from the present data. Neither can
our results justify introducing for w #0 any nondiag-
onal four-spin correlations, which vanish exactly only
at £=0 according to (22), Their contributions van-
ish in strong decoupling, but are comparable to the
corrections to (27) and must be included in more
accurate treatments, To our knowledge, the pres-
ent work provides the first experimental demon-
stration that two different secular components f(0)
and f;(0) must be used for interchain and intrachain
correlations,

IV. SPIN CORRELATION FUNCTIONS

The X- and @-band CTP linewidths in Figs, 2
and 3 are summarized in Table II. The dipolar
and hyperfine second moments in Table I contribute
to the linewidth I" as indicated in (28) and (19). The
angular dependence of I' thus provides equations in
which the Fourier components g(0), g(w), £(0),
£10), flw), and f(2w) are the only unknowns. A
consistent solution for these coefficients indicates
that, to experimental accuracy, the strong decou-
pling (27) is adequate for w #0,

We first examine the nonsecular (w #0) contribu-

TABLE II. Experimental and calculated peak-to-peak
linewidths (G).

Orientation

of A, X band Q band
6* ‘Expt. (21 G) Cale.? Expt. (£1 G) Calc.?
y 23.1 22,9 13.4 13.6
60° (yc) 29.4 28.6 20.3 19.7
45° (yc) 34.2 34.9 26.8 26.5
30° (yc) 39.0 39.1 32.4 32,2
é 43.8 44.8 38.5 39.6
30° (ac) 38.5 39.2 32.3 32.2
45° (ac) 34.1 23.9 25.5 25.0
60° (ac) 27.7 26.6 17.3 16.5
a 19.9 18.8 8.2 7.4

26 is the azimuthal angle in the yc plane (yc) or in the
ac plane (ac).

PWith J=17400 G in Cgy(t) (31) and g(0)=0.55 % 10-3 G,
£(0)=0.42x103 G, £,(0)=0.22% 10~ G as explained in
text.
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tions to the linewidth by taking the difference of the
X- and @-band results. The approximation (22) of
neglecting off-diagonal C;,(t) fails at long ¢, or
small w, since spin diffusion requires”®2! that
C;;+1(1) eventually be comparable to C;;(¢). The
stacking of the CT complexes in CTP suggests one-
dimensional superexchange through the PtCl,™",
One-dimensional anomalies®!® with #(¢) are again
worst at long £, or small w, and the divergence of
£(0)3% and of £(0)2* have been demonstrated for
purely one-dimensional exchange between S= 3
sites.

A. Nonsecular Linewidth

The difference between the X- and @-band line-
width for various orientations (6, ¢) of H, leads,
from (12), (19), and (28), to

1V3[aH®(6,0) - AHV (6, 0)]
=M (6, 9)A flw)
+MP(6,9) f(20) +aV (0)ag(w) , (30)

where Aflw)=flwy) - flwg) is the difference in the
X- and @-band Fourier components and A f(2w) and
Ag(w) are the corresponding differences at twice
the Larmor frequency and for the hyperfine local
field, respectively. The hyperfine second moment
a is axially symmetric if the nitrogen splittings
are neglected. The Fourier components A f(w),
Af(2w), and Ag(w) describe the time evolution due
solely to 3¢, and are independent of the orientation
of ﬁo. The Fourier components at wy =9.47 GHz
and w¢ = 34.9 GHz enter in (30) for any orientation
of ﬁo, whose magnitude for fixed w, varies as in-
dicated in (6).

The difference equations (30) are solved to within
the +1 G experimental accuracy by Af(w)=0.12
X107 G, Af(2w)=0.10X10" G™, and Ag(w)=0.18
x10™® G™', The uncertainty is about 10% if corre-
sponding changes increasing and decreasing differ-
ent Fourier components are made. Since very dif-
ferent four-spin correlations contribute for differ-
ent orientations of ﬁo, the fitting of the angular de-
pendence of the “10/3” effect by just two dipolar
Fourier components indicates that, at least at high
frequencies, the strong decoupling (27) is justified.
On the other hand, once strong decoupling is estab-
lished, then any assumed form for the autocorrela-
tion C(t) provides not only A g{(w) but, through the
Fourier components of C%(¢), the values of A f(w)
and Af(2w) as well, In Fig. 4 the observed angular
variation of the “10/3” effect is compared with a
one-parameter form for C(¢) due to Blume and
Hubbard” given below. A similarly good fit follows
from a one-parameter Gaussian C(¢) proposed by
Anderson and Weiss, ® while an exponential C(t)
cannot fit the difference equations.

The Blume-Hubbard high-temperature approxi-
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FIG. 4. Angular variation of the difference between
the X- and @-band linewidths (@) in CTP at room tem-
perature for i:lo in the ac and yc planes; the theoretical
results (O) are based on Cgy(t) given in (31), with J
=7400 G, as discussed in the text.

mation for C(¢) for S= 5 is”

Cpxl )= cosh™( %jt) s (31)

where J is the root-mean-square exchange at a site
J2=0J% (32)
1

and is the adjustable parameter of the model. The
analytical expression (31) is a good approximation,
except at long #, to a numerical analysis and also
to Windsor’s® result for classical spins, The Fou-
rier components (20) of Cgy(?) give

geu(x)=(2/7)x/sinhx , (33)

where x = nw/j; the components (29) of C%y(t) are

4 x x\?
feul¥)= 35 Sinnw [1 +(;) ]
For J = 7400 G, with wy=9.47 GHz and wq = 34.9
GHz, we have glwy)=0.195%10" G, g(wq)=0.015
X107 G™; flwy)=0.158%10"° G™; flwg)=0.037X1073
Gl fl2wy)=0.110X10" G™; f(2wq)=0,0013Xx1073
G™'. The anisotropy of the “10/3” effect is quan-
titatively reproduced, as shown in Fig. 4. The fit
is noticeably poorer for a +500-G change in J.
The Anderson-Weiss® proposal of Gaussian C(t)
for exchange narrowing

(34)

Col(t)=exp(- Fmwit?) , (35)

with w,~J the adjustable parameter, leads to vir-
tually the same wy and wq Fourier components for
w,~4100 G. It of course decays more rapidly at
large w than the Blume-Hubbard function, but the
linewidth contributions there are small. On the
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other hand, we can rule out an exponential C(¢),
C.t)=e™m* | (38)

by observing that g,(w)=w, /(w2 +w?) has a maxi-
mum of (2w)™ as a function of w,. At X band,
&e¢(w) must thus be smaller than [2X (3380 G)]™
~0.147x10" G™. Any Q-band contribution leads
to even smaller Ag and cannot fit the value of 0.18
%107 G obtained from the difference equations.
Thus, C,(t) is unacceptable for any w,. Other
choices®?! for C(#) can be tested in the same way.

The more slowly decaying exponential C,(¢) leads
to a stronger w =0 peak in g{w) and, as such, has
been used'®® as a first approximation for the one-
dimensional anomalies associated with the diver-
gence® of g(0) and of £(0), even though C,(¢) has an
incorrect short time form. In the present method,
the angular dependence of the linewidth permits a
direct evaluation of the nonsecular contributions at
X and @ band, without dealing with the secular com-
ponents. The short-time behavior of C(¢), which
dominates in the high-frequency components, is
rather similar for three-dimensional”® and one-
dimensional® exchange (see Fig. 8 of Ref. 8 and
Fig. 1 of Ref. 7).

B. Secular Linewidth

The over-all fit of the CTP linewidth at X and @
band shown in Table II is based on J=7400 G in
Cpu(t) for the w #0 Fourier components and on
three secular parameters: g(0)=0.55%10 G™,
f10)=0.42x10"* G™, and an intrachain component
£10)=0,22%x10" G, Again, the wealth of angular
data, with very different mixes of hyperfine, inter-
chain and intrachain local fields, provides suffi-
cient equations for fitting three secular param-
eters. We estimate that g(0) and f(0) are accurate
to better than 5%, while £,(0) is only accurate to
about 10%, excluding the numerical approximations
in the second moments discussed in Sec, III B,

The nonsecular X- and @-band Fourier compo-
nents based on Cpy(?) or Cq(t) lead to consistent
estimates for the secular linewidth. But the sec-
ular contributions cannot be obtained from Cpgy(t),
which for J =7400 G leads to g(0)=0,27x10™ G™
and £(0)=0.18x10"° G, [A 10% larger value for
£(0) is found numerically’ for a C(¢) which de-
creases less rapidly at long / than (31).] The w=0
result for C;(¢) and w,=4100 G is even worse, as
expected from the more rapid decrease at long ¢.
The approximation of diagonal four-spin correla-
tions is worst at long ¢, where (22) does not hold
and C;;.,(2)~ C;;(t); the strong decoupling (27) is
also probably worse® at long . The corrections
tend to increase the dipolar coefficients, and thus
to decrease f(0). A factor of 2 decrease in f(0) is
unexpected, however, and is even more surprising
for g(0) obtained from the hyperfine broadening.
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We believe that the large w =0 components reflect
the one-dimensional exchange suggested by the
stacking of Cu(NH;),"™ and PtCl,”™ complexes in

CTP.
As already mentioned, the observation of a Lo-

rentzian line, even at @ band along the ¢ axis, pre-
cludes a purely one-dimensional exchange, but is
consistent with rather weak interchain interac-
tions.?® The w™/2 divergence of g(0) and the loga-
rithmic divergence of f(0) is suppressed, presum-
ably by interchain exchange. The Fourier trans-
form of the intrachain four-spin correlation
(S5(£)S%,1(#)S%,,(0)S%(0)) may not diverge even in
the one-dimensional limit.?* The exchange con-
stant J used by Carboni and Richards® is J/2v2
=~ 2600 G for linear chains. The numerical result?®
for the intrachain correlations, which correspond
to £,(0), leads to 0.38%x10° G™. The experimental
value of £,(0)=0.22x107 G™ is consistent with less
than perfect one-dimensional exchange in CTP., It
should be noted that the interchain experimental
value of f(0)=0,42X10" G™, which for one-dimen-
sional exchange diverges, is larger than 0, 36x107
G™, strong decoupling (27) becomes exact®® for
interchain dipolar correlations if there is no inter-
chain exchange. Since interchain dipolar contribu-
tions are usually more than half of the total dipolar
second moment, the success of the strong decoupling
approximation for the nonsecular components is also
consistent with largely one-dimensional exchange.
The anomalously large secular components g(0)
and f(0) could be fit with, for example, a two-pa-
rameter choice of C(¢) in which the long-¢ behavior
is allowed to decrease much more slowly. The
main conclusion from the experimental results for
£(0), f10) and for glw), flw), fl2w) at w=wy and wq
is that, except near w =0, the largely one-dimen-
sional exchange does not affect the spin correla-
tions. This is consistent with the similar theoret-
ical short time results for C(¢) in one- and three-
dimensional cases.’® Thus, only long-time cor-
rections to Cgy(t), for example, are required rath-
er than completely different guesses such as C,(#).

C. Summary

We have shown that, in crystals with magnetical-
ly equivalent sites, the angular dependence of the
exchange-narrowed Lorentzian EPR line provides
a simple direct method for evaluating high-temper-
ature Fourier components of spin correlation func-
tions. Since second-moment computations for hy-
perfine and dipolar local fields are straightforward,
the method can be used in any exchange-coupled
crystal with magnetically equivalent sites and pro-
vides a direct test for various theoretical models
of spin correlation functions.

The angular dependence of the EPR linewidth in
CTP at X and @ band gave both secular and nonsec-
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ular Fourier components. The nonsecular dipolar
components were adequately reproduced by using
the strong decoupling (27) for the diagonal four-
spin correlations. For w=wyx, 2wy, wq, Or 2wg,
the Fourier components of C(#) and of C%(t) were
sufficient to fit the difference equations (30) between
the X- and @-band linewidth, The computed nonsec-
ular coefficients were then shown to follow from
either the Blume-Hubbard’ model (31) with rms ex-
change J="7400 G or from a Gaussian C(¢) with w,
=4100 G. The angular dependence of the “10/3”
effect shown in Fig. 4 thus confirms the short
time analysis” of C(t) and rules out an exponential
C, ().

The secular component showed that specific spin
correlations can be evaluated by studying the line-
width anisotropy. Thus, the interchain, or essen-
tially nonexchanging four-spin correlation f(0)
=0,42x10" G was quite different from w=0 com-
ponent of the intrachain correlation
(8%(#)S%.,(#)S%,,(0)S%(0)), which was found to be
£1(0)=0.22x10" G™, The axial symmetry of both
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the intrachain and hyperfine correlations in CTP
makes it very simple, for example by looking at
the linewidth anisotropy in the xy plane as shown
in Fig. 3, to isolate purely interchain contributions.
The possibility of measuring Fourier components
of specific spin correlations by the present method
is particularly useful, since the difficulty of the
theoretical analyses can vary widely. The Fourier
component f;(0) satisfies the Carboni-Richards®
bound for one-dimensional exchange, while the
large values of g(0) and f(0) also suggest largely
one-dimensional superexchange through PtCl,™ be-
tween successive CT units along the tetragonal
axis, We are currently investigating the mecha-
nisms limiting?® purely one-dimensional behavior
in CPT.
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Dechanneling from 2-MeV He* Damage in Gold™

K. L. Merkle, P. P. Pronko, D. S. Gemmell,
R. C. Mikkelson,T and J. R. Wrobel

Avrgonne National Laboratory, Argonne, Illinois 60439
(Received 16 March 1973)

The dechanneling of 2-MeV He* incident in the [001] direction of monocrystalline gold films
has been investigated by means of the backscattering technique. The aligned spectra of the
undamaged crystal indicate good agreement with channeling theories regarding the surface de-
channeling and the dechanneling as a function of depth, Damage was introduced by 2-MeV He*
incident in a random direction and the resultant increase of the dechanneling rate was studied
as a function of damage dose. It is found that the dechanneling is mainly due to defect clusters
produced in energetic displacement cascades. A dechanneling cross section of g;=2,3X 101
cm? is derived under the assumption that all of the dechanneling is due to the clusters visible

by transmission electron microscopy (TEM).

The dechanneling cross section is about a fac-

tor of 5 smaller than the geometrical cross section of the clusters as determined by TEM.
Deviations from linearity in the dechanneling-rate—versus—dose curve are noticeable at 5X 10!%
He*/cm?. An analysis of the saturation behavior gave a value of 7o=89 A for the average radius

of a displacement cascade,

I. INTRODUCTION

In recent years the backscattering technique has
been used successfully for investigating damage
distributions in semiconductors.!™ The purpose
of the present investigation was to see whether the
backscattering method could also be usefully em-
ployed in the study of radiation damage in metals.

Contrary to some semiconductors and insulators,
the direct backscattering from interstitials is ex-
pected to play a minor role in metals. Here the
interstitial concentrations will at most be on the
order of 1%, even in irradiations at low tempera-
ture, while amorphization due to bombardment has
been observed in quite a number of covalently
bonded systems.*™ On the other hand, stable de-
fect structures (e.g., small dislocation loops and
voids) are often formed by irradiation in metals as
well as nonmetals. The strain fields associated
with these defects will distort the channels and
cause dechanneling. In fact, dechanneling due to
various kinds of lattice defects has been studied in
the past, mainly by Quéré and co-workers, ®° using
transmission experiments.

In the present paper we have used 2-MeV He*
ions for the dual purpose of introducing damage
clusters in thin gold films and as an analyzing beam
in the single-alignment backscattering mode. It is
well known from transmission electron microscope

(TEM) investigations!®~" that defect clusters 215
A in diameter can be formed in energetic displace-
ment cascades. From the known cluster-formation
cross sections and the observed dechanneling
rates, we shall be able to derive an average de-
channeling cross section o, for a cascade cluster.
The latter are formed by collapse or rearrahge-
ment of vacancies within the depleted zone'® and
their size is, therefore, not directly related to the
total volume that has been affected by the displace-
ment processes within a cascade. However, the
average cascade volume can be deduced from the
dose dependence of the dechanneling rate. Apart
from the obvious interest from the point of view of
radiation damage, beam damage as observed here
is of importance in many channeling experiments
and in many solid-state experiments where the
channeling-effect technique is used as an analytical
tool.

II. EXPERIMENTAL

Single-crystalline gold films of (001) orientation
were grown in a ultrahigh-vacuum evaporation sys-
tem by epitaxy on cleavage surfaces of NaCl single
crystals. The gold film thickness was ¢ =4820 A
as determined gravimetrically. The transfer to
small disks with 1-mm apertures was accomplished
by means of the Noggle technique. '® Optical flat-
ness and single crystallinity were checked by laser



