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The surface-vibration properties of solid xenon are investigated by low-energy-electron diffraction.
Using no adjustable parameters, calculated layer-dependent mean-square vibration amplitudes and
scattering factors of solid xenon are used to determine the surface Debye temperature of the xenon

(111) face. The magnitude of inelastic electron damping as a function of incident electron energy in
solid xenon is also determined. Results of the calculation are compared with experimental measurements
for a range of energies from 0 to 400 eU.

I. INTRODUCTION

The study of vibrational modes at surfaces of sol-
ids is one of considerable current interest both ex-

perimentally and theoretically. Such studies are
related to the understanding of the local configura-
tion and interaction potential of ion cores at sur-
faces. At surfaces of solids, both the microscopic
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configuration of neighboring ion cores and the short-
range and long-range force laws are different from
those in the bulk. Specific vibrational modes,
known as surface phonons, which do not have coun-
terparts in the bulk, have been determined theoret-
ically for metal, ionic crystals and noble-
gas crystals. I'~~ Such surface modes have vibra-
tion energies lying either in gape of bulk phonon
modes or are peeled" offe'~ from bulk phonon
energy bands. Another characteristic of surface
phonons is that these modes are highly localizedl
at the surface region. The vibration amplitudes of
surface phonons attenuate rapidly as they go from
the surface into the bulk. The existence of such lo-
calized surface vibration modes have recently been
detected experimentally in ionic crystals and semi-
conductors by inelastic low-energy-electron dif-
fraction (ILEED) from crystal slabs. '~ In these
experiments, surface phonons are identified as dis-
crete energy-loss peaks occurring at energies of
several tens of millivolts from the incident electron
energy. Theoretical studies of inelastic loss spec-
tra from surface phonons have also been given re-
cently.

Apart from such highly localized surface vibra-
tion modes, which contribute less than 1% to the to-
tal phonon population in solids, nonattenuating pho-
non modes at solid surfaces (vibration modes having
finite amplitudes extending into the bulk) also have
distinct surface properties. Because of the absence
of atoms on one side of a real surface, phonon
modes at such a boundary have vibration amplitudes
larger than those in the bulk. The mean-square
displacement amplitude for a given layer and direc-
tion is obtained by finding the thermal average of
the normal modes in that layer and direction. For
a given solid, this thermal average is largest at the
surface layer. Its value decreases layer by layer
from the surface, reaching the bulk value at a few
atomic layers from the surface. Also, because of
the lack of site symmetry for atoms in surface lay-
ers, the mean-square amplitudes in different direc-
tion have different magnitudes.

To measure mean-square vibration amplitudes
experimentaQy at solid surfaces, one can look at
the temperature and energy dependences of elasti-
cally backscattered low-energy electrons (ELEED).
The mean-square vibration amplitudes determine
the Debye-Wailer factors of vibrating atoms.
Reference has been made' to previous experi-
mental studies of LEED temperature effects at sur-
faces of solid crystals since the initial work of
MacRae and Germer. ' A variety of temperature
measurements of I RED intensities for about a doz-
en different single-crystal metals have been re-
ferred to in the preceding paper. ~ 3 In all of
these measurements, a surface Debye temperature
is obtained experimentally from a slope of a J.og»

(intensity) vs temperature line drawn through the
experimental points [see Eq. (I) of the precahng
paper]. One should realize that this experimentally
determined surface Debye temperature is an over-
all average of the foHowing three contg ibutions.
First, it is the average of different orders of tem-
perature-dependent elastic ion-core scattering ver-
tices inside the solid. Each time an incident elec-
tron scatters off a given ion core inside the solid,
the scattering cross section of that ion core is re-
normalized by a single Debye-Wailer factor. Thus,
if an electron undergoes a number of multiple scat-
tering events before leaving the solid, its reflected
intensity contains information af mixed orders of
Debye-Vfaller factors of individual ion cores. In
many metallic systems, multiple scattering events
are known to be strong3~ 35 and hence the experi-
mental Debye-temperature contains a mixture of
different orders of single-site Debye-Wailer fac-
tors. Second, because the experimental Debye
temperature is determined from electrons scatter-
ing from more than one layer of the solid surface,
its value contains the average of mean-square vib-
ration amplitudes of different surface layers.
Third, at a given surface layer, the experimental
Debye temperature takes the average of mean-
square amplitudes over different directions. It is
clear that any attempt to relate directly the experi-
mental surface Debye temperature to mean-square
vibration amplitudes of the surface layers must in-
clude proper provisions for the above three contri-
butions.

Two facts are observed experimentally from mea-
surements of surface Debye temperatures from sol-ids: (i) In most materials 'the measured. sur-
face Debye temperature is lower in value than cor-
responding bulk values. {ii) it is observed that the
measured Debye temperature is a function of inci-
dent electron energy. The measured value in-
creases in magnitude as incident electron energy is
increased. For metals, recent theoretical calcu-
lations using microscopic multiple scattering mod-
elsM'3~ have demonstrated that both of the ob-
served behaviors can be explained qualitatively by
a two-parameter model. In such calculations, a
surface Debye temperature, isotropic in direction,
is chosen for the outermost surface layer and a
similarly isotropic bulk Debye temperature is cho-
sen for the rest of the solid. In other words, such
models properly take into account the mixing due to
multiple scattering events of different orders of
Debye-Wailer factors but treat the average of
mean-square amplitudes over layers and over. dif-
ferent directions phenomenologically in terms of a
surface and a bulk isotropic parameter.

In this paper, we report a calculation of the sur-
face Debye temperature of crystalline xenon38 and
we compare our results with experimental data. ' '
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Thus we use a kinematic model for the elastic elec-
tron ion-core scattering in xenon. The kinematic
nature of the xenon I.EED spectra is discussed in
the preceding paper. ~~ In this calculation, mean-
square vibration amplitudes for each layer of the
suxface and for each direction in a given layer are
included exactly. Furthermore, the value of elec-
tron damping in solid xenon, a highly uncertain
quantity, is independently determined by comparing
the energy dependence of the xenon scattering fac-
tor between theory and experiment. Thus, within
the framework of the kinematic scattering model,
this is a complete calculation of the surface Debye
temperature in solids with no adjustable parameters
The quantitative accuracies of the calculated re-
sults depend on the validity of the kinematic model
in solid xenon. However, it is significant that with-
in the kinematic model, we ean use independently
determined values of layer-dependent mean-square
amplitudes and scattering factors to extract fxom
the data magnitudes of electron damping and sur-
face Debye temperature without the use of adjust-
able parameters.

II. THEORETICAL METHOD

The intensity of an electron beam elastically back-
scattered from a crystal slab with surfaces in the
x-y plane is given by"' 4'

' Z(k, )T{k,(g,), k, ) '
Ss' kg, (g())

where k& and k&(go) are, respectively, the incident and

reflected momenta inside the solid. The vector gQ

is a two-dimensional reciprocal wave vector indi-
cating the index of the reflected beam. T(kz(go), k,)
is the total scattering matrix of the crystal. The
quantity E(ko) is a complex propagator renormaliza-
tion factor in the solid. 0'4~ Here a damping fac-
tor independent of momentum is assumed and there-
fore P(ko) is set equal to unity. '~ Other quantities
'in Eq. (1) are defined by

k', =
& [Z-Z(k„Z)],

kgb(go) = —[ko —(lq ((+ go)o)~ eg,

kgb'(go) = —Re -~ E —(k';()'+ go)o

-bh
g

Ottt E gott% 2

parallel component of the incident beam outside of
the crystal surface. Across the surface, parallel
momenta are conserved:

g"'=lq

ky))(go) =kg()+ go ~ (7)

e4[q ijr'(go))'og y {k ( ) k ) (8)
n

For a monatomic crystal, one can divide the sol-
id into paral1. el planes of unit cells containing one
atom per unit cell. In Eq. (8), n is a layer index
number and dn is a vector drawn from the origin of
the surface layer to that of the nth layer. In the ki-
nematic approximation, we set

~.{ki(go) k*.)= f.(ks(go), k~)

where Pfk~(go), lq) is the rigid-lattice individual ion-
core scattering matrix and W„{kq(go), k„T)' is the
quantity related to the mean-square vibration am-
plitudes of ion cores in the nth layer. For a mon-
atomic crystal, the rigid-lattice scattering matrix
f Cr~(go), k~) is independent of layer number and ean
be expressed in terms of energy-dependent phase
shifts as

00 Ri 6g

to{&y(go), lq) = — Z P, (cos8)
l-0 S Q

(10)
where & is the scattering angle between R, and

R&(go) and 5, is the 1th energy-dependent partial-
wave phase shift. The quantity W„@&(go), R„T)
deyends on layer index n and satisfies the relation

W.(k~(go), k~ T)= o~[b(go)-kf]

x(u„uo&, [k,'(g, )-k', ], (»)
where a and P refer to the x, y, and s Cartesian co-
ordinates and u„ is the displacement of an ion core
in the nth layer and e direction.

For crystals with noninteracting vibrational
modes and fcc symmetry (e.g. , xenon crystals),
the mean-square amplitudes have the properties

Z(ko, E) in Eq. (2) is a complex sealer denoting elec-
tron-electron interactions in the solid. The scat-
tering matrix T(k&(go), k&) of the solid is given by4o

where the directions denoted by 2 and jt are, re-
spectively, the perpendicular (z direction) and par-
allel directions (x andy directions) measured with
respect to the crystal surface, e& is a unit vector in
the (incident) + z direction, and k„",' signifies the

(u„u„&&=0,if atP,
(u )=(u ) +(u*'&

for (100) and (111)surface layers,

(u~& +(uP& e(u~&

(12)

(13)
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for (110) surface layers, and

&u„")= &u~& = &u*„'& (15)

one must have the relation
2

I(ky(0), k)) ~ C(kg(0), k)) (20)
in the bulk. Using relations (12)-(15), one finds
that W„(kz(gp), k„T) in Eq. (11) reduces to

W„(ky(gp), k), T) = -', g „&u~&+ —,'gp„&uP&

+ —', [k„+kg&(gp)] (u„) . (16)

We note that W„(k„kp, T) is nonisotropic for the
surface layers. Hence the usual partial-wave ex-
pansion of y'„(k„kp) in terms of spherical wave
functions used in multiple scattering treatments
is not valid for the surface region. In the kinematic
model, one can calculate W„(k&, kp, T) exactly with-
out using partial-wave ex~a.~'sions,

For a given layer n, we define a, Debye tempera-
ture 8»(n, a) related to the mean-square ampli-
tudes by

1 1 T(u„'&= 3 I ). 8 ta, n) 4 8 ta, n) )
~8~(a, n)gr

x dg „,(17a)
4p

e" —1

ft 1 1 T 1(u"&
= 3 — -+ + ~ ~ ~ ~

M k»8»(a, n) 4 6»(a, n) 4

In the high-temperature limit T ~ 8»(a, n)/2n;

3k T
Mke C4 (a, n)

(17b)

kout(~ 2

k)g' kgb gp

InEqs. (17), M is. the atomic mass of xenon and k»
is the Boltzmann's constant. We note that the sur-
face Debye temperature 8»(n, a) is both layer and
direction dependent.

Substituting Eqs. (8) and (9) into Eq. (1), we ob-
tain for the reflected elastic intensity

where &u~&=3N T/MkeOpn. Equating (19) and

(20), we obtain for the surface Debye temperature

68 Pg~~TI
exp

2.8—

2.4-

8 =6'
Exp.

—x—Solid Xe

Atomic Xe

1 —e'@'~&'&'Q [eu"'u «pp&. » '+n' j . (21)
n

In order to solve Eq. (21) for 8», we need to know

the layer-dependent mean-square amplitude (u„' &

for each surface layer sampled by the incident elec-
tron, as well as the value of electron damping as a
function of incident energy. The latter determines
the magnitude of the imaginary part of k~& in Eq.
(21). At a fixed temperature, the energy-depen-
dence of the experimental intensity is obtained
from Eqs. (19) and (20) as

2I' (kt(0), k)))&): t'(kt(0), k))
fJ

68 k]~T 1

Mk&e& 1 —e

For a given temperature and angle of incidence,
I'~(kt(0), k~) is read off at each Bragg-peak energy
from xenon elastic I EED intensity-energy spec-
tra. &~' The rigid-lattice scattering factor t (k&(0),
kq) for solid xenon is determined independently
using Eq. (10) and eight partial-wave phase shifts
calculated from a Hartree-Fock potential. 3 In
Figs. 1-3, we show the ion-core scattering factor

x ~~(e ky(g &&'dn -lvt)(ky(ITp&, p&, T&)p e tl

n

(18)
For the specularly reflected beam of the xenon cry-
stal (111)surface, we can write the temperature
dependence of Eq. (18) explicitly as

2.0-

l. 2- „I
0

0.8-

0.4—

Wx

L„
L„

~ W5~

2$ A 4 -SP &s 0
2

I(k(0), k& jp): C(ky(0), k)) Z (e ~ e «~ " )

(19)
where C(k~(0), k&) is a coefficient independent of
temperature T and d&, is the perpendicular (z direc-
tion) spacing between successive layers of the solid.

Experimentally, one measures a surface Debye
temperature from the slope of log, pI vs T plot. In
other words, if 6& is the experimentally measured
surface Debye temperature for the (00) beam, then

50 l00 l50
ELECTRON ENERGY (eV)

200

FIG. 1. Plot of ion-core scattering factor at 8=6 as
a function of incident electron energy. The calculations
are based on Hartree-Fock potential given in Ref. 43
(solid xenon) and atomic potential given in Ref. 44 (atomic
xenon). Experimental scattering factors are extracted
from data taken at T= 61 oK (Ref. 17) using Kqs. (21) and

(22), anharmonic mean-square amplitudes (Ref. 11), and
electron damping values shown in Fig. 5.
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2.0-

1.6-

8=10
$ Exp.

-w- Solid Xe
o Atomic Xe

0.025

0.020

(ill) SURFACE

Anharmonic--- Hormonic

1.2-
0

0.8-

X~~
I

50 1OO 150

ELECTRON ENERGY (eV)

200

FIG. 2. Plot of ion-core scattering factor at 8=10'
as a function of incident electron energy. Other details
are same as in Fig. 1.

0.015N

v

0.005-

as a function of incident energy in the energy range
0-200 eV and for three different angles of incidence
For comparison, we also show the scattering fac-
tor calculated from atomic phase shifts in the
same energy range. The close agreement between
the two theoretical calculations is not surprising,
since we are looking at large backscattering angles.
At such large scattering angles, the electrons
mainly probe the core regions of the scattering cen-
ters. Values of ( u'„I ) for the Xe(ill) face are
taken from Allen and deWette's quasiharmonic cal-
culation, from AQen, deWette, and Rahman's
molecular dynamics calculation, and from Clark,
Herman, and Wallis's nearest-neighbor central-
force calculation. ~ We show in Fig. 4 the calcu-
lated results af Allen et al. of (u'„~ ) and (u~ ) for
Xe(111)surface plotted as a function of layer index
n. We notice that at approximately the sixth sur-
face layer, the mean-square amplitudes approach
those in the bulk. We also note that for the Xe(111)
face, ( u'„~ ) is much larger than (u~ ) for the sur-
face layers»

At given temperatures, using these independently
determined values of I'~(kq(0), Q), to(k~(0), lq), and

0.000 '-

1

LAYER

FIG. 4. Plot of surface mean-square amplitudes as
a function of layer and direction of displacement. The
calculations are done at half the melting temperature of
xenon, 0 =3.936 and & =228k~ (other terms are self-
explanatory). Data taken from Fig. 4 of Ref. 10.

(u~ ), Eqs. (21) and (22) are solved simultaneous. -
ly for values of electron damping and 5& for each
Bragg energy. The results and comparisons with
experiment are discussed in Sec. III.

IH. RESULTS AND DISCUSSIONS

The ratios of (u'„~ ) to the bulk value (us~ ) for
the first five surface layers (n = 1, 2, ~ ~ ~, 6) were
taken separately from calculations of AQen et
cl.' ' and Clark et ul. ~ We show the ratios used
for the Xe(111)face in Table l. For layers with n
~6, we assume that their mean-square amplitudes
have reached the bulk amplitude (us~ ) . The ex-
perimental reflected intensities I'~(k~(0), kq) were
taken from Xe(ill) LEED data'~' at 61 'K for 8
= 6', 10', and 15', where 8 is the angle of inci-
dence measured from the normal to the surface.

1.2-

1.0-
ee 0.8-

0.6-

8 =15
Exp.
Solid Xe
AtotAlc Xe

TABLE I. Ratios of mean-square amplitudes
(p„)/(pzg ) for m=1, 2, .. . , 5. Results are calculated

from mean-square displacements from Ref. ll (anhar-
monic), Ref. 10 (harmonic), and Ref. 2 {central force).
For n ~ 6, +~2 )= (p~ 2 }

&~'„')/(I' ~
0.4-

0.2- x

s i I i o I—
40 80 120 160 200

ELECTRON ENERGY (eV)

FIG. 3. Plot of ion-core scattering factor at 8=15 as
a function of incident electron energy. Other details are
same as in Fig. 1.

1
2

4

Bulk

3.485
l.668
l.270
l.086
0.968
1.000

Harmonic

2.250
1.342
1.151
1.081
l.047
1.000

Central
force

2.017
1.273
l.123
l.066
l.037
1.000
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0
5.0—

CV

N
bJ

0.0
0

N= 4 5 6 7
I I I

Ioo
ELECTRON ENERGY

8
I

200

FIG. 5. Values of electron damping potential &2 as a
function of incident electron energy in the range 0-200
eV (solid line). Experimental peak widths at half-heights
(vertical bars) taken at 8=6', T=61'K are also shown.
The crosses are values of electron damping determined
from Auger electron measurements.

The rigid-lattice scattering factor t (k~(0), g) is
calculated for the same three incident angles (see
Figs. 1-8). Equations (21) and (22) are solved si-
multaneously for best values of electron damping
and surface Debye temperature On. Values of
damping thus determined, are shown in the energy
range 0-200 eV in Fig. 5 (solid line). This energy
range includes Bragg peaks of n=4, 5, . .., 8. In
Fig. 5, we show for comparison the experimental
half-height widths (vertical bars) measured at 8
= 6' for these Bragg peaks. We also include the
electron damping in solid xenon determined from
mean-free-path measurements'7 of iridium Auger
electrons passing through the xenon crystal
(crosses). Judging from Fig. 5, it seems the sim-
ple relation 4E (peak widths at half-height) = 2Z2,
where Z2 is the electron damping potential, holds
quite well at below approximately 140 eV. Further-
more, electron damping measurements'~ from
Auger electrons agree excellently with damping val-
ues obtained from this work.

Above 140 eV, the experimental xenon half-
widths begin to increase with energy. '~ This grad-
ual increase in the widths of peaks above 140 eV
may be due to stronger multiple scattering contri-
butions at higher energies. It could also be due to
incoherent scattering of electrons from irregulari-
ties on the crystal surface. 3 At such higher en-
ergies, the simple relation ~= 2Z2 is no longer
valid. Hence, one can no longer directly deter-
mine the damping potential Z2 from peak widths.
Microscopic calculations have used a constant val-
ue of Zz for electron damping and obtained reason-
able agreement with experimental LEED data.
We shall also use this model for Z& at energies
above 200 eV. Thus the electron damping value
used here is determined from scattering factors up

0.0-
0 i 00 200 300

ELECTRON ENERGY

400

FIG. 6. Values of electron damping potential Z2 in the
whole energy range 0-450 eV.

to 200 eV and then extrapolated at constant value to
450 eV. The damping value we used for the whole
energy range 0-450 eV is shown in Fig. 6. With
these values for electron damping, values of sur-
face Debye temperature 8& can be determined from
Eq. (21). We show in Fig. 7 values of Qz deter-
mined theoretically for n = 4, 5, ~ ~ ., 12 and com-
pare them with values determined experimentally
from slopes of log~oI vs T plots. The surface De-
bye temperature results are plotted as a function of
incident electron energy. Three sets of theoretical
values are obtained using three different values of
&u'„~ & listed in Table I. The theoretical values all
approach the same value of ~& =43'K. This val-
ue of 6B„»is somewhat below the bulk Debye tem-
perature of 56 'K deduced from heat capacity mea-
surements. 4~ The difference (15.7%) may be par-
tially explained by noting that diffraction measure-
ments of the bulk Debye temperature and specific-
heat measurements probe different regions of the
phonon vibrational spectrum in a solid. '~

IV. CONCLUSIONS

We have determined the surface Debye tempera-
ture for Xe(111)crystal in the energy range 0-450
eV and compared our results with experimental
measurements. We have also determined the im-
aginary potential due to electron damping in solid
xenon in the energy range 0-200 eV. The electron
damping strengths thus determined compare excel-
lently with those obtained from mean-free-path
measurements" of Auger electrons passing
through solid xenon crystals in the energy range
0-200 eV. Below 140 eV, the simple relation ~
(half-width) = 2Zz also yields damping strengths
from peak-width measurements, in good agreement
with those determined here. At higher energies
(above 140 eV), multiple scattering and disorder
scattering seem to dominate the measured peak
widths. Thus, it is no longer useful to determine
damping strengths from peak-width measurements
at such energies.

Above 200 eV, we have assumed a constant
damping strength for Z, . Values of calculated Gn
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FIG. 7. Plot of theoretical and ex-
perimental surface Debye temperature
O~~ as a function of incident electron
energy in the energy range 0-450 ev
for Bragg peaks g=4, 5, . . . , 12. Note
that since 0& is obtained from the (00)
beam, only the normal (e. g. , z direc-
tion) component of the mean-square
vibration contributes to the analysis.
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above 200 eV (n=9, ..., 12, Fig. 7) are not sensi-
tive to the magnitude of Z~. The mean-square vib-
ration amplitudes ( u~ ) change most drastically for
the first two surface layers (see Fig. 4). Above
200 eV, the incident electron always penetrates
more than a couple of surface layers for reasonable
damping strengths. A larger damping produces
slightly flatter theoretical curves in Fig. 7, for n ~9.

It should again be emphasized that the extracted
values of 6& and electron damping are dependent on
the validity af the kinematic model for low-energy
electron scattering in xenon crystals. It is signifi-
cant, however, that within this model, we obtain
reasonable agreement between theory and experi-
ment for the extracted values of electron damping

in the energy range 0-200 eV and the trend of 6~
as a function of energy in the range 0-450 eV.
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