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The equilibrium properties of fourteen alkali halides in the NaC1 lattice structure are calculated by
using an expression for the pair potential given by Tosi and Fumi. The calculations are based on the
quasiharmonic lattice-dynamic method and the unsmeared Lennard-Jones-Devonshire cell model. The
latter provides numerical estimates of anharmonic contributions which are neglected in the former.
Comparison of the calculations with the available experimental data as well as the Monte Carlo data of
%'oodcock and Singer shows reasonable agreement for the cohesive energy, the pressure, the specific
heats, the coe6icients of thermal expansion, and the Gruneisen y's, but relatively poor agreement
in the case of the elastic constants. Our results indicate that the interionic potential for the alkali
halides has a stiffer repulsive core and a stronger attractive tail than the expression given by Tosi and
Fumi, and that the anharmonic corrections are generally small and should be described accurately by
the two lowest terms in a suitable perturbation series. Further discussion is given on the accuracy of
using an existing approximate theory for the elastic constants and on the self-consistency of making the
quantum and anharmonic corrections introduced here.

I. INTRODUCTION

The alkali-halide crystals hold a certain fascina-
tion for experimentalists and theoreticians alike.
Theoreticians like them because of their simple
crystal structure, because their binding energy is
predominantly ionic, and because of the availability
of good experimental data. Furthermore, because
the NaCl phase is stable over an extended tempera-
ture range, and the melting temperature is usually
much larger than the Debye temperature, the dis-
tinctly anharmonic temperature interval and the
distinctly quantum temperature interval are sepa-
rate, permitting one to exercise and test these as-
pects of a theoretical model individually. Exyeri-
mentalists have been attracted to alkali halides be-
cause of the availability of large, high-quality sin-
gle crystals, because of the relative ease of hand-

ling them, and because of the active theoretical in-
terest.

As a result of this interest a large amount of in-
formation has been obtained on alkali halides, in
view of which it should be possible to determine
hom mell the interionic forces in the alkali halides
can be systematically represented by means of two-
body central forces which are the sums of contri-
butions from distinct atomic interactions, such as
the Coulomb interaction, the van der %aals at-
traction, and the Born-Mayer repulsion. Fragmen-
tary answers to this question do, in fact, exist.
For example, it appears from the work of Szigetti,
Lyddane and Herzfeld, and Lyddane, Sachs, and
Teller that such a force law cannot reproduce the
phonon dispersion curves obtained from neutron
scattering data. On the other hand, it is weQ
known that such an approach does provide a very
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useful understanding of lattice spacings and binding

energies of salt crystals.
In 1964 Tosi and Fumi, in the course of deriving

new ionic radii based on crystal data and an expo-
nential form for the repulsive energy, obtained a
set of interionic potential functions which, to our
knowledge, fits reasonably well the whole set of
thermodynamic data for salts. In the work de-
scribedinthispaper we have sought to determine
where the Tosi-Fumi potential deviates from mea-
sured values of the thermodynamic data, including
the elastic constants. We have also tried to sug-
gest how the Tosi-Fumi potential might be improved
in order to better describe the experimental data.

Given a model for the forces between the ions,
several statistical mechanical means are available
to compute the equilibrium quantities; namely, the

quasiharmonic lattice-dynamic method with an-
harmonic contributions obtained from an appropriate
perturbation theory, the machine simulations via
the Monte Carlo or the molecular-dynamic method,
and the use of a cell model.

The lattice-dynamic method is especially power-
ful in the temperature-density region where the
anharmonic contributions are small but not neces-
sarily the quantum mechanical corrections. Re-
cently, the method has been extensively used to ex-
plain the experimental phonon dispersion curves,
and from these studies a great deal of detailed in-
formation about the interionic forces has been ob-
tained. However, as mentioned above, no one has
been able to explain this information on the basis
of a simple force law such as that of Tosi and Fumi,
and as a result, increasingly sophisticated models
(shell models, breathing shell models, etc. ) of the
ionic interactions have been developed. Unfortu-
nately these models are sufficiently complicated so
that their use in the present work takes up too
much computing time. Furthermore, the short-
range nature of the interionic interaction force em-
ployed in the calculations has remained unchanged
from the earlier calculations in that the non-Cou-
lombic forces are confined to first and second
neighbors. '0

At high temperatures or low densities, where the
lattice-dynamic method becomes less effective, the
computer simulations become most useful. Recent-
ly, the Monte Carlo (MC) method was usedby Wood-
cock and Singer" to compute the liquid-state prop-
erties of potassium chloride by means of the Tosi-
Fumi potential. They also computed some solid-
state data along the 1045 'K isotherm. Their liquid-
state data agreed very well with experimental data.
The MC data and the experimental data on the melt-
ing properties agree reasonably well, considering
especially the difficulties in obtaining the experi-
mental data. The observed agreement also sug-
gests that omission of contributions to the potential

energy by the electronic dipoles does not significant-
ly affect the thermodynamic properties.

The anharmonic corrections, which are neglected
in the quasiharmonic lattice-dynamic treatment,
can be estimated by carrying out analogous calcula-
tions using a cell model. Such calculations have
been done previously for the rare-gas solids' ' by
means of the machine simulations and the Lennard-
Jones —Devonshire (LJD) cell model. e Simplified
versions of the LJD cell model have alsobeenused
by McQuarrie' '" and Morley.

In the present work, we have chosen fourteen
alkali halides with a NaC1 structure and obtained
thermodynamic properties by using the Tosi-Fumi
potential for these salts. Because of the small
ionic radii and the large quantum-mechanical con-
tributions, the Tosi-Fumi potential for lithium ha-
lides produced poor thermodynamic results; so we
include LiF only to illustrate the difficulties en-
countered for these cases. Both the quasiharmonic
lattice-dynamic method and the LJD cell model
were used in the computations. Intermolecular in-
teractions between all pairs of ions were included.
In addition to trying to determine how well the best
pair potential available at present can actually re-
produce the experimental thermodynamic data,
we have tried to find out how and to what extent
the anharmonic terms in the potential energy and
the quantum mechanics affect the thermodynamic
properties of the alkali halides. In the course of
this work, we also learned that the approximate
lattice-dynamic treatment of Leibfried and co-work-
ers"'6 can lead to qualitatively wrong elastic con-
stants.

The model used in the present work neglects
contributions from the dipoles produced by inter-
actions between electrons and between an electron
and an ion; nor does it include contributions by
three- (or higher-) body forces or noncentral
forces. Although it is well known that the elec-
tronic-dipole contribution must be included to ex-
plain electro-optical effects in crystals, explana-
tion of the thermodynamic data does. not necessarily
require an explicit consideration of the electronic
dipoles or the other factors mentioned above. In-
clusion of such factors, moreover, enormously
magnifies the computational difficulties. In view
of these plus the fact that a satisfactory short-
range interaction potential is itself an incompletely
understood quantity, we have chosen to leave these
factors out entirely in the following considerations.

II. THEORETICAL AND COMPUTATIONAL PROCEDURES

Both the lattice-dynamic and the cell-model ex-
pressions for calculating the thermodynamic prop-
erties of a single-component system have already
been described. These expressions will be used
here by modifying them slightly to accommodate a
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TABLE I. Parameters in the Tosi-Fumi potential. (Parameters E, c', and E' are equal to 2, ~&, and 0.75, re-
spectively, for LiF. For other species, s~=1.25, s =1, and s =0.75. The parameter b is equal to 3. 35X 10 '3 erg/
molecule. See Ref. 5. )

(r~wf» /P —c t,-6 d &-8+z z 82&-i
ff ff &f &f

The quantity z» denotes the charge of the ith species in units of an electronic charge (e). Nearest-neighbor distances a
at 300'K under zero pressure are also listed.

p(L) C
(10+0 erg cm )

Cp d
(10 ~ erg cm )

NaF
NaC1
NaBr
NaI

KF
KCI
KBr
KI

RbF
RbC1
RbBr
RbI

0.816

1.170
1.170
1.170
l.170

1.463
1.463
l.463
l.463

1~ 587
1.587
1~ 587
1.58V

1.179

1.179
1.585
1.716
1.90V

1.179
1.585
1.716
1.907

l.179
1.585
1.716
1.907

0.299

0.330
0.317
0 ' 340
0.386

0.338
0.337
0.335
0.355

0.328
0.318
0.335
0.337

0.073

1.68
1.68
1.68
1.68

24.3
24.3
24.3
24.3

59.4
59.4
59,4
59.4

14.5

16.5
116
196
392

18.6
124.5
206
403

18.9
130
215
428

0.8

4.5
11.2
14.0
19.1
19.5
48
60
82

31
79
99

135

0.03

0.8
0.8
0.8
0.8

24
24
24
24

82
82
82
82

17

20
233
450

1100

22
250
470

1130

23
260
490

1200

0.6
3.8

13.9
19
31

21
73
99

156

40
134
180
280

2.0133

2.3166
2.8198
2.9887
3.2364

2.6736
3.1467
3.2984
3.5328

2.8257
3.2904
3.4478
3.6755

CsF 1.720 1.179 0.282 152 19.1 52 278 23 78 3.0071

aNalt. Bur. Stds. (U. S. ) Circ. No. 539 (U. S. GPO, Washington, D. C. ).

two-component system with Coulomb interactions.
We give below an expression for the alkali-halide
intermolecular potential and briefly outline the the-
oretical and computational methods which mill be
usede

Intermolecular Potential

In 1964, Tosi and Fumi analyzed the thermo-
dynamic data of the NaCl-type alk~» -halide crystals
using pair potentials having either an exponential
or an inverse-power repulsive core. They con-
clude that an optimum expression for the pair po-
tential has the following form:

Qi (r)=s.ebs &'"I" —egg/ff + if

dU1' +sf sg 8 'Y (1)

where the subscript i or j represents a positive or
a negative ion. The last term represents the Cou-
lomb potential between two charges z, e and zf e
separated by a distance x. The constants c,f and

d, ~ in the attractive parts of P,~(r) were determined
from ultraviolet-absorption data. Tosi and
Fumi's values of the constants a&f, b, r&, xf, and p as
mell as those of c,f and d,f for fourteen alkali ha-
lides investigated here are summarized in Table I.
For convenience, the potential given by Eq. (1)
will be hereafter referred to as the Tosi-Fumi po-
tential.

Note that the occurrence of a large number of pa-
rameters in the Tosi-Fumi potential is somewhat

misleading, since some of these are identical from
one salt to another (see Table I). In fact, the total
number of independent parameters for seventeen
salts (fourteen in Table I plus three lithium salts
not studied here) is 105. Hence, on the average,
there are about six parameters per alkali halide
(or two per ion pair) —a relatively small number
considering the complicated appearance of the po-
tential.

Lattice Dynamics

We follow the procedure of Born and von Karman
and expand the total potential energy of a system of
N halogen and N alkali ions, each interacting via
the Tosi-Fumi potential [Eq. (1)j in a Taylor series
in displacements of the ions from their equilibrium
sites. The resulting series is truncated by neglect-
ing terms with third or higher powers in the dis-
placements. The truncated series consists of the
static lattice energy (Es) plus a term quadratic in
displacements of the ions. The term linear in dis-
placement drops out on account of the crystal sym-
metry. Using the periodic boundary condition, the
resulting equations of motion for the quasiharmonic
Hamiltonian can be diagonalized. This procedure
gives 6N-6 independent normal-mode frequencies
v, for the N-1 wave vectors y, . Because we cal-
culate new coefficients in the expansion for each
volume or strained configuration, the vibrational
characteristics of the crystal are volume and strain
dependent, hence, the term "quasiharmonic. "
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In the case of ionic crystals, the presence of
long-range Coulomb forces makes it impossible to
directly apply this procedure. The Coulombic part
in the potential energy as well as the corresponding
terms in the dynamical matrix must be separately
handled either by Evjen's method or by Ewald's
method. ' The former is a direct summation ap-
proach which neglects the Coulomb force for r & —,'L
(L is the length of the box) or reduces it by a small
factor if r= —,'I.. The latter is an indirect approach
which transforms a slowly convergent original Cou-
lomb sum into two rapidly converging sums. We
tested the rapidity of convergence of the Coulomb
sums by using both the Evjen method and a gen-
eralized Ewald's method of Nijboer and de Wette,
which is applicable to a larger class of lattice sums.
The rate of convergence by Evjen's method was
slightly slower than that of Ewald's method. To
save computing time, Evjen's method, though sim-
pler to treat computationally, was abandoned in
favor of Ewald's method.

The normal-mode frequenci'es (v;) for a NaCl
structure were evaluated for their Tosi-Fumi po-
tential by a method described in Kellermann's
paper. The Helmholtz free energy (A) can be ob-
tained, in the quasiharmonic approximation, from
the knowledge of the v&'s, i.e. ,

6N-6

A=Es+kT Q ln(2sinhx, ), x, =
2 (2)

gal

ys=ys(1+211s) '
~ ys=ys ~

0 -1/2 0

(1+2',)"scose,

(4)

First, we set ps=ps= 0 in Eqs. (3) and (4) and
numerically evaluate the free energy (2) for three
discrete values (- hq, 0, hq) of 11,. Numerical dif-
ferentiation of the free energy yields

(6)

c'= v-'~ &82A

&8~1 ) r' (6)

and
88 ' 8T'(

LC =- C11 C11 = C12 —C12 = V
8&1 ~ 8$)„

(~)
where 8 is the entropy and the superscript S refers
to the adiabatic elastic constants. Likewise by
evaluating free energies for configurations having
two simultaneous strains 11, and qs (11s= 0) and for
free energies having a shear strain 11s40 (q, =gals

=0), we obtain, respectively,

8'Acr = v-'( (8)

&8 At

where h, k, and T denote, respectively, Planck's
and Boltzmann's constants, and the absolute tem-
perature. A small contribution of O(lnN) originat-
ing from the center-of-mass motion was left out
in Eq. (2).

The internal energy (E) and the constant volume
specific heat (C„) are evaluated, respectively,
from the first and second temperature derivatives
of Eq. (2) at a fixed volume. To evaluate the pres-
sure P and three isothermal elastic constants C,1,
C12, and C~, the procedure of Holt et al. is used
to relate an initial unstrained position x [=—(x1,xs,
xs)] in the lattice to a new strained position x [= (x1,
xs, xs)] by means of

x1 = x1(1+ 2111) cosa'

x, = x', (1+2q,)'"s1ne+x', (1+2qs)'", (3)

xs = xs, 8 —= sin [qs(1+ 2q1) 1/s(1+2qs) 1/s],

x2

I(

/
/

/
(xi gx2) /

.l

(xiqx2)

b

where g» g2, and g are three Lagrangian strain
parameters (defined in Fig. 1). These parameters
are used to deform the lattice so that strain deriva-
tives can be obtained numerically. The wave vec-
tor y[-=(y„ys, ys)] corresponding to the deformed
lattice is related to the wave vector y [=- (y1 ys,
ys)] of the undeformed lattice by

y1 [yl ys(1+ 2111) (1 + 211s)
'"»»1/

0 = xi (1 + 2ql ), b = x2(l + 2rl2)
1/2 1/2

q6
= {{1 + 2@1 ) {1 + 2q2 )) sin 61/2 .

p?Q. 1. Defxmbons of the straxn parameters gf
eyt~ ge, which are used to deform an initial lattice site
(z1, x2, x~p to a new position (xf x2 x3 x3)

~ 0
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The above computing scheme requires several
internal parameters (N„N~, N&, and 4g). The
quantities N, and N~ represent, respectively, the
numbers of neighboring shells includedin the static
lattice sums and the lattice sums in the dynamical
matrices. The number N~ represents the number
of mesh points in the first Brillouin zone, and the
quantity ~q denotes the differential elements of the
strain parameters. For a finite crystal, the num-
bers N„N„, and N~ are not independent and should
be represented by a single parameter. However,
since our interest lies in calculations for aninfinite-
sized system, we chose them independently to
achieve faster convergence to the infinite-system
values without using unnecessarily large N„N~,
or N~. The final values for N, and N„are 8 and 5,
respectively, and N~ was chosen to be 499 for the
LiF and NaF calculations and 107 for the other cal-
culations. The value for 4g was set to 0. 0001.
Test calculations on LiF, NaF, and KF using dif-
ferent values of N„N~, and N~ indicate that the re-
sults quoted in Sec. III represent essentially the
infinite-system values. In the case of NaF, for
example, a test calculation at 295 'K and lat-
tice spacing equal to 2. 31655 A shows that the en-
tropy (S) and specific heat (C„) are equal to 7. 64R
and 5. 5593R when N~=499, and to 7. 61R and
5. 5586R when N~= 107. This represents an error
of 0.4% in S and 0.01% in C„from the Ns= 499 data,
which are essentially the same as the infinite-sys-
tem values. Since the heavier-salt data, which
have smaller quantum corrections, are still less
sensitive to N~ and since the input value of N~= 107
is used only for the heavier-salt calculations, the er-
rors quoted above can be regarded as upper limits
on the errors in the heavier-salt calculations. If a
higher accuracy is desired, one merely needs to
use a larger value of N~ at the expense of an in-
creased computing time. A FoRTRAN program
written for this purpose takes about 9.3 min of
CDC-7600 machine time to generate the thermo-
dynamic quantities for NaCl or heavier-salt calcula-
tions and about 37 min for LiF or NaF calculations
at each temperature and volume. The large com-
puting time quoted above is required for two
reasons. First, evaluation of the thermodynam-
ic quantities outlined above required the Helmholtz
free energies of a salt crystal with eight different
strained crystal shapes. Second, unlike the pre-
vious calculations which take into account at most
the next-nearest-neighbor short-range interactions
representing fourteen neighboring ions, the lattice
sums in the dynamical matrices used in the present
work include interactions up to the fifth-neighbor
shells (or 1330 neighboring ions). Inclusion of fur-
ther neighboring shells contributes negligibly to
the calculated quantities. For those who may later
attempt this type of calculation we mention that the

use of the crystal symmetry should reduce (by a
factor of 3 or slightly more) the calculation time
quoted above, however, at the expense of mak-
ing the corresponding program somewhat more
complicated.

A=So+A, +A,
A, =(~kT) 1n(SgmPT jh )

-NkZ'ln f, dre-"'",

(10)

where subscripts + and —represent alkali and
halogen ions with their masses m, and m, respec-
tively. The symbol 5P, denotes the difference in
the potential energies of a particle at a position r
inside its cell and at its static-lattice site. Inte-
gration in Eq. (11) is confined to a cell volume 4,
or 4 . We use the parameter 5 (in Fig. 2) to vary
the sizes of 4, and b, . This parameter and the
lattice spacing a define completely the integration
limits of Eq. (11); i. e. ,

-d max(a-x, a-d) max(a-y-x, a-d)dr=8 dx '
dy dz,

+ 0
(12)

f, dr=6 f.'d~j", dy f'ds
At the solid densities, where the calculations

were carried out, the Helmholtz free energy is in-
sensitive to a choice of 5, the difference in the free
energy being about 0. 1%. This is expected, since,
at these densities, a particle collides almost en-
tirely with its neighboring particles. rather than

z - Ion (0,0,a)
I

I

I

I

1

I

Ix+z =a I y+z =a
I

I

I

+ion I

I- ion (,0,0) yx+y =a

FIG. 2. Shapes of the cell volumes for an alkali ion
(at origin) and its three halogen neighbors. This figure
represents only one-eighth of the volumes for each type
of the ions. The three other halogen neighbors at (-a,
o. o), (o, -a, o), and (0, 0, -a) are not shown.

Cell Model

For our calculations we use the LJD cell model
described in Ref. 8. In this model, a box contain-
ing N ~&ali and N halogen ions is partitioned into
2N' cells, each containing only one ion. It is fur-
ther assumed that each ion interacts with its neigh-
bors which are fixed at their static-lattice sites.
The free energy of the cell model is then
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mith its cell walls. Therefore, we used afixed val-
ue of 8(= 0. 5a) to obtain the results in Sec. III. The
choice of 5 = 0. 5u makes both cells look identical,
a cube with its sides equal to the lattice spacing.
At liquid densities, however, a minimization of the
free energy using 5 as a variational parameter
would likely give improved xesults on fused salts
over those obtained at a fixed 5.

The thermodynamic quantities are obtained by
differentiating Eqs. (10) and (11)with respect to
the temperature or the strain variables. These ex-
pressions were derived earlier' for a single-com-
ponent system and can be directly applied to each
of the positive and negative ions in Etl. (10). One
modification necessary for the present problem
occurs, however, in the evaluation of quantities
such as gP(x)(x/r), gP(r)(xy/r ), and gP(r)(x/r)
for the Coulombic part in the Tosi-Fumi potential.
We evaluated them by slightly extending the method
of ¹jboerand de Wette T.he summation 5P, in
the free energy as well as similar terms appearing
in the other thermodynamic quantities were cal-
culated by neglecting the contributions beyond the
first two neighboring shells of a given ion. Inte-
grations in Eq. (12}were calculated by using the
Gauss-Legendre 20-point integration scheme. The
infinite-system value of the static-lattice contri-
bution [Eo in Eq. (10}]can be obtained with suffi-
cient aecuraey by including the first eight neighbor-
ing shells. Possible errors associated with the
above procedure are negligible, and the cell-model
results in Sec. HI represent the infinite-system
values. A computer program for -the cell-model
thermodynamic quantities took 4. 5 min of CDC-
7600 machine time for each temperature and vol-
ume.

We have also evaluated the thermodynamic quan-
tities (except the elastic constants) from the har-
monic cell model. In this ease, the Helmholtz free
energy is obtained by expanding 5p, in Eq. (11) in
powers of r and truncating the series after the r
term. Since the elastic constants require aniso-
tropie strain derivatives, evaluation of these quan-
tities is more difficult and they have been omitted
here. In Sec. III, when they are needed, the har-
monic values of the cell-model elastic constants
are obtained by extrapolating the difference between
the cell-model and static values of the elastic con-
stants [C~&/(pkT)] obtained at a, fixed density and at
different temperatures to the T = 0 value.

HI. RESULTS AND DISCUSSION

Comparison with the MC Data

Monte Carlo data with mhich our results wQl be
compared are the 216-particle data of Woodcock and
Singer. ' The interionic potential used by these
authors is the Tosi-Fumi potential for potassium

chloride. The solid-state NC data are available
only along the 1045 'K isotherm. In Table Il, these
results are shown along with those obtained from
the cell model and lattice dynamics at three dif-
ferent molar volumes, i.e. , 41.48, 42. VO, and
43.92 cm /mole. Note that the last iwo volumes
lie within the metastable part of the isotherm.

Since the MC data and the theoretical values have
identical static-lattice contributions, we only need
compare the remaining "thermal" parts. Table H
shows that the cell-model values underestimate the
MC thermal energies by 5%%uo, 4%, and 5%%uq and over-
estimate the MC thermal pressures by 3%%uo, V%%uo,

and 8%, respectively, at these volumes. The cell-
model approximation as well as the number depen-
dence of the MC data and the "tail correction" made
in the MC computations can account for the rela-
tively small errors noted in these quantities. In
Table H, the potential energy is further divided
into the individual contributions by various parts
[Coulomb, (++), (+-), and (- -) repulsions, x
and x attractions] in the Tosi-Fumi potential.
The MC data and the cell-model values agree rather
well. Values of the isothermal bulk modulus B~
[-=~(C„+2C,2+P)], the Gruneisen y [= V(8P/8E)„],
and coefficient of the volume thermal expansion
n~ [-=V '(8V/8T) ~ =yC„/VBr] are less satisfactory.
The exact amount of the deviations which must be
attributed to the cell-model approximation cannot
be determined at present, since me do not knom
the errors associated with the MC computations.

Next, we proceed to compare the MC data and
the lattice-dynamic results with the reservation
that such a comparison will be less meaningful at
the melting temperature and at volumes correspond-
ing to metastable states, where one anticipates a
sizable anharmonic contribution to a thermodynam-
ic quantity. In the case of the energy, however,
this is not so; only 9%%u~ of the MC thermal energy
can be attributed to the anharmonic effect at the
melting point. For the other quantities, the anhar-
mosCic contxibutions are appreciably larger. In
particular, the lattice-dynamic values of B~ and
the shear modulus —,'(C, ~

—C~z) -P vanish at V
= 43. 0 and 42. 2 cm~/mole, respectively. The con-
ditions B~& 0, C„&C,~+ 2P, and C~ —P & 0 are the
so-called Born conditions which a crystal must
satisfy to maintain stability against mechanical
disturbances. It is interesting that the first tmo
Born conditions are violated at volumes inside the
metastable region near the MC melting point,
where a crystal undergoes a phase change because
of a thermodynamic instability. Although closeness
of the positions of the two different instabilities is
suggestive of a possible relationship between the
two as originally conjectured by Born, it may also
be entirely an accidental one and might be attrib-
uted to the quasiharmonie approximation. In this
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respect, the MC data on the elastic constants along
the 1045 'K isotherm, if evaluated, would help re-
solve the question. Because the cell walls arti-
ficially prevent mechanical instabilities from set-
ting in, the cell-model instabilities occur at vol-
umes larger than those quoted in Table II.

Comparison with Experimental Data

The LJD cell model described earlier neglects
the quantum-mechanical contributions to the ther-
modynamic properties. Likewise, the anharmonic
contributions are not included in the quasiharmonic
lattice-dynamic method. Hence, before proceed-
ing to compare the numerical results with the ex-
perimental data, suitable means are desired to
correct for these contributions. . This can be done
most easily by noticing that each of the two models
includes a complete account of the corrections
missing in the other model. Hence, to make a
quantum correction (b.z„) to an arbitrary thermo-
dynamic quantity F, we add

6+„=E(lattice dynamic)

—E(lattice dynamic, classical limit} (13)

to the cell-model value of F. Likewise, to esti-
mate the anharmonic contribution (b „z) to E, we
use the formula

b,„„=E(cell model) —E(harmonic cell model)
(14)

and correct the quasiharmonic value of F. The
values obtained in this manner will be, hereafter,

referred to as the "quantum cell-model" value and
the "anharmonic lattice-dynamic" value, respec-
tively.

At temperatures above about 75% of the melting
temperature, where the anharmonic corrections
start to become appreciable, nz„given by Eq. (13)
becomes less reliable. In this case, hz„can be
neglected entirely because it is a very small num-
ber or can be approximated by the first term in the
Wigner-Kirkwood expansion, as was done pre-
viously. ' ' ' The use of the expansion method
becomes less reliable at lower temperatures, since
the higher-order terms are no longer negligible.
As an example, the use of only the first term in the
expansion erroneously predicts nearly equal quan-
tum-mechanical contributions to C,z and C44 for the
alkali halides and the rare-gas solids. ' The
reliability of estimating the anharmonicity by Eq.
(14) deteriorates in a situation where correlated
motions of particles must not be ignored. For ex-
ample, such a situation is present near the melting
point in any thermodynamic quantity and in the
evaluation of the elastic constants at any tempera-
ture. Aside from the limitations noted above, Eqs.
(13) and (14) give satisfactory estimates of the cor-
rections, as will be seen in the tables which will
be presented later. As a further justification, it
can be shown that the lattice-dynamic values in
Table II are always improved when the anharmonic
corrections are included by Eq. (14}.

We shall first compare the experimental and the
theoretical thermodynamic data for different alkali

TABLE III. Constant pressure specific heats (C&) of alkali-halide crystals calculated at 300 'K by the cell-model and

the lattice-dynamic methods. Estimates on the quantum and the anharmonic correcti6ns to the cell-model and the lattice-
dynamic values, respectively, are listed and included in the theoretical values.

LiF

NaF
NaC1
NaBr
NaI

KF
KCl
KBr

RbF
Rb Cl
RbBr
RbI

CsF

Quantum
corrections

—9.69

-4.10
-2.61
-1.64
-1.07

-2.89
-1.54
—1.06
—0.76

-2.02
—1.13
—0.67
—0.46

-2.21

Anharmonic
corrections

—0.44

—0.55
—0.89
—0.99
—1.09

—0.76
—1.10
-1.03
—1.10

—0.89
—1.28
—0.78
—1.13

—1.25

C&(J 'K mole )

Quantum
cell model

41.08

46.91
48.71
49.85
50.64

48.34
50.14
50.67
51.21

49.30
50.71
51.36
51.77

49.47

Anharmonic
lattice

dynamics

43.29

51.21
49.16
50.76
52.54

50.76
50.52
50.85
51.54

50.45
50.52
51.96
51.87

49.72

Expts.

41.90

46.82
50.79
52.30
54.31

50.00
51.46
52.51
53022

50.67
51.21
51.71
51.80

50.66

Dev. (%)b

0.7
4.4
3 ~ 7

-3.8
—302

—0.9
—202

3 ~ 3
—3.5
-1.6

1~ 2
—0.1

0.0

—2 ~ 1

Landolt-Bornstein, Zahlenuerte und Eunktionen (Springer-Verlag, Berlin, 1961), Vol. 2, pt. 4.
Percentage deviations between the averaged theoretical values and the experimental data.
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TABLE IV. Adiabatic bulk modulus (Bg of alkali halides at 300 'K. The theoretical values include both the quantum and
the anharmonic corrections, whose estimated values are also listed.

LiF

NaF
NaC1
NaBr
NaI

KF
KC1
KBr
KI

RbF
Rbcl
RbBr
RbI

CsF

Quantum
corrections

0.10

0.02
0.01
0.01
0.01

0.01
0.01
0.00
0.00

0.01
0.00
0.01
0.00

0.01

Anharmonic
corrections

0.00

—0.01
—0.01

0.00
—0.01

0.00
0.00

—0.01
0.00

-0.01
0.00
0.00
0.00

0.00

B (10 ~ dyne cm )

Quanhun
cell model

7.31

4.03
2.77
2.09
1.38

2.79
1.78
1.65
1.25

2.65
1.76
1.40
1.19

2.79

Anh arm onic
lattice

dynamics

9.07

3.61
2.67
2.01
1.30

2.65
1.70
1.57
1.19

2.56
1.68
1.33
1.12

2.71

Expts +b

6.77, 6.96

4.85, 4.82
2.46, 2.47
2.02, 2.06
1.60

3.17
1.80, 1.82
1.53, 1.49
1.21, 1.16

2.77
1.65
1.37, 1.38
1.09, 1.11

Dev. Fo)

19

-21
10

0
—16

—14
4
7
3

—6
4

—1
5

aLandolt-Bornstein, Zahlenwerte Lnd FNnktionen (Springer-Verlag, Berlin, 1961), Vols. 1 and 2.
G. R. Barsch and Z. P. Chang, Phys. Status Solidi 19, 139 (1967).
Percentage deviations between the averaged theoretical values and the averaged experimental data.

halides at 300 'K and at lattice spacings appropriate
at one atmospheric pressure (which will hereafter
be referred to as zero-pressure situation; see
Table 1). These values as well as A+M and A„„
are shown in Tables III-V. We note several inter-
esting features in the tables: First, aside from the

three lightest fluorides (LiF, NaF, and KF), the
two theoretical values agree with each other rea-
sonably well. This shows a self-consistency in
introducing the quantum and the anharmonic cor-
rections by Eqs. (13) and (14). Second, except for
LiF and NaF, the averages of the two theoretical

TABLE V. Gruneisen parameters (y) of alkali halides at 300'K. The theoretical values include both the quantum and
the anharmonic corrections whose values are also listed.

LiF

NaF
NaC1
NaBr
NaI

KF
Kcl
KBr
KI

RbF
Rb Cl
RbBr
RbI

Quantum
corrections

0.17

0.06
0.01
0.01
0.01

0.02
0.00
0.00
0.00

0.01
0.OQ

0.00
0.00

0 ~ 00

Anharmonic
corrections

—0.01

—0.02
-0.03
—0.03
-0.03

—0.02
—0.04
—0.04
—0 ~ 04

—0.03
—0.04
-0.05
—0.05

—0.04

Quantum
cell

model

1.27

1.19
1.48
1.47
1.42

1.31
1.53
1.62
1.64

1.45
1.71
1.70
1.81

l.83

Anharmonic
lattice

dynamics

2.13

2.01
1.57
1.63
1.75

1.78
1.58
1~ 58
1.63

1.72
1.64
1.64
1.68

l.85

Expts.

1.29

l.35
1.56
1.45
1.55

1.40
1.44
1.45
1.56

1.50
1.62
1.65
1.62

Dev. Pp)

32

19
-2

7
2

10
8

10
5

These values are computed using the experimental data on C& (Table III), B~ (Table IV), and the thermal expansion
poefficients in Landolt-Bornstein, Zektesweyte gad Eusktioses (Springer-Verlag, Berlin, 1960), Vol. 2, pt. 2.

'Percentage deviations between the averaged theoretical values and the experimental data.
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TABLE VI. Elastic constants of alkali halides at 300 'K obtained from the LJD cell model, the lattice dynamics, and

experiments. Superscript 0 denotes static values of the elastic constants. Thermal parts in the isothermal elastic con-
stants Cgf are denoted by 4C&&. The adiabatic elastic constants C~~ and C~~ are, respectively, equal to Cgg+4C and Cfg
+AC.

Elasti. c constants (10 erg cm )

C)2 = C44 ACgg LCgp LC~ d,C Ci2S

LiF

NaF

NaCl

NaBr

NaI

KC1

RbF

Rb Cl

RbBr

RbI

Cell model
Latt. dyn.
Expt.

Cell model
Latt. dyn.
Expt.

Cell model
Latt. dyn.
Expt. '
Cell model
Latt. dyn.
Expt. ~

Cell model
Latt. dyn.
Expt. b

Cell model
Latt. dyn.
Expt c

Cell model
Latt. dyn.
Expt. '
Cell model
Latt. dyn.
Expt.

Cell model
Latt. dyn.
Expt.

Cell model
Latt. dyn.
Expt. ~

Cell model
Latt. Dyn.
Expt. '
Cell model
Latt. dyn.
Expt. ~

CeQ model
Latt. dyn.
Expt. ~

Cell model
Latt. dyn.

7.91
V. 91

4.42
4

4.85
4.85

3.43
3.43

1.97
1.97

3.68
3.68

3.23
3.23

3.22
3.22

2.39
2.39

3.99
3.99

3.52
3.52

2.76
2.76

2.45
2.45

5.17
5.17

6.47
6.47

3.59
3.59

1.48
1.48

l.21
1.21

0.94
0.94

2.13
2.13

0.8V

0.87

0.70
0.70

0.53
0.53

1.76
1.76

0.69
0.69

0.56
0.56

0.42
0.42

l.32
1.32

0.56
6.71

0.37
-0.49

0.13
—0.16

0.13
—0.14

0.13
-0.11

0.23
—0.20

0.07
—0.17

0.04
-0.16

0.04
—0.14

0.18
—0.15

0.03
—0.19

0.03
-0.17

0.01
-0.16

0.10
-0.16

—0.19
—1.16

—0.13
—0.68

—0.02
—0.03

-0.03
-0.05

-0.03
—0.08

-0.07
—0.21

0.00
—0.01

0.01
0.01

0.01
0.00

-0.05
—0.10

0.02
0.01

0.01
0.01

0.02
0.02

—0.01
O. 00

0.02
-0.21

0.01
—0.12

0.02
0.01

0.02
0.01

0.02
0.00

0.03
—0.02

0.01
0.00

0.01
0.00

0.01
0.00

0.03
0.01

0.01
0.00

0.01
0.00

0.01
0.00

0.04
0.03

0.18
0.57

0.13
0.38

0.12
0.14

0.11
0.13

0.07
0.11

0.11
0.20

0.09
0.10

0.09
0.09

0.08
0.08

0.11
0.16

0.10
0.10

0.09
0.09

0.08
0.07

0.15
0.16

8.65
15.19
11.2
4.91
4.31
9.VO

5.08
4.82
4.87

3 ' 66
3.42
3.98

2.17
1.97
3.03

4.02
3.68
6.50

3.40
3.1V

4.06

3.35
3.14
3.46

2.51
2.33
2.74

4.29
4.01
5.52

3.65
3.43
3.65

2.8V

2.67
3.14

2.54
2.36
2.56

5.42
5.17

6.45
5.89
4.56

3.59
3.29
2.42

1.58
1.58
1.26

1.28
1.29
1.04

0. 98
0.98
0.89

2.17
2.12
1.50

0.96
0.96
0.67

0.80
0.79
0.56

0.61
0.61
0.44

1.83
1.83
1.40

0.81
0.80
0.65

0.65
0.65
0.48

0.52
0.51
0.36

1.47
1.48

6.48
6.25
6.32

3.60
3.47
2.81

1.50
1.48
1.27

1.24
1.22
1.00

0.96
0.94
0.73

2.16
2.11
1.25

0.88
0.87
0.63

0.71
0.70
0.51

0.54
0.54
0.37

1.80
1.77
0.93

0.70
0.69
0.48

0.57
0.56
0.38

0.42
0.42
0.28

1.30
1.35

'G. R. Barsch en~ Z. P. Chang, Phys. Status Solidi
~19 139 (l967).

G. R. Barsch ~nA H. E. ShuQ, Phys. Status Solidi
b43, 637 (1971).

'K. M. Koliwad, P. B. Ghate, and A. L. Ruoff, Phys.

Status Solidi 21, 507 (1967).
S. Haussuhl, Z. Physik 159, 223 (1960).

'M. GhaQehbashi, D. P. D~n~eker, and A. L. Ruoff,
J. Appl. Phys. ~41 652 (1970).

values are close to the corresponding experimen-
tat data, the manmum deviations being 3. 8% for
C~, 16% for B„and 1lPq for the Gruneisen y.

Third, the quantum cell model describes the ther-
modynamic properties of LiF very well. The cal-
culated values of C~, r, and B, lie, respectively,
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within 2%%up 2%%up and 8%%uo of the experimental values.
Fourth, the heavier alkali halides have larger an-
harmonic corrections. This is expected, since
the heavier salts have smaller cohesive energies
and, as a result, are less tightly bound in the po-
tential well. Both the anharmonic corrections and
the quantum corrections reduce the values of C~,
while the values of B, remain close to the classical
harmonic cell-model values on account of a mutual
cancellation of the two contributions. More de-
tailed discussion will be given later on the anhar-
monic effects.

Table VI shows the elastic-constant data obtained
from the theories and experiments. The static
and the thermal parts in the elastic constants are
also separately listed. In contrast to the case for
the other thermodynamic properties, agreement
between the theories and the experiments are gen-
erally poor. The theoretical and experimental val-
ues often disagree by 40%%uo or more! These devia-
tions cannot be attributed to the quantum-mechani-
cal and the anharmonic contributions, which are
not included in the theoretical values in Table VI.
Their contributions are relatively insignificant.
The observed deviations occur mainly in the static-
lattice parts of the elastic constants (see Table Vl).
This points to the conclusion that the Tosi-Fumi
potential is not satisfact:ory (at least for the elastic
constants) to represent a true interionic potential
for the alkali halides. A possible way of improv-
ing the potential will be discussed later. The ther-
mal contributions to the elastic constants obtained
from both theories are in general small. Never-
theless, there are deviations between the two the-
oretical values, which are mostly attributable to
the absence of the cooperative modes in the cell
model.

Table VII shows the temperature dependence of
the thermodynamic properties of potassium chlo-
ride. At 195 and 295 K, we againnote close agree-
ment between the two theoretical values and reason-
able agreement (except the elastic constants) be-
tween the averages of the two theoretical values and
the experimental values. At the melting point,
however, Eq. (14) significantly underestimates the
true anharmonic corrections because of the en-
hanced correlated motions of ions. Table VII also
lists the MC values ' of the thermodynamic prop-
erties. Deviations between those MC data without
specified errors andthe other data in Table VII
should not be regarded as the true differences be-
tween the two.

Although the intermolecular potential used in the
theoretical calculations is chiefly responsible for
the observed deviations in the elastic constants,
Figs. 3 and 4 for NaCl and KC1, respectively,
show that the qualitative features present in the
experiD ental data are also reproduced in the the-

5.0

4 0

3.0

2.0

I I I I I I I I I

I I I

1.6—

0
0
0
a

1.4—

1.2—
I

1.6

S
C12

0 0 0
0

T
0 m

I I r I I I I

1.4—

1.2— 0 0 0 0
1.0 —

C44

0.8—
I I I I I I

200 300 400 500 600 700 800

T( K)

0
T

900 10001100

oretical curves. These are (a) C«(T) ( Cfz(T) for» 200 'K and (b) a small positive slope dC~~/dT
for KC1 with a peak in C,z around 800 K (see also
Table VII; the slope for NaC1 is positive but smal-
ler). The approximate quasiharmonic theory of
Leibfried and co-workers ' cannot explainboth fea-
tures. In particular, the present data show that it is
erroneous to attribute (a) and (b) to many-body forces,
as suggested by them. Furthermore, we note that
the quasiharmonic thermal contributions (nC~r„
&Cqq, and &C«) calculated by the procedure of
Leibfried and co-workers are unacceptably large.
For example, the high-temperature calculations
on potassium chloride at 295'K show

(+Col i +Cog i +C44)l( p&T)

= (- 27. 5, —1.9, —0. 1)

FIG. 3. Adiabatic elastic constants of sodium chloride:
black circles, experimental data of Bartels and Schuele
[J. Phys. Chem. Solids ~26 537 (1965)]; open circles,
experimental data of Slagle and McKinstry [J. Appl. Phys.
38, 437 (1967)]; solid line, the lattice-dynamic calcula'-.
tions; broken line, the cell-model calculations. T~ is the
melting temperature.
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the exact lattice-dyanmic values,

=(62. 5, —27. 4, 1.8)

Leibf ried and co-workers's procedure.

2 ~ 0

1.8—
NaCI

I I

I I I I I I I I

4.0— &CI

These discrepancies originate from an approxi-
mation used by Leibfried and co-workers, who re-
placed each lattice normal-mode frequency by its
spectral average (&u2) I (the Einstein frequency).
Numerical values of the elastic constants depend
sensitively on the method of evaluating (&ua). Leib-
fried and co-workers evaluated (~a) as the alge-
braic mean of (~„'), (spa) representing three com-
ponents of +2. This gives reasonable values of the
thermodynamic quantities such as the pressure and
the compressibility, which require isotropic strain
derivatives of the Helmholtz free energy. But this
is not the case for the elastic constants. From his
approximate calculations of the elastic constants,
Mitskevich~ has also noted this point. The elastic
constants require anisotropic strain derivatives, and
our calculations on the LJD cell model suggest that the
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I
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3 10

T ('K. )
FIG. 5. Temperature dependence of the Griineisen p

for sodium chloride at constant volume corresponding to
O'K: circles, experimental points of White (Ref. 28) con-
verted to the constant-volume points by Achar and Barsch
(Ref. 27); solid line, the present lattice-dynamic calcu-
lations using the Tosi-Fuji potential; dotted line and
dashed-dotted line represent, respectively, the shell-
model and the modified rigid-ion-model calculations by
Achar and Barsch using 0 K input.
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FIG. 4. Adiabatic elastic constants of potassium chloride.
See Fig. 3 for the notation.

use of g((g, ) ((g„) ((o, )]„[((o„)((o„)((o, )]ci)
(rather than +8 f[(~,) + (&o, )+(&o,)]&+[(&o,)+ (&o„)
+ (~, )]c,)) gives improved values of the elastic
constants besides giving correct free energy under
the fixed-neighbor ("Einstein" ) approximation.

At this point we would like to emphasize that the
Cauchy conditions would hold in general for two-
body central forces only in the static-lattice ap-
proximation. Our temperature-dependent two-
body central force calculations exhibit features
which are qualitatively similar to the deviations
from the Cauchy conditions observed in the experi-
mental data. For example, in addition to the ef-
fects mentioned above for NaC1 and KC1, the
300 'K calculations show a trend from C44 & C,~ for
the low-Z salts to C,z& C44 for the high-Z salts.
The magnitude of the deviations from the Cauchy
conditions suggests, as has been repeatedly stated
in the literature, that noncentral or many-body
forces contribute very little to the elastic con-
stants.

Figure 5 shows the temperature dependence of
V for sodium chloride at a fixed lattice spacing
(2. 793 A) appropriate for the 0'K volume. The-
oretical v's refer to the lattice-dynamic ~ obtained
here and to the two others obtained by Achar and
Barsch. These authors used a six-parameter27

shell model and a rigid-ion model with first- and
second-nearest-neighbor interactions. Experi-
mental values of y in Fig. 5 are obtained by them
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by converting %hite's data a,t zero pressure to
those applicable at the 0 'K volume. Our calcu-
lated y exhibits a shallow maximum ('y = 1.539)
around 250 'K and agrees almost exactly with the
experimental y around 300'K. At T=80'K or
lower, however, y's obtained in this work do not
decrease as fast as the experimental values. At
T= 50 'K or lower, the present calculations, which
use 499 wave vectors in the basic Brillouin zone,
become less reliable, since a smaller number of
the computed frequencies actually contribute to y
by any significant amount. Restrictions on the
computing time prevented us from extending the
calculations to still lower temperatures, where
both the experimental ' and theoretical studies
indicate a shallow minimum in y. The use of de
Launay's formula ' gives the 0 K Debye tempera-
ture (8~) of 332 'K for sodium chloride compared
to the experimental value of 322 'K. We evaluated
the y (0 'K) = yo from the relation ~ ' ~ yo= -dln8DO/

din V by a numerical differentiation. The result-
ing value is about 0.98+0.05, compared to the
experimental value of 1.06 + 0.01.

Anharlnonic Contributions

One way of estimating the anharmonic contribu-
tions is to develop a perturbation series in the an-
harmonic parts of the potential energy using the
quasiharmonic lattice-dynamic Hamiltonian as the
zeroth-order term. The first one or two terms
in the expansion can be actually computed in this
manner but require very complicated mathemati-
cal procedures-an infinite series in the perturba-
tion potential which is in turn an infinite series. ' '

On the other hand, the cell-model estimate of the
anharmonicity is based on Eg. (14), which is direct
and simple and, though less rigorous, has the ad-
vantage of estixnating a full anharmonic contribution
to a thermodynamic quantity. As a result, knowl-

edge of the cell-model anharmonic contributions
provides a clue to the rate of convergence of the
perturbation series.

In the calculations carried out below, we used
potassium chloride as a representative case for all
alkali hslides studied here (with a possible excep-
tionof LiF). To prevent complications arising from
the thermal expansion of the lattice, the lattice
spacing is fixed at 3. 1462 A., which is the value ap-
propriate to 295 'K and zero pressure. The ther-
modynamic properties are computed from the cell
model at ten different temperatures ranging from
50 to 1000 K. %ithin the accuracy of our calcula-
tions, these can be fitted by the following quadratic
polynomials in T:

(4 A„)/NkT=1. -9x10 4T —1x10 'T~, (15a)

(E E„)/KkT= —1.Vx10—4T+3x10 ST~, (15b)

1.0

0.8

0. 16

0. l4

0.7 0. 10

0.5

0.08

0.06

(P Pz)/pkT—= —6.6x10 4T+2x10 ~T,

(C„—C~)/Nk = —3.6x 10 T+ 1x 10 T,
y —y, = - 1.1x10-4T+2x10-'T',

(15c)

(15d)

(15e)

(Cu —Cii„)/pkT = 3. 52x10 T —1.0x10 T, "

(15f)
(C» C»„)/P-kT = 6 12x iO .'T 7x-10 s—T', -

(15g)
(C44 —«e)/pkT= 2. 16x10-'T+6xlO-~T,

(15h)
where the subscript h denotes the harmonic values
obtained by extrapolation to T —0 'K. In Eqs.
(15a)-(15h) the coefficients of the T terms depend
sensitively on the numerical values of the terms
linear in T. Hence, they should be regarded as
representing only correct orders of magnitude and
signs. %'e note that the sign of the leading anhar-
monic correction for C„[Eg. (15d)] does not agree
with the one estimated from the experimental
data. '~ This correction results from the sum of
the cubic and quartic terms in the expansion of the
potential energy. The two terms contribute nearly
equally but have different signs. As a result, the
leading anharmonic correction affects only slightly
the classical Dulong-Petit value (6R); i.e. , ap-
proximately 2% at room temperature and 6% at the
melting point. Therefore, a possible reason for
the different signs may lie in our use of the Tosi-
Fumi potential, which may be inadequate to explain
data on C„for KC1. (A similar analysis for NaC1
gives a consistent result in this respect )Fo.r a
more complete explanation, however, it is neces-
sary to carry out first-order perturbation calcu-
lations to eliminate an additional contribution aris-
ing from the cell-model assumption employed here.

Figure C shows the temperature dependence of

0.02

o3
0 200 400 600 800 & 000

T( K)

FIG. 6. Differences bebveen the cell-model (CM) and
the lattice-dynamic (LD) (classical limit) values of
A. (Nk T},I'(phd), and y for potassium chloride at dif-
ferent temperatures. The calculations are carried out
at constant volume corresponding to 295 'K and zero pres-
sure.
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the Helmholtz free energy, the pressure, and the
Griineisen y [Eqs. (15a), (15c), and (15d)]. This
figure and Eqs. (15a)-(15h) show that the anhar-
monicity makes, in fact, very small contributions
to the thermodynamic variables. At 1000 K,
which is close to the melting temperature (1045 K),
the anharmonic contributions to A, E, P, etc.
[Eqs. (15a)-(15h)] are, respectively, 0. 25%%uc (A),

0. 2'%%u& (E)~ 6. 3% (P)~ 4 4% (C~)~ 6. 1/o (y)~
1.6% (Cqq), 1.9% (C,z), and 0. I%%uc (C«}. Dominant
parts of the anharmonic corrections originate from
the terms linear in T in Eqs. (15a)-(15h). Contri-
butions of the second term (proportional to T }
are O(10 T) or less, which amounts at most to
10% of the leading terms at the melting point.

Cowley used a shell model with nearest-neigh-
bor repulsive interactions and computed the first
term on the right-hand side of Eq. (15a) from the
perturbation theory. The numerical value of the
term was found to be small owing to a nearly com-
plete cancellation between the two contributing fac-
tors; i.e. , the cubic and the quartic terms in the
Taylor series expansion of the potential energy.
His results for sodium chloride are in qualitative
agreement with the present potassium chloride re-
sults. From the present results, we can draw the
tentative conclusion that the thermodynamic quanti-
ties obtained from the perturbation expansion will
converge very rapidly for the alkali halides, and
that inclusion of the first- and second-order terms
[proportional to T in Eqs. (15)] will be sufficient
to explain nearly all of the anharmonic contributions
to the thermodynamic quantities.

The above conclusion is based on the use of the
cell-model approximation. Consequently, one
might question how that approximation affects our
analysis. Numerical evidence in favor of using
these procedures has already been described.
Further evidence can be obtained by finding out
how adequately the harmonic cell model can ap-
proximate the lattice-dynamic results. Our nu-

merical results on the quantities given by Eqs.
(15a)-(15e) are encouraging; i.e. , the difference
between the harmonic cell-model and the lattice-
dynamic values are 0.6 for A/NkT, —0.34 for
P/pkT, and —0.06 for y. (Note that these are rep-
resented by the intercepts in Fig. 6. The values
of E and C„agree, of course, exactly. ) The elastic
constants [Eqs. (15f)-(15h)] have larger deviations,
i.e. , 37. 3 for C~, /pkT, 1.00 for C~z/pkT, and 2. 3
for C44/pkT Th. is suggests that the estimates of
the anharmonicity become less reliable for the
elastic constants in agreement with our earlier dis-
cussion. Since the anharmonic contributions affeet
the elastic constants by less than 3%%uc at any tem-
perature, their estimates based on the cell model
may, however, notbe too bad inpractice.

Analysis of the Tosi-Fumi Potential

We have already noted that the cause of large
deviations between the theoretical and the experi-
mental values of the elastic constants lies in the
inadequacy of the Tosi-Fumi potential. To analyze
this in a quantitative way, we use the potassium
chloride data at 295 'K under zero pressure (see
Table VII).

In this case, the lattice-dynamic values under-
estimate the experimental C» by 20%, and over-
estimate the experimental C,z and C44 by 40%%uc.

Since the calculations showed that 95%%uc of C~» and
93%%uc of C,z and C44 come from the static-lattice
contributions, we need consider only these contri-
butions in detail. They are further divided into
contributions from individual parts (Coulomb, ex-
ponential repulsion, r s and r attractions) in the
Tosi-Fumi potential. These are given in Table
VIIL Because the nearest-neighbor interactions
make no contribution to C,z, the repulsive poten-
tial can only weakly affect C,a (superscript 0 rep-
resents the static-lattice contribution; see Table
VIII). In fact, even if this term is neglected en-
tirely, the theoretics, l value (6.9x10' dyncm }

TABLE VHI. Contributions of various (Coulomb, exponential repulsion, r 6, and r+ van der Waals attractions) parts
of the Fumi-Tost potential to the static-lattice properties of potassium chloride at lattice spacing 3.1462 A.

Energy (10 erg per molecule)

Pressure (109 dyn cm )

Cff (10 dyn cm )

C(2=C44 (10 dyn cm )

Coulomb

-12.81

-68.57

—3.69

0.82

Repulsive

1.58

80.28

8.15

0.17

r+ attractive

—0.46
(-0.84)

—14.93
(-27.12)

—1.00
(-1.72)

-0 ~ 11
(-0.24)

r+ attractive

—0.06

-2.49

—0.22

—0.01

Total

-11.76
(-12.14)a

-5.71
(-17.89)

3.24
(2.52)

0.87
(0.74)

'These values are calculated from Lynch's values (Ref. 35) for the van der Waals dipole-dipole coefficients without
local field corrections.



THERMODYNAMIC PROPERTIES OF THE ALKALI-HALIDE. . . 841

TABLE IX. The % rms displaoements (hr ) 2of alkali
and halogen ions in an alkali-halide crystal, measured in
units of the lattice spacings at 300 'K under zero pres-
sure.

(~P)i/2/(~P)1/2 p)
~+ Na+ K' Rb'

F 6.56/6. 21
C1
Br
I

6.65/6. 95
6.16/5. 96
6.57/6. 23
7.35/6. 72

6.32/7. 04
6.24/6. 31
6.0S/6. 0S
6.35/6. 27

5.97/6. 73
5.84/5. 93
6.09/6. 15
6.02/6. 03

5.29/5. 81

still lies more than 10'%%uo above the experimental
value (6. 2X 10' dyncm )! If one decides to keep
the functional form of the Tosi-Fumi potential,
both the repulsive and the attractive parameters
in the potential have to be readjusted to reconcile
with the deviations in C„and C,z (or C44). A re-
adjusted potential must have a stiffer repulsion
and a stronger van der Waals attraction between
the (+,-) or (-, -) pair than the values given in
Table I. An increased stiffness makes C» much
larger without appreciably affecting C», while a
stronger r attraction reduces C,a (see Table
VIII). In fact, recalculation of the van der Waals
parameters by Lynch indicates that the new val-
ues of c„,c, and c, for potassium chloride can
be larger than the old values by IVO%%uo, 57. 5%, and
—21%, respectively. Calculations using Lynch's
values of c,&'s are included in Table VIII. As ex-
pected, C,~ is improved appreciably. It would be
useful to recalculate the parameters in the Tosi-
Fumi potential by means of a suitable least-squares
fit which uses, among other things, data on C,~

(or C44) as input values.
One can, of course, attribute the observed devia-

tions to other effects than to the inadequacy of the
pair potential, as we have done above. Available
data are, however, not encouraging for such sug-
gestions. The Axilrod- Teller triple-dipole poten-
tial contributes to C„and C,~ with the same sign.
This is also the case for a noncentral potential,
cr (x +y +s —0. 6r ), which is the first nonvan-
ishing term in a multipole expansion of the electro-
static energy subject to the constraint of the cubic
symmetry of the crystals. The shell-model values
of C», C,2, and C44 do not depend on the elec-
tronic polarizability which we have neglected in
our calculations. At this point, it may be useful
to stress our view regarding the differences be-
tween the experimental and the theoretical Tosi-
Fumi values of the elastic constants. A part of the
differences might still be due to many-body effects
of an unknown origin (to our knowledge, no satis-
factory calculation of the elastic constants illustrat-
ing the deviations as a many-body effect has been
published in open literature). Before attempting to
make any quantitative calculation of this kind, we

take the view that it is necessary to know a more
accurate expression for the pair potentials than
those presently available. As we noted earlier,
the use of an improved pair potential alone can re-
duce a large part of the observed deviations.

Root-Mean-Square Displacements

The ions in a crystal execute thermal and zero-
point vibrations about their static-lattice positions.
In general, the average magnitude of the displace-
ment depends on the strength of the intermolecular
force, the lattice structure, the ionic masses, the
temperature, and the anharmonicity of the potential
energy.

Table IX shows the rms displacements ((Ar) )
of alkali and halogen ions at 300 'K under zero pres-
sure. The data are obtained by using the Tosi-
Fumi potential in the harmonic cell model. The
rms displacements of ions range from 5. 3 to I.4%
of the lattice spacings. Except the fluoride salts,
both alkali and halogen ions in a given alkali-halide
crystal have about equal displacements. The an-
harmonic contributions reduce the rms displace-
ments in Table IX by about 2%%uz. However, their
contribution becomes larger at higher tempera-
tures. At the melting point, for example, (Ax„)'t
and (b,Hc,)'t of potassium chloride are 0. 124a and
0. 125a, respectively, and (Ar„,)'t and (Ado, )'t
for sodium chloride are 0. 128a and 0. 125a (a —= lat-
tice spacing). The anharmonicity contributes about
8% of these values. It is interesting to note that
the four values are close to each other. Linde-
mann proposed that (Ar ) /a is nearly constant
along the melting line. Experimental values of the
rms displacements are not available for alkali ha-
lides. Since the cell-model restriction artificially
inhibits a correlated motion of neighboring ions,
the value (0. 12-0.13) predicted here should be re-
garded as a lower limit to the Lindemann parame-
ter of the alkali balides.

IV. SUMMARY AND CONCLUSIONS

We chose the interionic potential for alkali ha, -
lides to be the Tosi-Fumi potential and computed
the equilibrium properties by means of lattice dy-
namics and the LJD cell model. Comparison of the
numerical data with available experimental data as
well as those provided by the computer "experi-
ments" enabled us to draw the following conclusions
and to suggest several investigations worthy of be-
ing carried out in the future.

(i) Equations (13) and (14) provide reasonable and
self-consistent ways of estimating the quantum and
the anharmonic corrections, provided that these
corrections are small. The anharmonic estimates
of the elastic constants are not reliable. Further
improvement can be obtained by using the corre-
lated cell model, where adjacent particles are
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allowed to move together.
(ii) Discrepancies in the elastic constants are

attributed to the softness in the repulsive core and
the weakness in the van der Waals's attraction in
the Tosi-Fumi potential. It would be worthwhile to
improve the Tosi-Fumi potential by a least-squares
fit to readjust the parameters in the potential.

(iii) The cell-model results for the anharmonic
contributions suggest that the first two terms in a
perturbation expansion of the anharmonic potential
can nearly completely account for the observed an-
harmonic contributions. From a theoretical point
of view, this result is encouraging, since the first
two terms can be exactly evaluated though such cal-
culations are tedious. The difficulty of evaluating
the higher-order terms, however, increases very
rapidly.

(iv) The elastic constants evaluated from the ap-
proximate theory of Leibfried et al. are different
from those obtained from the exact lattice-dynamic
calculations in qualitative and quantitative ways.
The deviations occur in the way that the Einstein
frequencies are defined for a strained lattice. The
use of the Einstein frequencies introduced here for
the strained lattice gives improved values of the
elastic constants.

(v) It is probably not necessary to invoke many-
body forces in order to explain the observed devia-
tions from the Cauchy relations.
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