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In this paper, we present a series of band-structure calculations for solid Ne, Ar, and Kr. These
calculations are performed in the restricted Hartree-Fock limit by the self-consistent-field method.
Correlation and polarization corrections are included by means of the electronic polaron model. We
find that the Hartree-Fock band structures provide band structures which are broader than one obtains
using a statistical-exchange approximation in constructing a crystal potential. We find that correlation
corrections produce optical band gaps in reasonable agreement with experiment. We compute the joint
density of states for optical transitions from both valence and core levels and find acceptable agreement
with experiment. We also study the mixed-crystal soft-x-ray data of Haensel et al. and find our band
structures to be in reasonable agreement with the trends demonstrated in the experimental data. This is
in contrast to the other available unified series of calculations for the solid rare gases of Rossler. In
this other series of calculations employing a statistical-exchange approximation, one finds that the shift
in conduction levels in going from solid Kr to solid Ar to be opposite to experiment.

I. INTRODUCTION

The solid rare gases have been studied in a
number of band-structure calculations. The avail-
able calculations have been performed either using
a statistical-exchange approximation in forming
the crystal potential or in the restricted Hartree-
Fock limit. In general, great differences are
found to exist between these two types of calcula-
tions. In the present paper, we present a set of
fully self -consistent Hartree-Fock band-structure
calculations for solid Ne, Ar, and Kr. We also
include polarization and correlation corrections to
these band structures. We compute our band
structure at a sufficiently large number of points
throughout the first Brillouin zone to permit us to
compute density of states and the joint density of
states for our solids without the need of interpola-
tion schemes.

Previously, Knox and Bassani have computed
the band structure of solid Ar using a perturbation

approach to the orthogonalized-plane-wave (OPW)
method. Mattheiss has later computed the band
structure of solid Ar using the augmented-plane-
wave (APW) method. Most recently Rossleri has
computed a band structure for solid Ar using the
Korringa-Kohn-Rostoker (KKR) method. In the
case of solid Kr, there exists a combined tight-
binding-OPW calculation by Fowler and a KKR
calculation by Rossler. Finally in the case of
solid Ne there exists a calculation by Rossler. 3

All of these calculations employ a statistical-ex-
change approximation in forming the crystal po-
tential and none of them is self-consistent.

More recently, physicists have been attempting
to employ the restricted Hartree-Fock method to
study these materials. Calculations of this nature
have been reported for solid Ne using the APW
method by Dagens and Perrot. Calculations for
solid Ar have been reported by Lipari and Fowler
who used the OPW method and by Lipari using the
mixed-basis (MB) method, and by Dagens and



780 A. BARRY KUNZ AND DANIEL J. MICKISH

Perrot using the APW method. Lipari has re-
ported a calculation for solid Kr employing the
OPW method. Most recently Mickish and Kunz

have reported a calculation for solid Ar obtained

using the linear-combination-of-local-basis-func-
tions (LCLBF) method. Of these Hartree-Fock
calculations only the calculation of Lipari for solid
Ar and the calculation of Mickish and Kunz for
solid Ar have been self-consistent. The only cal-
culation to report a band structure which specifi-
cally included correlation corrections was that of
Lipari and Fowler for solid Ar. This calculation,
unfortunately, was not self-consistent.

We report in this paper a series of self-consis-
tent calculations for solid Ne, Ar, and Kr. These
calculations are performed in the self-consistent
Hartree-Fock approximation using the LCLBF
band method. Self-consistency is achieved by
solving the Adams-Gilbert ' local-orbitals equa-
tion in the limit of small overlap. ' We include po-
larization and correlation corrections in these cal-
culations. We do this using the electronic polaron
method of Toyozawa for both the electrons and the
holes in the limit recently derived by Kunz. We
find these corrections to be substantial and impor-
tant, as previously suggested by Fowler 6 and as
found by Lipari and Fowler.

At this point some immediate observations are
possible. These are that there exists an accept-
able level of agreement as to the band structure of
the solid rare gases in the calculations which em-
pl.oy a statistical-exchange approximation and also
an acceptable level of agreement as to the band
structure of the solid rare gases in the Hartree-
Fock-type calculations. What is also evident is
that there exists gross disagreement between the
predictions obtained using a statistical-exchange
approximation and those obtained using a Hartree-
Fock method. This statement is not to imply that
the agreement among the various calculations of a
given type is perfect but rather that such disagree-
ments as exist are minor by comparison with the
disagreement which exists between Hartree-Fock
and statistical-exchange calculations. We note that
these differences continue to exist even after self-
consistency is imposed upon the Hartree-Fock so-
lution and after polarization and correlation cor-
rections are included.

In the comparisons which follow in this paper,
the statistical-exchange calculations we will use
for comparison purposes are those of Rossler. 3

This is because these calculations are the mostre-
cent and the most complete. That is, the calcula-
tions of Rossler are for solid Ne, Ar, Kr, and Xe
and employ a similar type of potential and employ
the same band model for all calculations. There-
fore the trends from one material to the next should
accurately represent the physics of the situation

and should not be limited by minor differences in
potential or band model as would be the case if we
used the calculations of several authors as a stan-
dard of comparison. In addition, Rossler has at-
tempted detailed experimental comparisons from
his calculations ' and also detailed comparisons
with other theoretical results. We find that a
substantial error has been made in Rossler's com-
parison of his calculation' with that of Lipari. We
investigate this question at the proper place in this
paper.

Owing to the efficiencies possible in the LCLBF
band model we compute our band structures for the
solid rare gases at sufficient points in the Brillouin
zone to permit us to construct coarse but reason-
able density-of-state histograms directly from our
band model without the aid of interpolation schemes.
We also compute the joint density of states for
transitions from the valence levels and for certain
of the core levels for the solid rare gases. This
facilitates comparison of theory and experiment.

The experimental situation for the solid rare
gases is excellent. Optical absorption or reflec-
tion studies have been performed and electron-en-
ergy-loss data in the region of the fundamental ex-
citon absorption and the valence-to-conduction
band-to-band region have been determined.
In addition there have been a series of studies of
the optical properties of the solid rare gases in the
soft-x-ray region. Solid Ne has been studied inthe
region of the L, edge by Haensel et al. + Solid Ar
has been studied in the region of the Q, ,„,edge by
Haensel et al. and by Keitel. ' Solid Kr has been
studied in the M,„»edge region by Schreiber Band by
Haensel et al. ~ Finally the optical properties of
alloys of Ne-Ar have been studied in the region of
the Ne L, edge, and of Ar-Kr in the region of the
Kr M», v edge, by Haensel et al. 8 In this paper
we attempt detailed comparison of our calculation
with the results of these experiments.

In Sec. II we briefly discuss the method of cal-
culation employed for obtaining the band structure
and also the polarization-correlation corrections.
In Sec. III we compare our results with those of
other calculations. In Sec. IV the predictions of
these and other calculations are compared with ex-
periment. Finally in Sec. V we discuss the total
situation and draw conclusions.

II. DETAILS OF THE CALCULATION

The authors have already expounded upon the
method of calculation employed in these studies
elsewhereo; therefore we only give a condensed
outline of our methods in this section. We employ
the LCLBF method. This method is essentially a
generalization of the linear -combinations-of -atom-
ic-orbitals (LCAO) method~9 or the MB method. ~0

The basis set employed here consists of self-con-
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sistent local orbitals for all the occupied levels and
of Slater-type orbitals (STO's) to describe the vir-
tual or conduction levels. ' A method similar to
this has been employed with good success for dia-
mond.

The Fock operator is a functional of the first-
order density matrix p(r, r'). Thus we have that

2ZI

,

p(r' r'); 2p(r, r')
(I)

with

p(r, r') =Z P6„;(r—R„)S+j jjj $jjj(r'-Rjj), (2)
Ag BJ

the case of solid Kr, there have been no self-con-
sistent local orbitals reported. Therefore we have
computed the self-consistent local orbitals for solid
Kr using a basis developed for the Kr atom by Wat-
son and Freeman. ' We present the local orbitals
and their basis for solid Kr in Table I.

Once we have obtained the local orbitals, we
form the Fock operator according to Eqs. (1)-(3).
We then form a basis for the band calculation from
Bloch-type sums of local orbitals and from Bloch-
type sums of STO's. Thus our basis set is com-
prised of the functions

$j = Z e ' "$gj(r —Rg)~s.s
N

S„j jjj j fQj(r -R„)hajj&(r —Rjj)dr, (3) ..=~ „=j"'""I -R„
A

[F -PA„P]h~j(r -&+) Egj(Aj(r RA). (4) x y j (r —Rz)e»' A ~ (10)

Here we employ the rydberg as the unit of energy,
e = W m = 0.5, g = 1. We employ upper-case letters
to denote nuclear properties and coordinates and
lower-case letters to denote electron properties
and coordinates. Equation (4) is the Adams-Gil-
bert local-orbitals equation and the operator A„
contained in it may be any Hermitian operator ii,xa

In the limit of small overlap, such as is appro-
priate for the solid rare gases, the $„j satisfy
the equation (letting A„= U„) or

A = fPj Oj, P jdv,

B= fQj Oj, 'g„j dT, (12)

Therefore, using this basis and the previously ob-
tained Fock operator one must evaluate matrix ele-
ments of the Fock and overlap matrix with respect
to such a basis. Thus we need to find three types
of integrals,

[EA + UA EA j) ~A j C= f j)'„,„Ops]„;„d7 . (13)
=Q 2 g„j(Aj I U~ I Ak) (Ak I Ai), (5)

where

I r -R~ I

~
p„(r', r'), 2p„(r, r')

I Ir —r'I
I r —r'I

and

—2Zjj pjj(r, r ) gI- g I+'
B&A B

pc(r, r') = ~ $cj(r) $cj(r') ~ (8)

We solve the system of equations (5)-(8) self-con-
sistently using an analytic expansion technique in
terms of STO's. ~ We have previously reported
such self-consistent local orbitals for solid Ne33

and solid Ar. ' It is these local orbitals which we
employ in this calculation. We note that in a re-
cent calculation for solid Ar, Lipari also used
these same local orbitals. In the case of Ne and Ar
we employed a basis set obtained by Bagus. In

Here O~ is either the unit operator or the Fock op-
erator, Eq. (1). In general we either evaluate
these matrix elements exactly, approximately, or
set them to zero depending on their size and impor-
tance. We have discussed this question in great
detail elsewhere. Basically, we consider the Fock
operator and its matrix elements to a higher degree
of accuracy than either Dagens and Perrot, or
Lipari, ' or Lipari and Fowler. That is, Dagens
and Perrot terminate atomic Fock operators in
such a way so they are nonoverlapping in the crys-
tal. Lipari and Lipari and Fowler permit their
atomiclike Fock operators to overlap but do not
correct for this overlap. Essentially, we permit
our local orbitals which form F to overlap as they
should, but we also include corrections implicit in
Eq. (2) to correct for this nonorthogonality of the
local orbitals. We find, however, that for the rare-
gas solids, the approximations of Dagens and Per-
rot, or Lipari, or Lipari and Fowler are of little
or no importance in a practical sense.

Having obtained matrix elements of the Fock and
overlap matrix, one obtains the band structure
from a simple matrix diagonalization process.
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TABLE I. Basis used in computing the Kr local orbitals and the coefficients of these orbitals. The radial part of the
local orbital is given by R„&(v) =$&C»&)Vs ~ ' se && and N&& f(——2Z&&)

" s [(2l+2A&&+2)!) pl . We also give expects
tion values of the Fock operator E~+ V~ for these local orbitals. These are in rydbergs and are given as E» „&..

Basis (Ref. 36)

1
2
3

5
6

8

10

A)g

0
1
1
2
2
2
3
3
3
3

Zl)

38.4921
24. 1833
17.8567
16.8785

8.7390
6.9088
7.0214
3.8824
2.4802
1.727V

A)g

0
0
1
1
1
2
2
2
2-

Matrix Elements

Zgg

24. 0396
16.3171
15.4451
10.0129
6.4435
5.6527
3.1628
1.8646
1.3220

Ag~

0
Q

0
0
0

Z g]

3.2783
5. 0929
V. 6684

10.5162
16.5546

Eg ~ =-1040.43
E2~ =-139.85

E+Q 21e 72
E4 4 =-2.32
&is2s= 0, 0

Eg~g =0.0
E)4 =0.0
E2 3 =0, 0
E24 =0.0
E34 =0.0

Eppes
=-126.06

Espy=-16. 68
Eg,@,=-1.06
E&p3&=0 0
E~=0.0
E3~=1&10~

E3~ = —V. 67

1
2

5
6

8
9

10

0. 82901
0. 13744

—0.01998
0. 01773

—0. 04617
0.07015

—0.03304
0. 00219

—0. 00117
0. 00041

0.28012,
0.17068

—0. 63656
—0.49541
—0. OS127

0.05415
—0.01207
—0.00275

0.00196
—0.00075

0. 11263
0. 06638

—0.25086
—0.37998

0.40597
0.54707
0.21493
0, 02719

—0.00875
0.00311

0. 03595
0.02024

—0. 07662
-0.13864

0.26436
0. OQVV5

0.23451
—0.50984
—0.56718
-0.09238

0. 11604
0. 71521
0, 17736
0. 03489

—0. Q0452
0. 00139
0. 00001

—0. 00007
0.00004

0. 05063
0.28401
0.17366

—0.29906-0. 79795-0.07075
—0.01914

0. 00853
—0.00373

C4i)

0. 01389
0. 07686
0.05178

—0.09271
—0.25S62
—0. 00155

0.56554
0.47909
Q. 08891

Q. 09041
0.46694
0.32576
0.18618
0.03209

Note, however, , since the ~-«pendent phase factors
implicit in Eqs. (1,1)-(13)can be taken out from
under the integral sign, the messy integrals which
one evaluates in evaluating Eqs. (11)-(13)need on-
ly be done for a single point in k space. Thus once
one evaluates (ll)-(13) the first time, it is a sim-
ple and economic matter to evaluate the hand struc-
ture at a large number of points in the first Bril-
louin zone. In the calculations reported here, we
have evaluated the band structure at 89 nonequiva-
lent points in $th of the first Brillouin zone. This
proved to be sufficient to permit us to evaluate den-
sity of states and joint density of states to a suffi-
cient accuracy required for experimental compari-
sons in the solid rare gases without any need for
interpolation schemes. Had it been necessary, we
could have evaluated many more points directly.

All the necessary integrals needed to evaluate
Eqs. (11)-(13)were evaluated numerically using
the Lowdin e-function expansion method. 3 We em-

ploy a 30-term expansion in terms of e functions
for evaluating our integrals. We find this to be far
more than satisfactory, and we have extensively
tested this by evaluating known multicenter inte-
grals of all types. In forming the Fock and overlap
matrix elements, we include six shells of neighbors
about the central site for each integral heing evalu-
ated. Thus we include a total of 8'7 atoms in all
when evaluating each term in the Fock or overlap
matrix. We have also tested our basis sets for
convergence. Needless to say the convergence of
the occupied levels (core and valence bands) is es-
sentially perfect. This is as it should be since the
local orbitals employed in our basis should be corn-
plete on the space of the occupied orbitals. By sub-
stantially augmenting our basis set and comparing,
we found the occupied levels to be converged to
about 0.001 Ry. The virtual orbitals are also well
converged but not as well as the occupied orbitals.
We find the virtual orbitals in the region from about
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TABLE H. The core levels im solid Ne, Ax', and Kr
are given. Results are in rydbergs and spin-ox'-bit ef-
fects are absent.

TABLE IV. Enex'gies of points of high symmetry for
the argon band structure, with and without correlation.
Results are in eV and we employ the notation of Ref. 41.

Level Ne Kr
Level

Hartree-Fock
1st 2nd 3rd

With correlation
1st 2nd 3rd

1s
2s
2p
3s
3p
3d

—65.61 -237.4
—24. 66
-19.14

—1042
—139.8
—126.1
—21.72
—16.68
—7.650

0.0 to 2.0 Ry to be converged to about 0.01 Ry or
better. In all but the solid-Ne calculation, we em-
ploy abasis censisting of s-, p- aek d-type orbitals
about each site. In the case ef Ne only an s, P ba-
sis was considered. In direct comparison of our
results to those of Lipari or Bagens and Perrot,
one must remember that these other calculations
include also f-tyye orbitals in the basis and thus
one should only compare the parts ef tlae band
structures arising fromm s, p, or d levels. This is
a point of little practical importance since the f
levels lie mostly above the conduction levels of ex-
perimental interest and also the optical transitiens
to these lower f levels are suypressed by a centrif-
ugal-barrier effect. '8 In principle aml in practice
we could include f levels in our calculation; how-

ever, we believe that for all practical purposes,
their inclusion is not worth the added cost in com-
puter time.

All these calculations were performed on a Xerox
E-5 computer using codes wrNen by the authors.
This computer is a medium speed, smaO-memory-
type computer, but nonetheless is adequate for band

calculations of the comylexity described in this ya-
per. In Table E, we give the calculated cere levels
for solid Ne, Ar, and Kr in the restricted Hartree-
Fock approximation. In Table Ig, we give the en-
ergies of selected symmetry levebs in the solid-Ne
band structures; a similar tabulation is feud for

ri
ris
r2s
r)2
Xf
Xi4

Xis

Xs
X2
Xs
L,

I I

Ls

-35.2
-15.7

12.9
15.7

-34.6
-16.8
-15.8

8.47
17.3
17.8

-34.8
-17.0
—15.6

12, 6

2. 80
33.8
32. 7
37. 8
5. 80 32. 1

10.6
18.2
28. 9

6.57 20. 5
8.66
27. 9
17.3

—14.1
11.2
14.0

-15.1
-14.2

6. 79
15.6
16.1

—15.3
-14.1

10.9

l. 12
32.1
31.0
36.1
4. 12 30.4
8. 9

16.5
27. 2

4. 89 18.8
6.98

26. 2
15.6

TABLE V. Energies of points of high symmetry for
the krypton band structure, with and without correlation.
Results are in eV and we employ the notation of Ref. 41.

solid Ar in Table Dl and for solid Kr in Table V.
We have computed the effective raasses for the va-
lence-band maximum and conduction-band minimum
and li:st them in Table VI for Ne, Ar, and Kr. We
show the Hartree-Pock band structure of solid Ne
in Fig. 1 as well as the state density. In Fig. 2
we show the Hartree-Pock band structure of solid
Ar and the density of states. Finally in Fig. 3 we
show the Hartree-Fock band structure and state
density for solid Kr.

Having obtained the Hartree-Fock md structure
for solid Ne, Ar, and Kr, we @esired to include
polarization and correlatien eSects in our calcula-
tion. It is possible to include yolarizatien and cor-
relation corrections by a vanety of raetheds. The
simylest and most economical method is that dee
to Fowler. " In this method one treats the conduc-
tion slectx on or the valence hole as a point charge,
statically situated on a nuclear site. One then

Level
Hartree-Fock

1st 2nd 3rd
With correlation

1st 2nd 3rd

Level
Hartree-Fock

2nd 3rd
With correlation

1st 2nd 3rd

r,
ris
Xi
X4
Xs
Li
L3
L3
Ki
K3
K4

—52. 7
—22. 9
-52.6

23 ~ 2
—22. 9
-52.5

23 ~ 3
—22. 9
-52.5
-23.1
-22. 9

2. 21
32. 9
15.5
10.4
19.8
9.99
8. 10

28. 5
—23. 1

11.4
21.7

11.8

-21.8
~ ~ ~

-22, 1
-21.8

220 2
-21.8

-22. 0
-21.8

0.36
31.1
13.8
8.6

18.0
8.14
6.25

26. 7
-22. 0

0, 6
19.9

10.0

TABLE III. Energies of points of high symmetry for
the neon band structure, with and without cora'elation.
Results are in eV and we employ the notation of Ref. 41.

r,
ris
r,',
raa
X)
X4
Xs
xs
Xs
Xs
LI
L3
L3
Ls
K,
K3
Ks
K4

-31.9
—13.8

10.6
13.2

-31.3
-15.2
-14.1

6. 85
15.1
15.7

-31.4
-15.4
-13.8

10.1
-31.4

14, 8
-14,9
-14.0

2. 66
31.3
38.3
44. 2
5. 07

10.6
17.1
34. 0

21.5

5. 92
8. 61

37.4
15.1

-14.5

1,8.4

37.2
6.21

10.0 17.1
12.7 21.3

—12.3
9.2

11.8

-13.5
120 5
5.46

13.7
14.3

—13.7
-12.3

8. 7

13,4
-13.3
-12.4

1.27
29, 9
36, 9
42. 8
3.68
9.2

15.7
32.6

20. 1

4.53
7.22

36.0
13.7

-12.9

17.0

35. 8
4, 82

8.6 15.7
11.3 19.9
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P' Solid Ne

C
IJJ

4/

20.0

I 0.0

0.0

-IO.O

3l

~3

3

Cb

; Solid Kr

~~ 1

12 ~ 2 12')(~
1

0.0

3/

2/

5/

4/

—-20.0
15

L r X W K r
k Density of States

FIG. 1. Hartree-Fock band structure for solid Ne.
Results are in eV and we use the BSW notation (Ref. 41).
The density of states is also shown.

3l

2'

L

15

-10.0

-20.0rX W K

k Density of States

FIG. 3. Hartree-Fock band structure for solid Kr.
Results are in eV and we use the BSW notation (Ref. 41).
The density of states is also shown.

computes classically the energy involved in polar-
izing the surrounding atoms in a self-consistent
way. Fowler predicts that such effects will reduce
the Hartree-Fock band gap by about 2 eV for a
rare-gas solid. This theory is appealing because
of its simplicity and the economical nature of the
required calculation. On the other hand, it has the
defect of being a static limit and neglects the spa-
tial extent of the electronic wave functions. The
corrections in this theory are of course k indepen-
dent. Lipari and Fowler have shown~ that there
are important k-dependent corrections in the cor-
relation effects for the solid-Ar valence band.

The model employed by Lipari and Fowler in
their calculation for solid Ar avoids the deficiencies
of the simpler Fowler model. ' In the model em-
ployed by Lipari and Fowler one replaces the ex-
change part of the Fock operator with a nonlocal

screened exchange operator and a Coulomb-hole
self-energy operator. This is done in accordance
with the method developed by Hedin2' and later
used on silicon by Brinkman and Goodman. ~ This
model also predicts that correlation-polarization
effects reduce the optical band gap of solid Ar by a
few eV. This model predicts that the conduction-
band correlation corrections are k independent, but
it finds that there are k-dependent correlation-
polarization corrections for the valence-band
structure. In general one observes a tendency to
substantially narrow the valence bands when cor-
relation effects are included. The k independence
of the correlation-polarization corrections for the
conduction levels is not understood easily in this
model. From the standpoint of one interested in
calculations of this type the chief difficulty of this
model is that it is quite inefficient in terms of com-
puter time. This is because it is necessary to

2252. 4 5

20.0 TABLE VI. Calculated values (present work) for the
effective masses of electrons at the bottom of the con-
duction band and holes at the top of the valence band.
Masses are in units of electron masses. Experimental
numbers are from Refs. 3 and 25. (CB is the conduction
band; VB is the valence band. )
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Substance Level Direction Effective mass Expt.
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FIG. 2. Hartree-Fock band structure for solid Ar.
Results are in eV and we use the BSW notation (Ref. 41).
The density of states is also shown.

Ne
Ne
Ne
Ar
Ar
Ar
Kr
Kr
Kr

r, CB
I„VB
I'&5 VB

CB
I)5 VB
&1g VB
I'g CB
I'„VB
1"&5 VB

isotropic

isotropic

isotropic

0. 802+0. 001
24. 8+0.1
6.16 +0.01
0.488 + 0.001

11.6+0.1
1.93 + 0. 01
0.418+ 0.001
7.66+ 0.01
1.21+0.01

0.52

0.47

0.41
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compute the band structure two times. The first
time is to obtain the Hartree-Pock band structure
which is used to provide needed parameters for the
calculation of the Coulomb-hole operator and the
screened exchange operator. One then must re-
compute the band structure using the correlated
operator.

In the present calculation, we compute our cor-
relation-polarization corrections by means of the
electronic polaron model. ' This model combines
the quantitative features one gets from the Hedin
model3 with the speed of the simple Fowler model
to a desirable extent. In this model one finds for
example that the conduction electron has an effec-
tive Hamiltonian given by'

X= Z «IC~ICI+K(o„Zb Rbg

—e[(2v%o„/V) (1 —I/z )]'~

!(b jh l' 5t lh t) (14)
g IKI

In Eq. (14), V is the crystal volume, C and Ct are
the electron annihilation and creation operators,

are the annihilation and creation operators
for a longitudinal exciton and Sv„is the energy
needed to create such an exciton, and 4k is the
Hartree-Pock energy of the band in question. One
has a similar effective Hamiltonian describing the
correlation of holes. In this model the energy of a
conduction electron, E„k, is found to be

E„f=s„~+2 - . „„, (15)
I V~ l'

~ ex ~m(k- K)

and the energy of a valence hole, E„k, is seen to be

i
v-""i'

(16)
ex+ gk ~m(k K)

pm 2sk(fez(l —1/e )
K ~

y

x ' y„'(r) y„(~)e'"'dr . (»)
IKI.

In the expression, Eq. (15}, for the conduction
electron, the K summation is over the first Bril-
louin zone and the m summation is over the conduc-
tion levels. In practice, one need only sum over
the conduction levels close in energy to the one in
question. In the expression, Eq. (16}, for the va-
lence hoke the K summation is over the first Bril-
louin zone and the ng summation is over the valence
bands. The Q„are either local orbitals or Waxmier
functions fox the nth band.

Qualitatively, one sees from Eqs. (15) and (16)
that owing to the correlation-polarization correc-
tions, insofar as the bandwidths are less than Std»

as is usually the case, the conduction band is low-
ered and the valence band is raised. This is in
good agreement with the results of Fowler or Li-
pari and Fowler. e one also sees from Eq. (16)
that the top of the valence band will be raised by
less than the bottom of the valence band, thus nar-
rowing the valence band as Lipari and Fowlerefind.
This argument is based upon consideration of the
energy denominator in Eq. (16) and upon the finite
number of valence levels to be included in the sum-
mation. A similar argument cannot be advanced
for the conduction levels since no matter how high
one rises in the conduction band there is an infinite
number of levels to sum over at each point in F
space which lie higher than the level being com-
puted, whereas there is only a finite number of
levels 1ying lower to be summed over per point in
k space. Thus there exists little or no reason to
expect the correlation corrections for the conduc-
tion levels to be R dependent. This is in accor-
dance with the findings of Lipari and Fowler and
may explain the previously noted absence of dis-
persion in the correlation corrections fox the Ar
conduction band.

Vfe present a table of energies of selected points
of high symmetry in the solid-Ne band structure in
Table III, for solid Ar in Table IV, and for solid
Kr in Table V. We note that for solid Ar the mag-
nitude of the corrections we compute agree rea-
sonably with those found by I ipari. In Fig. 4 we
show the correlated band structures for solid Ne,
Ar, and Kr.

HI. COMPARISON VGTH OTHER CALCULATIONS

In this section we shall attempt to make a de-
tailed comparison of our Hartree-Pock results
with those of other calculations. In order to as-
sess the validity of our approach and also to at-
tempt to understand the consequences of the other
Hartree-Fock-type calculations, we shall place
the greatest emphasis on the various available
Hartree-Fock-type calculations. We shall also
compare results with the calculations by Rosslers
which employ a statistical-exchange approximation
to the exchange potential and which are reasonably
typical of the results obtained with this type of cal-
culation.

A. Neon

There exist only three calculations for solid Ne
of which the authors are aware. These are the
present calculations, the Hartree-Pock calcula-
tions of Dagens and Perrot, and the statistical-ex-
change calculations of Bossier. We ah&mr the re-
sults of these three calculations in Pig. 5 for the
line between j." and X in the Brillouin zone. We
employ here the 88% notation. In our Ne calcula-
tion, we employed only an s, p basis set so that
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FIG. 4. Energy band structure of solid Ne, solid Ar,
and solid Kr. These band structures include polariza-
tion-correlation corrections. Results are in eV and the
BSW notation (Ref. 41) is employed.

there are obvious differences between our results
and those of Dagens and Perrot, which include d
and f levels as well. Nonetheless, we find quite
good agreement between our calculation and that of
Dagens and Perrot for those level& primarily asso-
ciated with 8 or p levels in both the valence and
conduction band.

A quantitative measure of this goodness is seen
from a comparison of a few representative quan-
tities. We find the top of the valence band, I"j5 to
lie at —l. 69 Ry while Dagens and Perrot find it to
lie at -1.67 Ry. We find the bottom of the conduc-
tion band to be Fq and to lie at 0. 17 Ry, while
Dagens and Perrot find it to lie at 0. 20 Ry. Thus
the band gap in our calculation is l. 86 Ry (26. 2 eV),
and l. 87 Ry in the calculation of Dagens and Per-
rot. We fin@ the extremal width of the valence
band to be 0.03 Ry and Dagens and Perrot find it to
be 0.036 Ry.

This level of agreement is no longer found when
one considers the results of Bossier. This is par-
tially due to the fact that Rossler has employed the
constant part of the muffin-tin potential as an ad-
justable parameter with which to match experi-
ment, In this case Bossier forces the band gap Of

Ne to be 20, 75 eV. There are other differences
apparent from Fig. 5. These are that the conduc-
tion-band structure is compressed in the statisti-
cal-exchange approximation compared to the Har-
tree-Fock band structures. '~~

8. Argon

SolM argon has rec@ived the most extensive at-
tention of the solid rare gases. Hartree-Fock cal-
culations have been reported by Liyari and Fowler, ~

Dagens and Perrot, ' Lipari, ~ and3 Mickish and
Kung. The latter two are self-consistent, but do

20.00

I Io.oo

0.0 I

-Io.oo

(3
EC
LLI
Z'
LLI

l5

-20.00
5I

4I l5

5I

4I
l5 4I

FIG. 5. A set of comparative band structures for
solid Ne. In part (a) we show our Ne, Hartree-Fock
result. In part (b) the results of Dagens and Perrot (Ref.
5) are shown and in part (c) the results of Bossier (Ref.
3) including recent corrections (Ref. 42). The BSW no-
tation is used (Ref. 41).

not include in any detailed way many-body correc-
tions. There have been reported calculations for
solid Ar employing a statistical-exchange approxi-
mation by Knox and Bassani, ' Mattheis, R5ssler, '
and Lipari and Fowler. ~ By way of comparison
we show in Fig. 6 the band structures for solid Ar
along the line I'-X from the present calculation,
the calculation of Lip@ri, the calculation of Dagens
and Perrot, and the calculation of Rossler. It is
quite clear from Fig. 6 that there are substantial
differences between the Hartree-Fock type of cal-
culation and that of Rossler. Since R5ssler uses
the constant part of the muffin-tin potential as a
parameter to match the optical band gap, the dif-
ferences among the calculations in this respect are
expected. However the extensive compression of
the conduction-band structure in Rossler's calcula-
tion is significant. We note that the use of a muf-
fin-tin-type potential alone cannot be the cause of
such a difference since the other calculations em-
ploying a statistical-exchange approximation find
such a compression to a great extent also. We note
that in the present calculation, we employ a basis
of s, p, and d orbitals and the over-all agreement
of our band structure with that of Lipari or Dagens
and Perrot is good. In fact it is much better than
for Ne, where we employed a more limited basis.
The principal differences come high in the conduc-
tion structure and are due to the presence of the
predominantly f-Mce I'I and I'» states included in
the Lipari or Dagens and Perrot calculation.

A few representative numbers are interesting.
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FIG. 6. A set of comparative band structures for
solid Ar. In part (a) our Hartree-Fock bands are seen,
in part (b) the results of Lipari (Ref. 7) are seen, in
part (c) the results of Dagens and Perrot (Ref. 5) are
seen, and in part (d) the results of Rossler (Ref. 3) are
seen.

In the present calculation the I'z& valence level is
at -1.154 Ry and the I'z conduction level is at
0. 206 Ry, the band gap is 1.360 Ry (18.5 eV}, the
splitting of the I'z from the I'35 conduction level is
0.V49 Ry, the splitting of the I'z~ from the I' con-
duction level is 0. 201 Ry, and the valence band-
width is 0.096 Ry. In the calculation of Dagens
and Perrot the same numbers are -1.116, 0. 245,
1.361 (18.5 eV}, 0. 611, 0. 222, and 0. 089 Ry, re-
spectively. According to Lipari these quantities
are —1.025, 0. 1V6, 1.201(16.4eV), 0. VM, 0.208,
and 0. 195 By, respectively. In the earlier work of
Lipari and Fowler, these quantities are given as
—'.025, 0. 165, 1.190 (16.20 eV), O. V56, 0. 18V,
and 0. 19V Ry. %'e do not have available all these
quantities fx om the calculation of Rossler; hom-
evex, a fem of them are available. Bossier forces
a band gap of 1.015 Ry (13.80 eV), resulting in a
separation of the I'z and I'z5 conduction level of
0.312 Ry and a separation of the I" and I'qz con-
duction level of 0. 125 Ry. These figures are suf-
ficient to illustrate the severe compression of the
solid-Ar conduction band in the statistical-ex-
change approximation as compared to the Hartree-
Fock-type calculations. We discuss the reasons
for the variations in the Hartree-Fock results af-
ter the discussion of krypton.

20.0 X

1
0.0

8~7—'
e+

change approximation. By may of comparison, me
show the band structures of Lipari and of R'ossler
as mell as our present results in the direction I'-X
gl Fig. V.

It is interesting to compare a few representative
numbers for these ealeulations. For each stated
quantity we give the result found in our present
calculation, the result found by Lipari, the result
found by Bossier, and the xesult found by Fomler,
respectively. The toy of the valence band, I'», is
found to lie at —1.011, -0.949, -0.838, and
—1.144 Ry. The conduction-band minimum, I'z,
is found to lie at 0. 196, 0. 163, 0.000, and -0.302
Ry. The band gaps are therefore 1.207 (16.4 eV),
1.112 (15.2 eV), 0. 838 (11.4 eV), and 0. 842 Ry
(11.4 eV). We see that the principal effectof theuse
of an adjustable parameter in Bossier's calculation
is to decrease the optical band gap slightly mith
respect to the Fomler calculation which employs no
adjustable constants. The width of the valence
band, Kr 4p level, is found to be 0. 122, 0. 208,
0.09 including spin-orbit splitting, and 0.091 Ry.
The splitting of the I'& conduction minimum from
the lowest I'&, d state is found to be 0. 583, 0.616,
0. 360, and 0. 534 Ry. Finally the splittings of the
lomest I'3, conduction level from the I'&z conduction
level is found to be Q. 191, 0. 147, 0.096, and
0. 133 Ry.

As in the case of solid Ar, we find that the con-
duction levels in solid Kr are compressed in the
statistical-exchange-approximation calculations
when compared to the Hartree-Fock calculations.
This effect is most noticeable in the calculation of
Rossler. One curi. ous effect is noticed. That is,
when one compares the calculations of Bossier for

C. Krypton

Krypton has also received considerable attention
from the band theorists. In addition to the present
calculation, Liyari has also reported a Hartree-
Foek calculation fox solid Kr. This calculation of
Liyari is not self-consistent. In addition, Fowler
and Rosslers have reported calculations fox solid
Kr. The calculations of Fowler and Rossler are
not self -consistent and employ the statistical-ex-

5I
15

4I
15

FIG. 7. A set of comparative band structures for
solid Kr. In part (a) our Hartree —Fock bands are seen,
in part (b) the results of Lipari (Ref. 8) are found, and
in part (c) the results of Rossler {Ref. 3) are seen.
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solid Ar and Kr one sees that the conduction levels
are more compressed for Ar than for Kr. How-
ever in the Hartree-Pock calculations of the pres-
ent authors and of Lipari one finds the reverse ef-
fect is true. That is, one finds the Ar conduction
bands more widely spread than for those of Kr. In
Sec. IIID we will argue that this deviation in trends
is significant and that experiment favors the Har-
tree-Fock calculations, rather than the calcula-
tions of Bossier which employ a statistical-ex-
change approximation.

D. General Considerations

In this section we attempt to come to terms with
the differences among the several calculations con-
sidered. We consider first the differences
among the various Hartree-Fock types of calcula-
tions. Basically, the following conclusions can be
made. The valence bands obtained in the present
calculation agree well in width, form, and position
with those found by Dagens and Perrot. 5 The va-
lence bands computed by Lipari~'8 and Lipari and
Fowlero are found to lie higher and be broader than
those in the present calculation. Rossler3 has ad-
vanced a series of arguments which tends to prove
that the valence bands computed by Lipari and
Fowler lie as high as they do and are as wide as
they are because of the poor convergence of the
plane-wave expansions which are employed by I.i-
pari and Fowlex. We find the arguments advanced
by Bossier to be reasonable and believe the valence
bands obtained in this calculation or that of Dagens
and Perrot accurately represent the Hartree-Pock
valence-band structure of the rare-gas solids.

We find the case of the conduction bands to be
rather different. Here we find good agreement
among the available Hartree-Fock calculations
with respect to the predominantly s- or p-type con-
duction levels. We find that the agreement is
poorer with respect to the d-type levels. With re-
spect to the d-type levels, one sees that the pres-
ent results agree weQ with the results of Liyari
and agree less well with those of Dagens and Per-
rot. In general the d levels of Dagens and Perrot
lie lower than do those of Lipari or our present re-
sults. We argue that this may be due to the muf-
fin-tin-type potential employed by Dagens and Per-
rot. We argue as follows: The potential about a
single nuclear site in a solid rare gas when ex-
panded in spherical harmonics has nonzero coeffi-
cients for the Yo term and the I4 terms as well as
for higher-series members. In the muffin-tin type
of potential in the region about a given nucleus (i. e. ,
in the muffin) one allows only a yo term. Now s or
p functions see only a yo term in any case due to
the o thogonality and multiplication properties of
sphe. ical harmonics, but the d-type functions also

directly see the F4"-type terms. Therefore we an
ticiyate that the d bands would be much more sen-
sitive to a muffin-tin potential than would the s or
p bands. We note that a similar observation can be
made in the case of the krypton calculations em-
ploying a statistical-exchange approximation. In
this case, the non-muffin-tin calculation of Fowler
finds a much greater s-d band separation than does
Rossler, who employs a muffin-tin calculation.

In previous work on the alkali halides, it has been
suggested that this discrepancy between muffin-tin
and non-muffin-tin calculations with respect to
the d bands may be due to the poor convergence of
the plane-wave expansions used for the non-muffin-
tin calculation as opposed to the KKR- or APW-type
calculations used with the muffin-tin calculations.
We argue that this is unlikely to be the source of
difficulty. We find good agreement here between
our results which do not employ a plane-wave ex-
pansion and are not limited by the arguments ad-
vanced by Overhof for plane-wave expansions and
the results of Lipari and Fowler and I.iyari. '

This good agreement is quite apparent in the case
of solid Ar, where both calculations are self-con-
sistent, and is essentially as good for Kr and the
earlier non-self-consistent Ax calculation of Li-
pari and Fowler. In previous work, Kunz, Fowler,
and Schneider44 investigated this point for NaCl.
They compared OPW results obtained using both
muffin-tin and non-muffin-tin potentials and found
good agreement in both the s and d bands with the
muffin-tin APW calculation of Clark and IQiewer
when Kunz et cE. used a muffin-tin potential, and
similar discrepancies as found in this calculation
when they did not use a muffin-tin-type potential.
Thus we do not believe that convergence problems
are responsible for the disagreement of the muffin-
tin- and non-muffin-tin-type results for the con-
duction d bands.

An issue which would be interesting to understand
is the great disagreement between the Hartree-
Fock energy bands and the bands obtained using a
statistical-exchange approximation. It may be ar-
gued that the statistical-exchange approximation
actually includes some correlation effects and
hence should not be expected to agree with Har-
tree-Fock results. 46 This is not an unreasonable
argument. However, it is clear that when one in-
corporates correlation effects into Hartree-Fock
energy bands as has been done in the present cal-
culation or in the calculation of Lipari and Fowler,
one would expect better agreement than with bands
obtained in a statistical-exchange approximation.
Excepting the band gap, which is sometimes para-
metrized in statistical-exchange calculations, the
agreement does not imyx ove at all. We ax e unable
to quantitatively explain this continued disagree-
ment.
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IV. COMPARISON PATH EXPERIMENT

The comparison of band-structure calculations
with experiment for the solid rare gases is diffi-
cult. This is because very little is known about the
band structures of such sobds from an experimen-
tal viewpoint other than the size of the energy band
gap. It is true, however, that there are detailed
optical spectra available for the solid rare gases.
However, the low-lying optical px operties of these
sobds are dominated by excitonic effects. In ad-
dition, the low-lying band-to-band transitions have
their strengths greatly modified by exciton effects. ~

In addition to such effects, Lafon and Fouquet48
have recently shown that the transition matrix ele-
ments at or near the band-to-band threshold are
strongly enhanced by symmetry effects. Thus we
expect to find little resemblance between the joint
density of states for valence-to-conduction transi-
tions and the measured optical spectrum. In the
soft-x-ray region the situation is rather djLfferent.
Here Bossier has found that the energy-band
stx'ucture provides a reasonable basis for interpre-
ting the observed spectrum. He finds that exciton
effects are secondary in importance in this spec-
tral region for the solid rare gases. There exists,
in addition, alloy data for NeAr and ArKr crystals
in the soft-x-ray region. %e find this data may be
decisive in choosing from among the available band
models. Finally, the effective masses of the con-
duction-band electrons are known. %'e now con™
sider separately the experimental situation for Ne„
Ar, and Kr, and then the alloy data.

A. Solid Neon

Recently solid Ne has been studied in the vacuum-
ultraviolet or soft-x-ray region in the valence-to-
conduction-band transition region by Haensel gt ul. ,
and in the vicinity of the L, edge by Keitel. ~'35 In
the measurements of Haensel et a/. Ne was found
to have strong exciton absorption at about 1V. 8 eV
continuing to an inferred series limit for the ex-
citonic transition of just under 22 eV. Thex'efore
we may x easonably say the optical band gap of solid
Ne is about 22 eV, In the present calculation using
Hartx ee-Fock theory, the band gap is found to be
25. 2 eV. If we use the band gap we compute, in-
cluding the polarization-correlation corrections,
the predicted band gap becomes 22. 3 eV. This
agreement is quite acceptable.

%e also can gain a theoretical estimate of the
exciton binding energy by use of eQective-mass
theory. It is not really expected that such a method
is very accurate for the n = 1 exciton in a substance
as tightly bound as Ne; nonetheless, it may provide
reasonable results for the higher members of the
exciton series. In this theory the exciton binding
energy (i. e. , the amount of energy the exciton lies

below the conduction minimum) is found to be

(18)

E is the optical dielectric constant, nz the effective
mass for the exciton, n the principal quantum num
ber. Thus we predict the binding energy of the
n=l exciton tobe 6.7 eV, for the m=2 exciton,
l. V eV, and for the I= 3 excitox)1, 0. 7 eV. In the
measurements of Haensel gf gE. the binding ener-
gies are found to be about 3.V eV for the n = j ex-
citon, l. 2 eV for the g = 2 exciton, and 0.6 eV for
the n = 3 exciton from ref lectivity data. Part of the
discrepancy may be due to our value of the effective
mass for I'&, which is poorer for Ne than for Ar or
Kr. This may be due to the li.mited basis set which
we employ for solid Ne.

We have computed the joint density of states for
transitions from the valence band and the L, shell.
These are shown in Figs. 8 and 9 along with the
pertinent experimental data. In this regard there
is little to be said since in both cases the theoreti-
cal predictions are for flat featureless absorption
spectra. This Qat featureless structure is just
what is found here except for the presence of ex-
citon lines. It is interesting, however, to note the
antiresonance quality of the exciton absorption in
the Q edge. This interesting feature is well under-
stood as an interference phenomena between the Q-
shell exciton structure and transitions from the va-
lence levels to states high in the conduction band
which are energetically about degenerate with the
L,,-shell exciton absorption. ~

8. Solid Argon

Solid Ar has been studied in the vacuum-ultra-
violet region by Baldini, ~0 by Haensel et al. , ~'~
and by Keitel. + Studies in the soft-x-ray region

—0.2

18 26 34 42 50 58 66
Enerqy(eV)

FIG. 8. Theoretical joint density of states for transi-
tions from the Ne valence band from our calculation.
An experimental deterIl1ination of the reflectlvxty ls
also shown (Ref. 22).
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FIG. 9. Theoretical joint density of states for transi-
tions from the Ne Lz shell from our calculations. An
experimental determination of the spectrum is also shown

(Ref. 25).
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FIG. 10. Theoretical joint density of states for transi-
tions from the Ar valence band from our calculations.
An qxperimental determination of the spectrum is also
shown (Refs. 21, 24, and 25).

have been performed by Haensel et al. ~4 and by
Keitel. In the vacuum-ultraviolet region solid Ar
is seen to have fundamental excitonic absorption at
about 12.10, 12.35, and 12. 50 eV, and a Rydberg
series of exciton transitions with members at 13.58,
13.75, 13.90, 14.03, and 14.09 eV. Apparently the
Rydberg series converges to a band-to-band tran-
sition at about 14. 2 eV. Thus the experimental
band gap is 14. 2 eV. In our Hartree-Fock calcula-
tion we find the band gap of solid Ar to be 18.5 eV.
When we use our correlated values for the band
structure, the predicted band gap is seen to reduce
to 15.2 eV, a figure in reasonable agreement with

experiment. Another available quantity is the ex-
perimental value of the effective mass of an elec-
tron at the I'z conduction minimum. From our cal-
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FIG. 11. Theoretical determination of the joint den-
sity of states for transitions from the Ar Lzz zzz level
from our calculation. An experimental spectrum is
shown (Ref. 24).

culation we are able to compute this quantity to be
0.488+0. 001 electron masses. (see Table VI). By
careful analysis of optical data and assuming a
heavy mass for the valence hole, Rossler finds the
experimental value of the conduction effective mass
to be 0.47 electron masses.

Just as in the case of solid Ne, we are able to
deduce the binding energy of the excitons approxi-
mately by using effective-mass theory. We find
the binding energy of the n= 1 exciton to-be 2. 6 eV,
of the n = 2 exciton to be 0. 65 eV, of the n = 3 ex-
citon to be 0. 29 eV, and of the n = 4 exciton to be
0. 16 eV. Experimentally, these quantities are
2. 30, 0. 58, 0. 26, and 0. 07 eV. '

We have computed the joint density of states for
transitions from the valence band and from the
Lzz zzz shell. These are shown in Figs. 10 and 11
along with the pertinent experimental data. In the
case of transitions from the valence band, we ob-
serve poor agreement with respect to relative peak
heights between theory and experiment. This point
is discussed at the beginning of this section and is
as expected. What is also seen from Fig. 10 is
that there exists a reasonable one-to-one corre-
spondence between peak positions in the theory and
the experiment. This is as it should be if all is
well. We note that in preparing this figure, the
theoretical data has been positioned energetically
by calculation and no shifting of energies has been
done to enhance the agreement. In the case of the
Lzz zzz spectrum, we compute the joint density of
states using the experimental value of the spin-
orbit splitting of the argon 2P shell. ~ '~ We
weighed the initial states 2: 1 to account for the de-
generacy of the core state. In this case we have
not computed the absolute onset of absorption due
to the neglect of strong outer-shell relaxation ef-
fects for the central-cell atom in our calculation.
We have therefore adjusted our calculated joint
density energetically to match the experimental
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FIG. 12. Theoretical joint density of states for transi-
tions from the Kr valence band from our calculation.
An experimental spectrum is also shown (Ref. 49).

broad absorption feature between 255 and 259 eV to
a similar one in our calculation. The over-all
agreement is acceptable. We find here, as has
Rossler, ~"8 that one basically is able to interpret
the Qz, zzz spectrum from the state density, except
for exciton or electron-hole edge enhancement ef-
fects near the onset of absorption.

C. Solid Krypton

Solid Kr has been studied in the vacuum-ultra-
violet region by Baldini~ and by Haensel et aL.
Studies in the soft-x-ray region have been per-
formed by Haensel et aL. + and Schreiber. ~ In the
vacuum-ultraviolet region, solid Kr is seen to have
fundamental excitonic absorption at about 10.25 eV
with a spin-orbit partner 0. 6 eV higher and two
Rydberg series, one for each of the spin-orbit-
split valence bands. From the data of Haensel
et al. we infer that the optical band gap is about
12 eV. The value we compute for the band gap
using Hartree-Fock theory is 16.4 eV. The value
we compute, using our correlation-polarization
corrections, is 13.4 eV. In the case of solid Kr,
atomic number of 36, the valence band is spin-
orbit split at the I' point by 0. 6 eV. If one includes
spin-orbit effects the predicted band gap is reduced
to 13.2 eV. Furthermore, the valence band is p
like while the conduction band is s like and we an-
ticipate a further reduction in the predicted band
gap if one were to include further relativistic ef-
fects. This situation is similar to some alakli hal-
ides we have studied previously. Another quan-
tity which is experimentally available is the effec-
tive mass of conduction electrons at the bottom of
the conduction band. This is given as 0.41 elec-
tron mass. z We have computed this ziuantity (Table
VI) and find it to be 0. 418 electron masses.

We have computed the joint density of states for
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FIG. 13. Theoretical joint density of states for transi-
tions from the Kr M~v v level from our calculations.
An experimental spectrum is also given (Refs. 26 and
27).

transitions from the valence band and from the
M&v, v shell. These are shown in Figs. 12 and 13
along with the pertinent experimental data. In the
case of the valence-band transitions, we observe
poor agreement with respect to relative peak
heights between theory and experiment. This is in
accord with the discussion at the beginning of this
section. We do, however, find a nearly one-to-one
correspondence with respect to peaks and valleys
between theory and experiment except at high en-
ergy, where the experience of Lafon and Fouquet
has led us to expect our calculation to grossly
overestimate the absorption. ~ In the case of the
Mzv „spectrum, we compute the joint density of
states using the experimental value of the spin-
orbit splitting of the Kr 3d shell. ~'~ We weighed
the initial states 3:2 to account for the degeneracy
of the core state. In this case we do not compute
the absolute onset of absorption owing to the ne-
glect of important central-cell corrections for deep
excitations in our model. We have adjusted our
calculated structure energetically to match the
broad dip in absorption between 96 and 100 eV with
a similar feature in our calculation. The over-all
agreement is acceptable. Again we find that one is
able to interpret this spectrum basically from band
theory except for strong exciton effects at thres-
hold.

At this point a mystery arises which requires
resolution. Bossier ' " has also computed the
Kr M,v, v spectrum and finds a nearly equivalent
degree of agreement. This is surprising in view
of greatly NXferent bands found for Kr. Rossler
computes his spectrum using interpolation schemes,
since his bands are only determined along symme-
try lines. In addition, Rossler has interpolated the
Kr bands of Lipari and finds total disagreement
between Lipari's spectrum and experiment. This
is evident in the first 5 or 6 eV of the conduction
state density. We find this sezluence of calcula-
tions highly interesting since our computed band
structures match those of Lipari essentially ex-
actly over the first 8 or 10 eV. Therefore we ex-
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FIG. 14. A comparative set of theoretical determina-
tions of the Kr M~v v joint density of states. In part
(a) the joint density representing the bands of Rossler
(Ref. 3) as interpolated by Rossler is seen (Refs. 17 and

18). In part (b) the joint density representing the bands
of Lipari (Ref. 8) as interpolated by Rossler is seen
(Ref. 18). In part (c) the joint density representing the
bands of Lipari (Ref. 8) as interpolated by the present
authors is seen. In part (d) the joint density calculated
directly by the present authors and representing both the
present calculation and that of Lipari (Ref. 8) is seen.
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FIG. 15. Experimental spectra for alloys of solid Ne
and solid Ar (Ref. 28).

Kr(V

Kr+Ar
O/ )

(d) we find our direct calculation of the M,„,» spec-
trum from our calculation, which should also be a
good representation of Lipari's calculation. We find
from this that Rossler has made a substantial error
in interpolating the band structure of Lipari and has
wrongly shown this calculation to be in error. We
are also unable to understand the agreement of our
calculated M,„» spectrum of Kr (Fig. 14) and that
of Rossler (Fig. 14) given the huge differences in
the band structure (Fig. 7).

Perhaps one lesson to be learned from the dif-
ferent results from the interpolaton of Lipari's
band structure by the authors and by Rossler is
that constructing state densities by interpolating
band structures computed at a few points or lines

pect our band structure will yield the same state
density as Lipari. This argument we believe is
strengthened since we employ the same solid-state
potential as Lipari. Of course in our present cal-
culation we employ no interpolation and hence our
results are far less subject to error than Rossler's.
As a check, we have computed the state density for
Lipari's Kr band structure using the same pseudo-
potential scheme we have been using for the alkali
halides. The agreement between our interpolated
results for the Lipari band structure and our com-
puted results from our band structure is good. The
total situation is summarized, in Fig. 14. Here in
part (a) we show the M,»» spectrum of Kr from
Rossler's interpolation of Rossler's calculation. In
part (b) we see the M, », » spectrum of Kr fromRos-
sler's interpolation of Lipari's calculation. In part
(c) we see the M,„» spectrum of Kr from our in-
terpolation of Lipari's calculation. Finally in part
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FIG. 16. Experimental spectra for alloys of solid Ar
and solid Kr (Ref. 28),
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of high symmetry may be quite unreliable. In fact,
one sees here for Kr that even granted a reason-
able fit of the band-structure points computed by
Lipari in the interpolations of the authors and of
Rossler, the resulting state densities are not
unique.

D. Alloy Data

Alloy studies for mixtures of Ne: Ar and Ar: Kr
have been reported by Haensel et al. ~ In Fig. 15
we show their results for Ne: Ar mixtures in the
Ne Lq-shell region. Owing to the featureless ab-
sorption except for the excitonic resonance-anti-
resonance lines we are unable to interpret this
spectrum from band theory. In Fig. 16 we show
the results for mixtures of Ar: Kr in the region of
the Kr M,v v edge. We note the trend of given
spectral features to move to higher energy as the
mixture progresses from Kr to Ar. These trends
as shown in the dashed lines in Fig. 16 are due to
Haensel et al. Previously we have noted that our
computed conduction levels expand as we move
from Kr to Ar. We also noted that the opposite ef-
fect is seen in the statistical-exchange-approxi-
mation calculations of Rossler. 3'~8 We show these
trends for key conduction levels in going from Ne
to Ar to Kr from our calculation, including corre-
lation-polarization corrections, in Fig. 17. %e
also show these trends from the calcuIation of Ros-
sler. Thus we find our calculations are able to in-

0.0
100 50 0 100 50 0
% Ne in Ar % Ar in Kr

FIG. 17. How key levels in the conduction band shift
as one goes from Ne to Ar to Kr, Results shown are
for our present calculation, including many-body effects,
and also from the calculation of Rossler (Ref. 3).

V. CONCLUSIONS

In this paper we have obtained ab initio band
structures for Ne, Ar, and Kr. These calculations
are obtained in the self-consistent restricted Har-
tree-Fock approximation. We also compute cor-
relation corrections. We have found this method
of calculation produces good results from an ex-
perimental viewpoint and employs no adjustable
parameters. Not only have we succeeded in pre-
dicting band gaps but also in predicting to a high
degree of accuracy such sensitive quantities as ef-
fective masses. Since the band model we devel-
oped is an efficient one, we are able to directly
compute state densities and optical properties with-
out needing the intermediary of pseudopotential
interpolations or of tight-binding interpolations.
This should allow much greater accuracy in as-
sessing the experimental properties of a band
structure, since an additional step separating the
band structure from experimental prediction is re-
moved.

We also conclude that such ab initio methods are
a practical way of studying band structures in gen-
eral. In this calculation we have handled an ele-
ment of the third row in the Periodic Table (Kr}
and we are able, using existing codes, to handle

any element or compound of elements up through
the fourth row of the Periodic Table. Also we are
able to afford to compute large numbers of points
in the Brillouin zone directly. In previous ab initio
efforts by one of us (ABK) and others'~ this has
been a major stumbling block in making such cal-
culations practical since only a few band-structure
points could be calculated directly. We are able to
perform our total calculation using about one-half
the computer time and far less computer memory
than is needed for a much less extensive calcula-
tion using the methods of Lipari. In fact we find
our codes to be nearly as fast as some codes in
current use to compute band structures using sta-
tistical-exchange approximations.

We find the Hartree-Fock band gaps to be greater
than experiment, in accord with the predictions of
Fowler. We also find our Hartree-Fock valence
bands to be wider than one obtains using a statis-
tical-exchange approximation. Finally we find that
correlation effects narrow the valence bands as
was found by Lipari and Fowler. To repeat, most
important of a11, we conclude that ab initio tech-
niques represent a practical way of studying band
structure.
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