Enhancement of Impurity-Ion Absorption Due to Radiation-Produced Defects*

S. I. Yun, L. A. Kappers,[†] and W. A. Sibley Physics Department, Oklahoma State University, Stillwater, Oklahoma 74074

(Received 14 February 1973)

Optical studies on the absorption and emission of 3d impurity ions in MgF₂ are reported. It is found that the spin-forbidden transitions for these impurities are greatly enhanced by the presence of radiation defects. The spin-allowed transitions are not similarly enhanced. The sharp line structure accompanying several of these transitions is discussed as is the annealing of the radiation damage.

I. INTRODUCTION

The optical properties of 3d impurity ions have been of great interest over the years. McClure, ¹ Ferguson, ² and others^{3,4} have extended our knowledge of these transitions considerably in the last decade. However, these transitions are difficult to measure experimentally because they are strongly forbidden with low oscillator strengths of the order of 10^{-7} . Recently, we indicated that some of the forbiddenness of these transitions in both KMgF₃⁵⁻⁷ and MgF₂⁸ can be lifted through exchange interaction with color centers. In this paper, more detailed information on the optical properties of irradiated MgF₂: Mn, MgF₂: Co, and MgF₂: Ni single crystals is presented.

II. EXPERIMENTAL

The crystals used in these experiments were obtained primarily from the Optovac Co. The impurity concentration for each sample was estimated from the optical absorption due to the spin-allowed transitions of the impurities and the known oscillator strengths for these transitions.⁹⁻¹¹ The estimated impurity concentrations are shown on the figures for each sample and also in the tables. Most of the samples were in the form of 1-mmthick crystal plates cut with the c or optic axis of the crystal either parallel to one of the optical faces, c_{\parallel} , or perpendicular to the optical faces, c_{\perp} .

All irradiations were made at room temperature using a Van de Graaff electron accelerator operated at 2.0 MeV. Dose rates were about 1.8×10^{13} MeV/ cm³ sec (1.5×10^{13} electrons/cm² sec). Optical measurements were made with a Cary-14 spectrophotometer or a Jarrel-Ash 1-m monochromator in conjunction with an RCA C31034 multiplier phototube and a lock-in amplifier. Optical-absorption and optical-emission measurements utilizing polarized light were made with unsupported Polaroid untraviolet sheets or Glan-Thompson prisms. Excitation spectra were taken using exciting light chopped at 450 Hz from a Spex 22-cm monochromator. All low-temperature optical measurements were made with a Displex helium refrigerator and a thermocouple consisting of Au : Fe versus chromel-P wire. The thermal-annealing experiments were done in a standard muffle furnace with temperature controllable to within ± 2 °K. Samples were heated rapidly to the desired temperature, held for 15 min, and then quenched to room temperature.

III. RESULTS

A. MgF_2 : Co

The irradiation-induced absorption spectrum of MgF_2 : Co is portrayed in Fig. 1. The dashed line in the lower panel illustrates the absorption of unirradiated crystals. The absorption bands illus-

FIG. 1. Absorption spectra illustrating the enhancement of the spin-forbidden transitions for Co^{2*} impurity ions in MgF₂ at 12 °K. The dashed line in the lower panel represents the α absorption spectrum of unirradiated crystals.

773

8

FIG. 2. Emission spectra of an electron-irradiated MgF₂: Mn crystal at 300 and 12 °K.

trated by the dashed lines which fall between 1.0 and 3.0 eV are those of the spin-allowed transitions ${}^{4}T_{1g} - {}^{4}T_{2g}$, ${}^{4}T_{1g} - {}^{4}A_{2g}$, and ${}^{4}T_{1g} - {}^{4}T_{1g}$ for the cobalt impurity. These bands are still symmetry forbidden and have a very low oscillator strength. It should be noted that after irradiation there is a tremendous increase in the absorption of the spin-forbidden transitions, but very little, if any, increase for the spin-allowed transitions. Also, the sharp line structure on some of the bands is different for the α , π , and σ spectra, as shown in the figure. The α spectrum is taken using unpolarized light propagating down the optic or c axis; the π and the σ spectra are measured using polarized light propagating normal to the c axis. The σ spectrum is taken with the electric vector of the incident light perpendicular to the *c* axis and the π spectrum is measured with the electric vector parallel to the

FIG. 3. Excitation spectrum of an electron-irradiated MgF_2 : Mn crystal at 300 °K.

FIG. 4. Absorption spectra illustrating the enhancement of the spin-forbidden transitions for Ni²⁺ impurity ions in MgF₂ at 12 °K. The dashed line in the lower panel represents the α absorption spectrum of unirradiated crystals.

axis. McClure¹ and Ferguson² have pointed out in some detail that it is possible by making these measurements to determine whether electric or magnetic dipole transitions are responsible for a given absorption band. If the two absorption coefficients for an electric dipole transition are denoted with respect to the *c* axis by e_{\parallel} and e_{\perp} and the corresponding quantities for a magnetic dipole transition by m_{\parallel} and m_{\perp} , then the three possible spectra can be expressed in terms of these absorption coefficients in the following way:

$$\alpha = e_{\perp} + m_{\perp}, \quad \pi = e_{\parallel} + m_{\perp}, \quad \sigma = e_{\perp} + m_{\parallel}$$

TABLE I. Spacing of the lines in emission.

MgF ₂ : Mn at 12 °K		KMgF ₃ : Mn at 5 °K		
Peak position nm (cm ⁻¹)	Separation from 645-nm band (cm ⁻¹)	Peak position nm (cm ⁻¹)	Separation from 642-nm band (cm ⁻¹)	
645.2 (15499)	•••	642.0 (15 576)	•••	
651.0 (15 361)	138	647.0 (15 456)	120	
657.0 (15 221)	278	649.0 (15408)	168	
662.5 (15 094)	405	654.0 (15291)	285	
668.0 (14970)	529	655.5 (15256)	320	
674.0 (14837)	662	659.0 (15175)	401	
		666.5 (15004)	572	
		671.5 (14892)	684	
		677.5 (14760)	816	

transition in MgF_2 : Ni at 300 and 12 °K.

In the case of a pure magnetic dipole transition, the α and π spectra are identical and not the same as the σ spectrum. From the figure it can be noted that the band at 1330 nm (${}^{4}T_{1g} - {}^{4}T_{2g}$) is almost pure magnetic dipole. A pure electric dipole transition would have α and σ the same and π different. Such transitions are seen at 400, 322, and 365 nm. The sharp line structure on the broad bands is most likely due to vibronic transitions, and, in some cases, the different spectra indicate that several absorption bands are superimposed. This is evident for the absorption at 350 nm.

B. MgF₂: Mn

It is difficult to introduce an appreciable amount of Mn into MgF_2 during crystal growth, and, fur-

FIG. 6. Emission spectra of the ${}^{1}E_{g}({}^{1}D) \rightarrow {}^{3}A_{2g}({}^{3}F)$ transition in MgF₂: Ni at 300 and 12 °K.

thermore, there are no spin-allowed transitions for the Mn^{2*} ions. In unirradiated samples, therefore, no optical absorption is observed. When specimens are irradiated, absorption is observed between 1.0 and 6.0 eV, but well-defined absorption bands are not present.⁸ Apparently absorption bands from defects other than Mn^{2*} impurities complicate the spectrum. Luminescence due to Mn^{2*} impurities is measurable at about 1.8 eV (see Fig. 2). By monitoring the intensity of the luminescence as a function of the wavelength of the exciting light, it is possible to obtain the excitation spectrum shown in Fig. 3. The emission occurs only when light is absorbed by Mn^{2*} ions, and, thus, these data give good resolution of the Mn^{2*} absorption

510-nm emission-MgF ₂ :Ni		750-nm emission-MgF ₂ : Ni		
Peak position nm (cm ⁻¹)	Separation from 490-nm band (cm ⁻¹)	Peak position nm (cm ⁻¹)	Separation from 710-nm band (cm ⁻¹)	
490.0 (20 408)	•••	710.2 (14081)	• • •	
491.5 (20346)	62	712.0 (14045)	36	
495.5 (20182)	226	721.0 (13 870)	211	
497.3 (20109)	299	723.0 (13831) 726.0 (13774)	250 307	
498.3 (20068)	340	728.5 (13726)	355	
500.0 (20000)	408	730.0 (13699) 732.0 (13661)	382 420	
502.0 (19920)	488	734.0 (13624)	457	
504.0 (19841)	567	736.5 (13577) 739.0 (13532)	504 549	
506.0 (19763)	645	741.0 (13495)	586	
508.5 (19666)	742	743.0 (13459) 746.0 (13405) 752.0 (13298) 770.0 (12987)	622 676 783 1094	
		785.0 (12739)	1342	

TABLE II. Spacing of the lines in emission at 12 °K.

776

FIG. 7. Excitation spectra for the luminescence bands, 510 and 750 nm, in MgF₂:Ni at 12 °K.

bands. The excitation and abosrption spectra for irradiated $KMgF_3$: Mn have been reported earlier⁵⁻⁷ and are similar to those of MgF_2 : Mn. The spacing of the sharp lines in the luminescence spectrum is tabulated in Table I.

C. MgF₂:Ni

Figure 4 portrays the various spectra for Nidoped MgF₂. The spectrum for an unirradiated sample is depicted by the dashed line in the lower panel. It should be noted that the spin-allowed transitions, which are nonetheless symmetry forbidden, are not enhanced by the radiation. Furthermore, a predominantly magnetic dipole transition is evident at 1350 nm $({}^{3}A_{2g} \rightarrow {}^{3}T_{2g})$. Several electric dipole transitions are also seen.

Two different emission bands are observed in both irradiated and unirradiated MgF₂:Ni. These are shown in Figs. 5 and 6. The fine structure shown on both figures for the 12°K emission bands can be due to vibronic transitions and possibly to spin-orbit or crystal-field splitting. The spacing of the lines in emission spectra is tabulated in Table II. The excitation spectra for both the 510nm emission band (solid line) and the 750-nm emission band (dashed line) are shown in Fig. 7. Another emission band in the near-infrared region has been studied by many other investigators.^{12,13} Although the resolution for the excitation data of Fig. 7 is less than for that shown in Fig. 4, it is clear that, except for the band at 333 nm, the same absorption bands are present. It should be pointed out that the relative intensities of the bands seen in Fig. 7 are not necessarily accurate, since it is difficult to correct for intensity changes with wavelength for the exciting light. Radiation apparently

has little effect on either the emission or the excitation spectrum, since no changes were observed.

D. Thermal Annealing

Vacancies and interstitials are produced in MgF_2 crystals by irradiation. In pure crystals these defects recombine at high temperatures, and the decrease in defects at various temperatures can be monitored by observing changes in the induced optical absorption bands. In doped crystals it might be expected that the radiation-damage process is somewhat different from that in pure crystals. A comparison of the thermal annealing of radiation induced defects in pure and doped materials, shown in Fig. 8, illustrates this fact. Although some differences between cobalt- and nickel-doped specimens are evident in the figure, it is clear that the impurity-doped crystals anneal at a much lower temperature than the pure specimens.

IV. DISCUSSION

We recognize that accurate assignments for the observed optical transitions are difficult to make, expecially since the presence of a radiation defect next to an impurity may perturb the impurity absorption. Nonetheless, we present in Tables III-V *tentative* assignments for these transitions, using the calculations of Liehr and Ballhausen.^{14,15} As mentioned earlier, the impurity concentrations for MgF₂: Ni and MgF₂: Co crystals were determined by

FIG. 8. Effect of annealing crystals irradiated at 300 %. The 270-nm band shown for pure MgF_2 is due to F centers (negative-ion vacancies each with a trapped electron).

	MgF ₂ : 0	Co (2.0 at.%)		
Oscillator strength at 12 %				
Assignment	Peak	Before	After	Туре
(O _h)	position	irradiation	irradiation	of
$\frac{{}^{4}T_{1g}({}^{4}F)}{} \rightarrow$	nm (cm ⁻¹)	(× 10 ^{−6})	(× 10 ⁻⁶)	transition
${}^{4}T_{2g}({}^{4}F)$	1330 (7 519)	2.0	2.0	M1
${}^{2}E_{g}({}^{2}G)$	840 (11 905)	very weak	1.2	E 1
${}^{4}A_{2g}({}^{4}F)$	650 (15 385)	1.2	1.2	<i>E</i> 1
${}^{2}T_{1g}({}^{2}G)$	573 (17452)	very weak	18.0	M1 and E1
${}^{4}T_{1g}({}^{4}P)$	$ \begin{cases} 540 & (18519) \\ 518 & (19305) \\ 478 & (20921) \end{cases} $	12.2	12.2	<i>E</i> 1
${}^{2}A_{1g}({}^{2}G)$ ${}^{2}T_{1g}({}^{2}H)$	{480 (20833)) {460 (21739)}	0.6	22.5	<i>E</i> 1
${}^{2}T_{2g}$, ${}^{2}T_{1g}({}^{2}H)$	{ 433 (23 095) } { 425 (23 529) }	very weak	0.4 2.3 ^a	<i>E</i> 1
${}^{2}E_{g}({}^{2}H)$	400 (25 000)	very weak	8.0 ^b	<i>E</i> 1

TABLE III. Co ² transitions in MgF ₀ cryst	Co ²⁺ transitions in MgF ₀ cryst	als.
--	--	------

TABLE IV. Mn²⁺ transitions in MgF₂ crystals.

•/	100	(20000)	very	wean	0.0

^aOscillator strength from π spectrum.

^b400-nm F_2 -center absorption band may be included in the oscillator strength.

measuring the absorption coefficient due to spin-allowed transitions and using the known oscillator strengths for the transitions. Once an estimate for the impurity concentration is obtained, it is then possible to give approximate oscillator strengths for the radiation-induced bands. These are shown in the tables for the α spectra along with the type of transition (electric or magnetic) dipole. It should be noted that in calculating oscillator strengths it is assumed that each impurity has a neighboring radiation defect. If only some of the impurities have neighboring defects, the oscillator strengths for the transitions must be higher. From the study of the colorability of pure MgF₂ by electron irradiation, ¹⁶ we expect to produce 1×10^{18} F centers/cm³ with a dose rate of 1.5×10^{13} electrons/cm² sec for 30 min. Generally, impurities can suppress or enhance photochemical damage mechanism in ionic crystals irradiated at 300 °K.¹⁷ In any case, a formation energy of 500 eV per F center is about the minimum energy expected. For a 30-min irradiation, this would result in about 7×10^{19} F centers/ cm³. The crystals studied contain about 2.0-at.% Co $(6.1 \times 10^{20} \text{ Co ions/cm}^3)$, 0.75-at. % Ni $(2.3 \times 10^{20} \text{ cm}^3)$ Ni ions/cm³), and 0.05-at. % Mn(1.5×10¹⁹ Mn ions/ cm³), respectively, and so, on this basis, it is possible for each impurity to have an F center as a neighbor. On the other hand, if we assume that all the crystals have 1×10^{18} F centers/cm³ (the Fcenter concentration for this dose in a pure MgF₂ crystal), and all of these F centers are located next to the impurities, only 0.4 at.% of Ni in MgF_2 : Ni, 0.2 at. % of Co in MgF_2 : Co, and 7 at. % of Mn in MgF_2 : Mn would have F centers as next neighbors. This means that the calculation of oscillator strengths would have to be corrected and would re-

	MgF	2 : Mn	
		Oscillator stre	ength at 300 °K
Assignment	Peak	Before	After
(O _h)	position	irradiation ^a	irradiation
${}^{6}A_{1g}({}^{6}S) \rightarrow$	$nm(cm^{-1})$	(× 10 ⁻⁷)	(× 10 ⁻⁵)
${}^4T_{1g}({}^4G)$	583 (19153)	3.3	2.6
${}^{4}T_{ig}({}^{4}G)$	480 (20 833)	2.7	2.9
${}^{4}A_{1g}({}^{4}G)$ ${}^{4}E_{g}({}^{4}G)$	415 (24 096)	${1.9 \\ 1.1}$	10.0
${}^{4}T_{2g}({}^{4}D)$	335 (29851)	2.0	1.4
${}^{4}E_{g}({}^{4}D)$	314 (31 847)	2.9	2.8
${}^4T_{1g}({}^4P)$	285 (35 088)		
${}^{4}A_{2g}({}^{4}F)$	263 (38 022)		
${}^{4}T_{1g}({}^{4}F)$	250 (40 000)		
$^{4}T_{2g}(^{4}F)$	230 (43 554)		

^aCalculated from Optovac Co. estimate of Mn present.

sult in $10-10^3$ times larger oscillator strengths than those tabulated in the tables. Figures 1 and 4 show that after irradiation there is little, if any, increase in absorption for the spin-allowed transitions. Moreover, in the Ni-doped samples, no change is detected in emission intensity or position after irradiation. Similarly, little change occurs in the excitation spectrum for MgF₂: Ni shown in Fig. 7 with irradiation; yet, the oscillator strengths of the spin-forbidden transitions are greatly affected. Finally, in MgF₂:Ni the absorption around 5 eV is much smaller in the doped crystals than it is in pure samples for the same radiation conditions. All of these data suggest that in doped MgF_2 (i) only a small fraction of the impurities have a neighboring F center after irradiation; (ii) the spin-allowed transition bands in irradiated crystals are due to the 90-99.5-at. % unperturbed impurities in the crystals and the spin-forbidden transition bands

TABLE V. Ni^{2+} transitions in MgF₂ crystals.

	MgF ₂ : Ni	(0.75 at.%)		
		Oscillat	or strength at	: 12 °K
Assignment	Peak	Before	After	Type
${}^{(O_h)}_{^{3}A_{2g}}({}^{3}F)$	position nm (cm ⁻¹)	irradiation (× 10 ⁻⁶)	irradiation (× 10 ⁻⁶)	of transition
${}^{3}T_{2g}({}^{3}F)$	1,350 (7407)	5.0	5.0	M1
${}^{3}T_{1g}({}^{3}F)$	775 (12 903)	5.6	5.6	<i>E</i> 1
${}^{1}\boldsymbol{E}_{\boldsymbol{\varepsilon}}({}^{1}\boldsymbol{D})$	560 (17 857)	1.1	1.1ª	E 1
${}^{1}T_{2g}({}^{1}D)$	470 (21 277)	very weak	11.3	<i>E</i> 1
${}^{3}T_{1g}({}^{3}P)$	$\begin{pmatrix} 392 & (25 510) \\ 404 & (24 753) \\ 414 & (24 155) \\ 428 & (23 365) \end{pmatrix}$	19.9	19.9	<i>E</i> 1

^aNo noticeable change in oscillator strength.

TABLE VI. Magnetic dipole selection rules for C_{2h} symmetry.

C _{2h}	Ag	Bg
A _g	σ	α,π
B _g	α,π	σ
B ₈	α, π	

arise from the 0.5–10-at. % impurities which are perturbed by radiation defects; (iii) both emission bands at 510 and 750 nm in MgF₂: Ni are due to the unperturbed Ni²⁺ ions.

In Fig. 1 (MgF_2 : Co), electric dipole transitions are evident at 400, 365, and 322 nm in the irradiated specimens. Previously, it has been shown that irradiation of pure MgF_2 crystals produce F_2 or *M*-center defects, 16,18,19 which absorb light in this region; thus, it is not possible to exclude the possibility that these particular bands in Fig. 1 are due to color centers and not impurities. Other evidence that supports this possibility is the observation that 365- or 400-nm excitation of irradiated MgF_2 : Ni results in emission characteristic of F_2 centers in irradiated but undoped samples. 16, 18, 19 In the case of MgF_2 : Ni crystals, there is a band at about 333 nm (see Fig. 4) which does not appear in the excitation spectrum shown in Fig. 7. This band could also be due to color centers. It is well known from alkali-halide research that impurities next to a color center will shift the absorption energy of the color-center transition and give rise to new absorption bands. It is possible that the bands seen around 322 and 333 nm in these crystals are due to impurity-perturbed color-center absorption bands.

Considerable work has been done on Ni²⁺ and Co²⁺ absorption in various host systems. ^{9-13, 20-26} Much of this work has been reviewed by McClure¹ and Ferguson.² In the MgF₂ lattice, when a radiation defect is next neighbor to a substitutional divalent impurity, the site symmetry of the impurity changes from O_h (more precisely D_{2h}) to C_{2h} , and the energy levels are split into the following components:

$$A_{1\varepsilon} - A_{\varepsilon} , \quad A_{2\varepsilon} - B_{\varepsilon} , \quad T_{1\varepsilon} - A_{\varepsilon} + 2B_{\varepsilon} ,$$

- *Work supported by the National Science Foundation Grant No. GP-29545.
- [†]Present address: Physics Department, University of Connecticut, Storrs, Conn. 06268.
- ¹D. S. McClure, in *Solid State Physics*, edited by F. Seitz and D. Turnbull (Academic, New York, 1959), Vol. 9, p. 399.
- ²J. Ferguson, in *Progress in Inorganic Chemistry*, edited by S. J. Lippard (Interscience, New York, 1970), Vol. 12, p. 159.
- ³N. S. Hush and R. J. M. Hobbs, in *Progress in Inorganic Chemistry*, edited by F. A. Cotton (Interscience, New York, 1968), Vol. 10, p. 259.
- ⁴Y. Tanabe and S. Sugano, J. Phys. Soc. Jap. 9, 753 (1954).

$$T_{2\ell} \rightarrow 2A_{\ell} + B_{\ell} , \quad E_{\ell} \rightarrow A_{\ell} + B_{\ell}$$

A simple calculation, neglecting vibrational modes, shows that the magnetic dipole selection rules shown in Table VI are valid. Most of the radiationinduced absorption bands show predominant electric dipole character. Ralph and Townsend²³ have studied the absorption and cathodoluminescence of MgO:Ni. Unfortunately, their absorption data were taken at 77°K on a different host crystal and, thus, we cannot compare the number and position of our sharp line structure with theirs. However, several comments can be made concerning their transition assignments. First, they mention that the emission structure they observe around 700 nm is most likely due to Cr³⁺ impurities in their MgO samples. We see similar structure (Fig. 6) with about the same intensity relative to the broad band that they see. Furthermore, this structure has exactly the same excitation spectrum (Fig. 7) as the other Ni²⁺ emission bands. This indicates that these lines are due to Ni²⁺ ions and should be considered in any series of transition assignments.

In addition, they assign their 800-nm emission in MgO:Ni to a ${}^{3}T_{1g} - {}^{3}A_{2g}$ transition. We believe that this emission and our 750-nm emission are due to a ${}^{1}E_{g} - {}^{3}A_{2g}$ transition. Our reason for this is that in MgF₂ it appears the ${}^{3}T_{1g}$ Ni²⁺ absorption band is at 775 nm with the ${}^{1}E_{g}$ level occuring at 560 nm. The excitation spectra shown in Fig. 7 also support this assignment.

Several workers, including Ralph and Townsend,²³ have explained the emission structure seen in MgO: Ni as due strictly to interactions between defects and phonons. Others attribute the structure, at least in part, to spin-orbit coupling.² In order to establish a base of information with which to attack this problem, Tables I and II show the positions of the fine structure and the energy separation between peaks for emission from MgF₂: Mn and KMgF₃: Mn and for MgF₂:Ni in emission. The energy differences can be compared with the lattice mode frequencies as given by Katiyar and Krishnan,²⁷ and by Porto.²⁸ It is clear that at this stage of investigation a definitive conclusion as to the source of all these lines cannot be reached.

- ⁵W. E. Vehse and W. A. Sibley, Phys. Rev. B 6, 2443 (1972).
 ⁶S. I. Yun, Ph.D. thesis (Oklahoma State University, 1973) (unpublished).
- ⁷W. A. Sibłey, S. I. Yun, and W. E. Vehse, J. Phys. C 6, 1105 (1973).
- ⁸L. A. Kappers, S. I. Yun, and W. A. Sibley, Phys. Rev. Lett. **29**, 943 (1972).
- ⁹R. F. Blunt, J. Chem. Phys. 44, 2317 (1966).
- ¹⁰J. Ferguson and H. J. Guggenheim, J. Chem. Phys. **44**, 1095 (1966).
- ¹¹J. Ferguson, H. J. Guggenheim, and D. L. Wood, J. Chem. Phys. 49, 822 (1964).

- ¹²L. F. Johnson, R. E. Dietz, and H. J. Guggenheim, Phys. Rev. Lett. **11**, 318 (1963).
- ¹³L. F. Johnson, H. J. Guggenheim, and R. A. Thomas, Phys. Rev. 149, 179 (1966).
- ¹⁴A. D. Liehr, J. Phys. Chem. 67, 1314 (1963).
- ¹⁵A. D. Liehr and C. J. Ballhausen, Ann. Phys. (N.Y.) 6, 134 (1959).
- ¹⁶W. A. Sibley and O. E. Facey, Phys. Rev. 174, 1076 (1968).
- ¹⁷E. Sonder and W. A. Sibley, in *Point Defects in Solids*, edited by J. H. Crawford and L. Slifkin (Plenum, New York, 1972).
- ¹⁸O. E. Facey and W. A. Sibley, Phys. Rev. B 2, 1111 (1970).
- ¹⁹O. E. Facey and W. A. Sibley, Phys. Rev. 186, 926 (1969).
- ²⁰J. Ferguson, H. J. Guggenheim, H. Kamimura, and Y.
- Tanabe, J. Chem. Phys. 42, 775 (1967).
- ²¹J. Ferguson, H. J. Guggenheim, L. F. Johnson, and H.

- Kamimura, J. Chem. Phys. 38, 2579 (1963).
- ²²J. E. Ralph and M. G. Townsend, J. Chem. Phys. 48, 149 (1968).
- $^{23}J.$ E. Ralph and M. G. Townsend, J. Phys. C 3, 8 (1970). $^{24}J.$ Ferguson, D. L. Wood, and K. Knox, J. Chem. Phys.
- **39**, 881 (1963). ²⁵M. Kozielski, I. Pollini, and G. Spinolo, J. Phys. C **5**, 1253
- (1972).
- ²⁶R. E. Dietz, L. F. Johnson, and H. J. Guggenheim, in *Physics of Quantum Electronics*, edited by P. L. Kelly, B. Lax, and P. E. Tannenwald (McGraw-Hill, New York, 1966), p. 361.
- ²⁷R. S. Katiyar and R. S. Krishnan, Can. J. Phys. 45, 3079 (1967).
- ²⁸S. P. S. Porto, Phys. Rev. 154, 522 (1967).

PHYSICAL REVIEW B

VOLUME 8, NUMBER 2

15 JULY 1973

Study of the Electronic Structure and the Optical Properties of the Solid Rare Gases*

A. Barry Kunz and Daniel J. Mickish

Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (Received 22 January 1973)

(Received 22 January 1973)

In this paper, we present a series of band-structure calculations for solid Ne, Ar, and Kr. These calculations are performed in the restricted Hartree-Fock limit by the self-consistent-field method. Correlation and polarization corrections are included by means of the electronic polaron model. We find that the Hartree-Fock band structures provide band structures which are broader than one obtains using a statistical-exchange approximation in constructing a crystal potential. We find that correlation corrections produce optical band gaps in reasonable agreement with experiment. We compute the joint density of states for optical transitions from both valence and core levels and find acceptable agreement with experiment. We also study the mixed-crystal soft-x-ray data of Haensel *et al.* and find our band structures to be in reasonable agreement with the trends demonstrated in the experimental data. This is in contrast to the other available unified series of calculations for the solid rare gases of Rössler. In this other series of calculations employing a statistical-exchange approximation, one finds that the shift in conduction levels in going from solid Kr to solid Ar to be opposite to experiment.

I. INTRODUCTION

The solid rare gases have been studied in a number of band-structure calculations. The available calculations have been performed either using a statistical-exchange approximation in forming the crystal potential or in the restricted Hartree-Fock limit. In general, great differences are found to exist between these two types of calculations. In the present paper, we present a set of fully self-consistent Hartree-Fock band-structure calculations for solid Ne, Ar, and Kr. We also include polarization and correlation corrections to these band structures. We compute our band structure at a sufficiently large number of points throughout the first Brillouin zone to permit us to compute density of states and the joint density of states for our solids without the need of interpolation schemes.

Previously, Knox and Bassani¹ have computed the band structure of solid Ar using a perturbation approach to the orthogonalized-plane-wave (OPW) method. Mattheiss² has later computed the band structure of solid Ar using the augmented-planewave (APW) method. Most recently Rössler³ has computed a band structure for solid Ar using the Korringa-Kohn-Rostoker (KKR) method. In the case of solid Kr, there exists a combined tightbinding-OPW calculation by Fowler⁴ and a KKR calculation by Rössler.³ Finally in the case of solid Ne there exists a calculation by Rössler.³ All of these calculations employ a statistical-exchange approximation in forming the crystal potential and none of them is self-consistent.

More recently, physicists have been attempting to employ the restricted Hartree-Fock method to study these materials. Calculations of this nature have been reported for solid Ne using the APW method by Dagens and Perrot.⁵ Calculations for solid Ar have been reported by Lipari and Fowler⁶ who used the OPW method and by Lipari⁷ using the mixed-basis (MB) method, and by Dagens and