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Using a pulsed tunable dye laser pumped by a Q-switched ruby laser, the frequency dependence of
second-harmonic generation has been measured in the region of the first and second 1s excitons of
CuCl from about 3.18 to 3.34 eV and the region of the C exciton of ZnO from about 3.38 to 3.48
eV. From the data, the frequency dependence of the optical nonlinear susceptibility has been determined
using linear optical constants calculated by a Kramers-Kronig analysis of reflectivity. The results for the
single nonzero term of the nonlinear susceptibility of CuC1 and the two terms d„, and d, of ZnO
have been fit theoretically by an anharmonic-oscillator model employing two oscillators.

I. INTRODUCTION

The intent of the work described here was to ex-
perimentally measure the frequency dependence of

optical-second-harmonic generation and then to de-
duce from the data the frequency dependence of the
nonlinear optical susceptibility. The measure-
ments were made for second-harmonic light gen-
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crated in a frequency region of intrinsic electronic
absorption in a crystalline sample where the linear
optical susceptibility shows a strong resonant ef-
fect to determine if similar resonant dispersion
can be observed in the nonlinear response.

Although many measurements of the nonlinear
susceptibility in a variety of substances have been
made, relatively few experimental results have
been obtained on the frequency dependence. ' And
of these measurements of nonlinear dispersion,
the initial report to come out of the experiments
described here represents the only published in-
vestigation in the region of a single isolated elec-
tronic resonance, which is probably the simplest
case to describe theoretically. The early paper by
Faust and Henry2 and very recent work by Leven-
son, Flytzanis, and Bloembergen' investigated
nonlinear dispersion of a single resonance in the
restrahl region.

Although experimental results have been lacking,
theories of the nonlinear susceptibility have been
formulated along various lines. The earliest the-
ories, particularly that by Armstrong et al. , de-
veloped a semiclassical approach with the inter-
action between the electromagnetic field and the
crystal used in a second-order perturbation theory
treatment. Seemingly more correct theories of
Ovander and Lang have since then been devel-
oped which include the lowest-order terms in the
crystal-field interaction in describing the unper-
turbed normal modes of the system. However, the
damped anharmonic oscillator ~ provides by far the
simplest approach to nonlinear dispersion in a
strictly classical manner analogous to the deriva-
tion of the linear susceptibility of gases using the
harmonic-oscillator model. From the existence of
these several approaches, then, experimental data
for a simple case of nonlinear resonance disper-
sion are desirable.

In the work described here the exciton absorp-
tion bands of CuCl and ZnO were chosen for the ex-
periments for two primary reasons: First, the
need for a sharp, isolated resonance to keep the
analysis of the experiment as simple as possible is
fulfilled, especially in the case of CuCl where the
first 1s exciton is sharp and well separated at low
temperatures from other excitons and the band
edge. The second reason for the particular choice
of these substances was the amount of information
already available. Numerous studies have been
done on the linear and nonlinear optical properties
of CuCl and ZnO.

A. Theory of Optical-Second-Harmonic Generation

Nonlinear optical properties of crystalline solids
can be understood (in lowest order) in terms of an
induced polarization in the solid which is quadratic
in the electric field amplitude inside the solid. The

polarization in a solid, then, including the nonlin-
ear effect, is given by

P=XE+dEE,

where X is a second-rank tensor and gives the usu-
al linear response, and d is the nonlinear sus-
ceptibility, represented by a third-rank tensor. ~8

To derive a quantitative expression for second-
harmonic generation, the nonlinear polarization
source term of (1) is introduced into Maxwell's
equations for a propagating second-harmonic plane
wave. If the fundamental electric field is taken as
Eoe""' "", the nonlinear polarization is given by

(2)

This polarization can now be introduced into the
wave equation including source terms and dissipa-
tive terms for a propagating plane wave at the sec-
ond-harmonic frequency where the second-harmon-
ic field amplitude is a function of distance along the
direction of propagation. ~~

However, for the case including absorption at the
second-harmonic frequency, a more direct ap-
proach can be used. In particular if nl»1 where
n is the absorption at the second-harmonic fre-
quency and l is the sample length, the second-har-
monic wave reaches a steady state inside the crys-
tal where the nonlinear generation of the wave is
balanced by absorption of the radiated field. To
attain this steady state, it is necessary that the
generation of the wave be constant in space and
time. This is true if it is assumed that the funda-
mental field remains constant in amplitude through-
out the crystal, that is, if only a small part of the
fundamental power is converted to second har-
monic, a situation which is realized in nearly all
cases. With the fundamental driving electric field
described by k and &, the second-harmonic wave,
in this case, has wave vector 2k and not the usual
kss = (2(u/c)ng„, the wave vector of a freely propa-
gating wave with frequency 2, where n» is the in-
dex of refraction at the second-harmonic frequency.

When the second-harmonic-generation problem
is solved with the fundamental wave incident on the
crystal boundary, ' two second-harmonic waves
are found to propagate inside the crystal. To sat-
isfy boundary conditions both a free wave with wave
vector k» and a forced wave with wave vector 2k
are needed. These correspond to the solutions to
the homogeneous and inhomogeneous wave equa-
tions, respectively, for the wave at frequency 2w
inside the crystal. The equation which describes
second-harmonic propagation is inhomogeneous due
to the driving nonlinear polarization source term
and the solution to the equation is a combination of
solutions to the inhomogenous as well as homogene-
ous equations. However, in the case considered,
where nl» 1, the free wave which originates at the
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PsH XEsH + dEpEp. (4)

Combining (3) and (4) and dropping vector notation
for simplicity

[ —(2k)'+ (2.u/c)'(1+ 4 1' )]E,s

Finally,

4w(2(u/-c) dEpEO.

—4 w(2(u/c)w dEOEO
—(2k)'+ (2(u/c)'(1+ 4 my)

'

(6)

(6)

boundary is rapidly damped and only the forced
wave remains. Under these conditions, then, a
steady-state amplitude for the second-harmonic
wave is obtained.

The wave equation for this "forced" second-har-
monic wave is then

[-(2k)w+ (2&u/c)2] E« = -4w(2&u/c)V«, (3)

where E» and PsH have time and spatial dependence
e2'~' "". The polarization is given by a term lin-
ear in E«plus the nonlinear term given in (1):

according to (10) to produce the coherence length.
The quantity measured in an experiment is the

external second-harmonic power generated inside
a crystal. It is necessary, then, to relate the in-
ternal macroscopic electric field given in (8) to the
external power. Intensity is obtained from the
Poynting vector given by 8 = (c/4w)Rx 5 and multi-
plied by area for the power. From Maxwell's
equations, the electric and magnetic fields are re-
lated by I R I

= v e I R I . But A is the proportionality
between the wave vector k and &u/c, that is, k
= v'e&u/c. In the case of a forced second-harmonic
wave, however, the value of va to be used is that
for the fundamental wave since the wave vector 2k
and frequency 2& are related by the fundamental
index of refraction, nw, where n=v'&. A similar
question arises as to the necessity of correcting
for ref lectivity of second-harmonic light as it
emerges from the back surface of the crystal.
Again Ke is the factor which determines ref lectivity
since the tangential components of R and 5 are
continuous across the boundary. With v'E = n& again,
the external second-harmonic power is given by

The denominator in (6) can be written

(2~u/c), (%'„-nf, ), (7)
c

1
(4w)'Idl P,'(1-R)««4w F I~2 n2lwn

where n& is the index of refraction at the funda-
mental frequency and QH is the complex index of
refraction for the second-harmonic frequency, al-
lowing for absorption of the second-harmonic field.
It is assumed there is negligible absorption of the
fundamental wave.

The second-harmonic power is proportional to
E«Ewa which is then given by, using (7),

(4w) Idl IEOI
SH SH

i
2 2i2nSH ng

(8)

lt should be noted that the denominator of (8) in-
cludes the usual "coherence-length" effect found m
the more usual derivation of second-harmonic gen-
eration which is most useful for nonabsorbing me-
dia and referred to previously;

Inas —nial =(c/2') [6k+(—,'n) ] In«+n/ I, (9)

where 4k= 2k& -k».
The coherence length is given by

[~k2+ (1&)2]-1/2 (10)

The physical interpretation of the coherence length
is that it is the distance over which the generated
wave remains in phase with itself. Because of dis-
persion between the fundamental and second-har-
monic waves, the nonlinear polarization will be out
of phase with the wave it generates in a distance
&x= 1/4k. In addition, if absorption is present, a
freely propagating wave would be damped out in a
distance bx= 1/n. These two factors then combine

I dl Po/A
SH (» 2 2)2 ~

ASH ng
(12)

8. Anharmonic-Oscillator Model of the Nonlinear Susceptibility

There are several methods, both classical and
quantum mechanical, which can be used to find a
specific form for the nonlinear susceptibility d as

(11)
where Pp is the fundamental power inside the crys-
stal, 4 is the area of the beam, and R is the reflec-
tivity at the back surface given by R = (nr —1)w/

(nr + 1)'.
In the experiments, the fundamental frequency

was in a region where the crystal is transparent
while the second harmonic was in a region of in-
trinsic electronic absorption, in particular, in the
exciton region just below the band-to-band transi-
tion edge. Since only relative second-harmonic
power was measured, the factors involving R and

n& are unimportant because they relate to the op-
tical constants of the fundamental wave which show
very little dispersion in the region of interest. This
point is made only because it would seem correct
to relate Ps„ to Es„and ref lectivity with the optical
constants associated with the second-harmonic
wavelength. If that were the case, large fluctua-
tions in P» would be introduced in a region of in-
trinsic absorption of P» owing to the resonant ef-
fect on the linear optical constants. But such is
not the case and, therefore, the equation of inter-
est in comparing theory and experiment is
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mentioned at the beginning of this section. The sim-
plest model that can be constructed is one which is the
logical extension of the simplest model available to
calculate the linear susceptibility, i. e. , the har-
monic oscillator generalized to the nonlinear case
in terms of the anharmonic osciQator.

The solid is considered to be an ensemble of
fixed, independent, anharmonic oscillators driven
by an externally applied electromagnetic field. The
equation of motion then reads

x+(d(o+ri+ (oaovx = (e/m)E((u). (13)

For simplicity only one resonance of frequency (do

is assumed and damping is included as a term pro-
portional to the velocity of the displacement with

r/&oo a unitless quantity. The nonlinear coupling
constant arz~y is defined such that y has dimensions
of reciprocal length and is considered small in the
sense that v is much less than the reciprocal of the
maximum displacement of the oscillator. In zeroth
order (neglecting the quadratic term) the familiar
form of a complex linear susceptibility results
from (13):

( )
Nfe/m

X + a — z —'Z' (14)

where N is the number of oscillators per unit vol-
ume and f is the oscillator strength. The complex
dielectric constant is as usual

4vNfe /m
i(oo) =I+4wy=l+

(do —4d —lI (d
(16}

Acoo

[(ooo—(2(u)'- inner] '

vNfsLe /m
(&o —aP —i&or)

(17)

This microscopic nonlinearity can be converted in-
to macroscopic quantities using effective or local-
field corrections. ~

In the experiments considered here where the
fundamental frequency is far from the resonant fre-
quency wo, the resonant denominator vo —aP in (17)
is unimportant and included in the defined constant
A.

The nonlinear susceptibility can also be ex-

Then including the nonlinear term, to first order in

+zv, there is a displacement at 2&:

x(2~) = &ov(e/m) E (od) . (16)
[(go —(2&v)' i2odr]((—uo —(o' —ir(o)' '

The polarization associated with this displacement
is P(2a&) = Nfaz, ex(2&g} where faz, is a nonlinear oscil-
lator strength, and the nonlinear susceptibility for
second-harmonic generation at 2w is given by

d(2 }= QP vNfggs /m
[(do —(2(d) —i2(dr](odo —(0 i&r)

pressed in terms of the linear susceptibility [Eq.
(14)]:

&ovfNx. x (&)
eNf [sPp —(2u&) —i2&or]

'

It canbe seen that off resonance, i.e. , for 2~«~z,
the quantity 6 = d(2~)/X'(u&) is constant (and nearly
the same for many substances: Miller's ruleoo).

With the second harmonic nearly resonant, +p= 2~,
as in the experiments reported here, the resonant
denominator [&ooo —(2&u) — 2i&g r] does have a signif-
icant effect and it was the object of these experi-
ments to try to observe that nonlinear resonant dis-
persion.

It is clear that the model presented above could
be improved in several ways, most notably by al-
lowing coupling between oscillators which leads to
theories of spatial dispersion. It is the objective
of this paper to test the simple model first against
experimental evidence. More sophisticated the-
ories and their comparison with the same experi-
mental results will be taken up in a separate paper.

II. EXPERIMENTAL DESIGN

In order to do second-harmonic generation as a
function of frequency, a tunable laser source is
central to the necessary apparatus. Organic dyes
pumped by a strong light source exhibit broad-band
emission and provide an active medium for such a
tunable laser. The dye laser, then, along with
other optical apparatus and cryogenics capable of
helium temperature form the basic experimental
equipment used in the studies reported here.

A. Tunable Organic Dye Laser

Pulsed laser emission from an organic dye was
first reported by Sorokin and Lax&ard~3 in 1966.
Since that time hundreds of dyes have been ob-
served to exhibit laser action with output wave-
lengths covering the entire visible spectrum. o~

Figure 1 shows a schematic of the dye laser used
in the present experiments. The dissolved dye is
contained in a 1@1-cm cell which is about 4-cm
high. The optical cavity is formed by the output
reflector and a diffraction grating. A dielectrically
coated mirror with ref lectivity of 90% mounted in
a gimbal Lansing device serves as the output re-
flector. Because of the high gain of the dye under
pulsed pumping conditions, this output mirror re-
flectivity can be as low as 30%%uo for most dyes with-
out significant change in the output power. The
grating used for the other cavity reflector is an
1800 line per mm Bausch and Lomb plane grating,
blazed for 5000 A. This grating functions as the
wavelength selector for the laseroo by reflecting a
single wavelength in first order back down the axis
of the optical cavity to be amplified. Such a nar-
row-band feedback device caused the laser to os-
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TUNABLE ORGANIC DYE LASER

DYE LASER
OUTPUT

DIFFRACTION
GRATING

OUTPUT
RE FLECTOR

LASER
PUMP

FIG. 1. Schematic of the tunable dye-laser
configuration.

ciliate in only a very small portion of the broad
luminescence spectrum. Rotation of the grating,
then, provides tuning of the laser by varying the
feedback wavelength Th.e grating is also located
in a Lansing mount to facilitate alignment and pre-
cise wavelength selection.

The telescope inside the dye-laser cavity serves
two functions. It prevents burning of the grating
with some dyes where the power generated in the
cavity is especially high. Also, it spreads the
beam over most of the 3X3-cm area of the grating
improving resolution, thereby producing a narrower
output linewidth. No direct measurements of the
linewidth were made but resolved structure in the
data indicates it is typically less than l A with this
configuration.

The aperture just behind the output reflector
serves to limit the divergence of the laser and sup-
press extraneous cavity modes. The dye cell and
telescope provide reflecting surfaces which can
give rise to these extra modes. The dye cell is
positioned just off the vertical direction so that the
mode between the dye cell walls will not pass
through the aperture and be observed at the output.

Finally, the pumping source for the dye used in
these experiments was the output of a pulsed ruby
laser, a TRG model No. 104, Q switchedby a rotating
prism. Typical pumping power was 10-20 MW for
about a 20-nsec pulse. The ruby-laser output was
focused by a cylindrical lens of approximately 10-
cm focal length onto the dye cell.

The output of the dye laser used in this study was
typically of the order of 100 kW for a 10-20 nsec
pulse. A primary difficulty of the output was the
mode characteristics, complicated in the present
case by some of the particular dyes used, as al-
ready indicated. Because of the proximity of the
laser wavelength region needed for these experi-
ments at about 7000-8000 A and the ruby-laser
pumping wavelength at 6943 A, the pumping was

Figure 2 shows the experimental apparatus used
to make second-harmonic-generation measure-
ments. The output of the dye laser, described in
Sec. GA, is focused onto the sample mounted in a
cryostat. The CuCl samples were placed in a he-
lium-conduction cryostat which cooled them to
about 20'K while an immersion cryostat was used
for the ZnO samples, the temperature going to
about 1.8 K in this case while pumping on the heli-
um. Second-harmonic light from the sample was
passed through a model No. 82-000 Jarrell-Ash —,

' -m
monochromator and detected with a Dumont 6292
photomultiplier (Sl l spectral response). The
monochromator along with the optical filter at the
input discriminated against laser light. Also the
monochromator was used to discriminate against
two-photon induced luminescence in wavelength re-
gions where significant luminescence was gener-
ated.

For a reference, part of the dye-laser output was
split off and passed through a non-phase-matched
(4k v0) ammonium dihydrogen phosphate (ADP)

TABLE I. List of dyes used with the dye laser.

Dye Solvent Optical density

Laser
wavelength

~A)

brilliant green
Naphthalene green V
Diethylthiadicarbocyanine

iodide (DTDC)

glycerin
glycerin
ethylene

glycol

~ 9
4
4

7300-8300
7500-7800
7000-7700

done at the edge of the absorption band of the dyes
and necessitated dye solutions of relatively high
concentration. The optical density of the 1-cm cell
had to be as high as 8-10 to get laser action in
some cases. Hence, most of the pumping light was
absorbed in less than 1 mm at the front of the
cell, making a small beam waist for the dye laser
and complicating alignment, leading to the poor
mode characteristics of the output. In other dyes
where pumping is more convenient and dye cells of
optical density around one to two are used, this
problem is observed to be significantly reduced.

The dyes used in these experiments were deter-
mined by the exciton energies in CuCl and ZnO
since the object was to do second-harmonic gener-
ation in a region of intrinsic electronic absorption,
for which the excitons of CuCl and ZnO were cho-
sen. Excitons in both these substances are found
in the region from about 3. 2 to 3.4 eV, which cor-
responds to a wavelength of 3900-3600 A. This
means a fundamental wavelength of 7800A is re-
quired. Three dyes used to produce these wave-
lengths are listed in Table I. All were pumped with
fundamental ruby-laser radiation.

B. Second-Harmonic Generation
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PROTOSILTIPLIER*

FILTERS»»
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FIG. 2. Experimental arrangement for second-har-
monic-generation (SHG) measurements using SHG from
ADP as a reference.

crystal. ee Second-harmonic light from the ADP was
then detected using another Dumont 6292 photomul-
tiplier. Optical filters eliminated laser light and
one short-wavelength cutoff filter was placed ahead
of the ADP to ensure that light of about the second-
harmonic wavelength did not enter the detector sys-
tem. This form of reference was chosen over sim-
ply sampling the dye-laser output since the area of
the focal region of the dye-laser enters into (12)
relating the fundamental and second-harmonic pow-
er. Because of poor mode structure, this area
probably varied from one pulse to the next and also
as the laser was tuned over a large wavelength re-
gion. Furthermore, it was assumed that the sec-
ond-harmonic generation efficiency in ADP was
constant over the wavelength region studied since
it was far from any absorption in ADP and the sam-
ple was oriented away from phase matching (eke 0).

A monitor of the dye-laser beam using a glass
plate to sample the beam and a Hewlett Packard
4205 photodiode for detection was included.

The signal and reference was simultaneously re-
corded using Polaroid pictures taken with type-410
Polaroid film from the trace of a Tektronix 551
dual-beam oscilloscope equipped with type Lfast--
rise preamp (= 10 nsec).

C. Sample Orientation

CuCl has zinc-blende structure (43m) and there
is a single independent nonzero term in the non-
linear susceptibility tensor d. Second-harmonic
polarization may arise from three terms:

P, = 2d~RE„Eg, P„=2dPRRERE„Pg = 2dgRPERE„,
(19)

with d~, =d„~=d~.
In the experiments the fundamental beam was di-

rected along(111) directions, generating a non-
linear polarization that is both parallel ("longitudi-
nal") and perpendicular ("transverse") to the di-
rection pf propagation. The transverse excitation
mill give rise to second-harmonic generation. ZnO
crystallizes in the hexagonal zincite structure

(6 mm), and there are two independent nonzero
terms in the nonlinear susceptibility tensor:

P.= ~x.PA. PP = 2d PRE.ER

P, =d Q+ +d~E„E„+d„Q+,
(20)

The second-harmonic-generation data were taken
for the region of exciton absorption in both CuC1
and ZnO. To obtain the nonlinear susceptibility,
(12) is used, rewritten below to include second-
harmonic-power output from ADP as a reference
signal, as described in Sec. II;

(21)

The remaining quantities necessary to the analysis
are just the simple index of refraction for the fun-
damental frequency and the complex index of refrac-
tion for the second harmonic. In a region of in-
trinsic absorption, the complex index of refraction
is impossible to obtain directly since light will not
penetrate even very thin samples where a becomes
as large as 10' or 10 cm . For evaporated fQms,
the optical properties may be quite different than
the bulk crystal properties which are needed for
the analysis. This problem is usually surmounted
by doing a Kramers-Kronig analysis of reflectivity
measurements. 3~ This is, in fact, what was used
to obtain the linear optical constants necessary to
the analysis of the nonlinear susceptibility in (21).

A. Second-Harmonic~neration Measurements in CuCl

Figure 3 shows relative second-harmonic gener-
ation in CuCl as a function of energy at about 20'K.
Two distinct one-photon exciton absorption peaks
in this region ' are located at 3.202 and 3. 27 eV
at helium temperatures. As shown in Fig. 3, there
is no distinct structure in the second-harmonic
power output at these one-photon absorption peaks.
The strong peak in the data at 3.217 eV is a result
of a single point of near phase matching (b,k=0)
along the linear dispersion curve of CuC1 where,
as a result, the coherence length reaches a local
maximum. This phase-matched point occurs be-
tween the two exciton absorption peaks where there
is large dispersion in the index of refraction, pass-
ing through the value of the index for the funda-
mental at one point providing the phase matching.
This is seen clearly in Fig. 4 where a Kramers-

where d, =d», =d,»=d„, and d„ is the other in-
dependent term. The experiments were done with
the direction of propagation of the fundamental
beams perpendicular to the c axis and the polariza-
tion either parallel (d„,) or perpendicular (other
terms, +„etc). In both cases the second-har-
monic polarization is entirely transverse so no
longitudinal excitations are excited.

III. EXPERIMENTAL RESULTS
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was previously shown39 that the first of these reso-
nances can be well described by the predictions for

I dl of an anharmonic-oscillator model.

B. Second-Harmonic-Generation Measurements in ZnO
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Kronig analysis of ref lectivity done by Staudeee is
shown. At about 3. 217 eV the index of refraction
has a value of 1.95 which is the approximately con-
stant value of the index for the fundamental shown

by the horizontal dashed line. It should also be
noted that the absorption in this region is small, al-
lowing the rapid change in Ak around the phase-
matching point to have a dominant effect on the co-
herence length.

The values of the linear optical constants, shown
in Fig. 4, were used in (21) to calculate the non-
linear susceptibility. The result is shown by the
circles in Fig. 5. In this logarithmic plot of I dl
for CuC1, two resonances, centered on the one-pho-
ton 1s exciton resonances, are clearly displayed. It
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FIG. 3. Relative second-harmonic power output of
CuCl as a function of wavelength in the region of the first
and second ls exciton resonances (indicated by arrows).
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Relative second-harmonic power output in ZnO is
shown in Figs. 6(a) and 6(b) for the cases of funda-
mental beam polarization parallel and perpendicu-
lar to the c axis in both cases. There is no abso-
lute scale between the data taken for the two differ-
ent polarizations. In both cases Eels. (20) show that
the second harmonic is polarized parallel to the c axis
since only the third of the equations contains non-
zero contributions with the configuration used.
This polarization condition was observed in the ex-
periments. The data were taken in the region of
the C exciton in ZnO at about 3.42 eV. ~'~ This is
the first strong one-photon exciton absorption peak
in ZnO for light polarized parallel to the c axis.
Two other excitons, called A and B, are located at
about 3.36 eV but coupled only by light polarized
perpendicular to the c axis. As second-harmonic
light is always parallel to the c axis, excitons A
and B are not of immediate interest to the experi-
ments described here.

The data of Fig. 8 show very little structure in
the second-harmonic power output. With both po-
larizations a weak local maximum occurs around
3.445 eV which is a result of an increase in the co-
herence length in that region.

In Fig. 7 the linear optical constants are shown
for this energy region of ZnO for light polarized
parallel to the c axis. The data are again a result

I

3.I8 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34
Photon Energy in eV

FIG. 4. Linear optical constants of CuC1 in the region
of the first and second excitons obtained from a Kramers-
Kronig analysis of reflectivity.
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Second Harmonic Photon Energy in eV

FIG. 5. Relative nonlinear susceptibility of CuC1 cal-
culated from SHG data and the linear optical constants.
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sents the (approximate) constant contribution to d
from all resonances at higher frequencies. The

measured quantity is a relative value of 1dl . Per-
forming the calculation of l dl from (22) one gets

(A/d„) o][]+2(A/d )(@0[(oo—( [d) ] (A'/d ) (oo +2(A'/d„)(o[] [&o[] —(2[@) ]
[&ol —(2&0) ]~+(2&or) [&g'~ —(2v)~] +(2[or')

2(m'id] ~,'~,"{[~,'—(mtd)'][td,"—(2~)']+ (2~)'rr ])
' '

{[o],'- (2~)']'+ (2[dr)gg &,"—(2[d)']'+ (2&r ')Q
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FIG. 8. Relative nonlinear susceptibility of ZnO, (a)
d~~ and (b) d,~, calculated from SHG data and the linear
optical constants.

Similarly the linear dielectric constant & for two
oscillators is given by

I BQ)p
2

~(2~)=~+~ +~ =
~~ (2~)~;r2~

Bl (2
(dp

IR (2 )2 rl2 + «y ( )

B=4wNfe /m&do.

An attempt will now be made to fit the observed
data of Figs. 3 and 6 as well as the linear optical
constants of Figs. 4 and 7 and other available ex-
perimental data with a two-oscillator model as ex-
pressed by (23) and (24). Using (21}a computer
fit was attempted of the original data of Figs. 3 and
6 with six constants A, A', B, B', r/&do, and r'/~, ',
as well as fixed values for a„, ng (dp and p.
After a best fit was obtained, under the constraint
that B, B', r, r', and +p +p would also give a
best fit to the linear optical data, these constants
were then kept fixed. Using (23) and (24) a calcu-
lation of Idl and n and k was done next. Also, us-
ing (21) values for I d I were found by multiplying
the original data by III~„-nfl, where IIS„(2[d)was
taken from (24). Figures 9 and 10(a) and 10(b)
show the results for I dl for CuCl and Zno, respec-
tively. The solid lines are computed from (23)
with the constants given in the graph. The circles
are obtained from the data in a way mentioned
above.

In general the fit is very good. For CuC1 dis-
agreement is found near two depressions in the
original data, near 3. 21 and 3. 22 eV on both sides
of the phase-matched point. The first depression
near 3. 21 eV could not be fit with a two-oscillator
model no matter which constants were used. A fit
was obtained after spatial dispersion was included
with the two-oscillator model. This wBl be the
subject of discussion in a separate paper.

The bad fit of the solid line to data in Fig. 9 near
3. 22 eV is due to the absence of absorption in that
wavelength region. Figure 11 shows the linear op-
tical constants calculated from (24) with the con-
stants of Fig. 9. A comparison shows that absorp-
tion in the regjon 3.22-3. 24 eV of Fig. 4 that is
predicted by the Kramers-Kronig analysis of re-
flectivity data cannot be accounted for by a simple
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A comparison between the linear and nonlinear
resonances can be made to obtain the value of the
nonlinear coupling constant v. As suggested by
Miller' and derived for the present model by Gar-
rett'~ v can be expressed as [see Eels. (17) and

(18)]

v= AeNf /II (~)f„L=AeNf/II (~), (25)

explained by noting that the same resonant oscil-
lator is examined in each case since the polariza-
tion and direction of propagation of the second-
harmonic wave is the same in the two cases.

V. ANALYSIS OF EXPERIMENTAL RESULTS
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where II(&o) is the linear optical susceptibility at the
fundamental frequency ~, N is the number of oscil-

FIG. 9. Relative nonlinear susceptibility of CuC1. The
circles represent calculated results from SHG data using
the linear optical constants and the solid curve is the
theoretical fit. The linear optical constants and the SHG
data were fit using the harmonic- and anharmonic-oscil-
lator models, respectively, using two resonant frequencies
with self-consistent parameters. The best fit yields the
"data" points then calculated from the SHG data and the
theoretical curve shown.
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oscillator model with one damping constant I'. For
that reason the "data" are lower than they would be
in the presence of absorption.

For Zno [Figs. 10(a) and 10(b)] no perfect fit
could be achieved although the solid line drawn with
the six constants as given comes very close to the
"data" points. The reason is simply that a two-
oscillator model of the linear constants of ZnO is
a very poor fit to the data as obtained from the
Kramers- Kronig analysis of ref lectivity. Espe-
cially the result of the low energy end of Fig. 7 is
in disagreement with direct measurements in
such a manner that better data would tend to im-
prove the agreement between experiment and the-
ory for the nonlinear susceptibility.

A comparison of the data (circles) of Fig. 5 with
Fig. 9 for CuC1 and Fig. 8 with Fig. 10 for ZnO
shows the confidence limits of the method used for
the determination of (d ). Two different means for
getting Id I give an overall result that is quite sim-
ilar. An improvement of the reliability with which
one can get td l certainly depends solely on the re-
liability of the linear optical data. The theoretical
fit of Figs. 10(a) and 10(b) for ZnO was made using
almost identical parameters in (23) and (24). This
was found to be true although different terms in the
nonlinear susceptibility tensor are represented by
the two curves, d„, and d, . The absolute values
do not correspond. In the transparent region of the
crystal d„, is found to be about three times as
large as d,„„. The similarity of the results is
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FIG. 10. Relative nonlinear susceptibility of ZnO for
components (a) d~» and (b) d~. The circles are cal-
culated "data" points y,nd the solid curve is the theoretical
fit. (Analysis similar to CuCl as explained in Fig. 9
caption. )
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d„, A A'
1+—+-d„d„d„ (27)

With A/d and A'/d„ from Figs. 9 and 10 of the or-
der of 10 we get that d„,=d„, i. e. , the reso-
nances that we explored here contribute only a few
percent to the total value of d in the visible:

"' =1+-i —+
d 2(d d (28)

CuCl: From the best fit of Fig. 9 we obtain A/d
=1.65x10 z; A'/d„=2. 35x10 a. Hence Id„, l

=1.021d I or a 2/o increase over both resonances.
From (25) we get that u= 5x 10e cm t and v'= 4x10e
cm

ZnO: From a best fit of Figs. 10(a) and 10(b) we
obtain A/d =1.6Vx10 z and A'/d„= —5.4x10
Hence Id„, l

= 1.02ld I or a 2% increase. The val-

lators per volume, and e is the electronic charge. The
factor f»/f in (25) must be exactly one. This is
because the oscillator strength is the fraction of the
total number of oscillators which participate in a
given resonance, and this fraction must be the
same for both the linear and nonlinear suscepti-
bility since the actual displacement of each of the
identical oscillators is in a sense Fourier analyzed
to obtain the fundamental and second-harmonic re-
sponse. In order to get values for v for each re-
sonance we must proceed carefully since our pre-
vious analysis results in relative values A/d„and
A '/d„only.

For the long-wavelength limit (+ «u&o) it can be
seen from (22) that

d,q, = d+d'+d„- A+A'+d„ (26)
or

ues for v are v(zzz) = 3x 10a cm ', v(zzz) = 1x10e
cm, and v'(zzz)= —3x105 cm t, v'(zzz)= —1x10a
cm '. Note that A'/d and v' are negative and that
the values of e' are down by about an order of mag-
nitude over the values of v. In the case of Zno, an
important question is the relationship between the
resonances in the two different terms of the non-
linear susceptibility tensor d„, and d, . Identical
parameters were used in the theoretical fit and this
might well be expected since the same direction of
polarization and propagation of the second-harmonic
wave is present for the two cases, that is, the .

same oscillator is responsible for generating the
second harmonic. The values of d obtained for the
two tensor components indicate a difference in the
efficiency of driving the oscillator nonlinearly by
the different polarization fundamental waves. In-
deed, the identical fit to the data in the logarithmic
plots of Pigs. 10(a) and 10(b) means that the reso-
nant amplitudes scale as the constant values of d,&, .
From (28) d„,(zzz)/d (zzz) = d„,(zxz)/d„(zzz) or
d„(zzz)/d„(zxx) is approximately the same as their
ratio in the visible.

Comparison with phonon resongnces: Finally we
would like to compare the order of magnitude of
A/d obtained here for excitonic resonances with
values obtained in the near infrared with phonon
resonances. In GaP Faust et al. ~'3 obtained a val-
ue of A/d = —0. 53 for the restrahl band. Leven-
son et a/. found a value of +0.047 for a third-or-
der nonlinear resonance in diamond.

VI. SUMMARY

(a) The measurements reported here demon-
strate that second-harmonic generation can reli-
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ably be measured well into the excitonic strongly
absorbing region of solids.

(b} From second-harmonic generation data in the
excitonic region of CuC1 and ZnO the resonance be-
havior of the (lowest-order) nonlinear optical sus-
ceptibility d can be deduced. To do this one needs
reliable linear optical data in the same region.

(c) A simple anharmonic-oscillator model with
two oscillators is able to describe the linear as
weD as the nonlinear results consistently.

(d} There are two remarks one should add: (i}
Small discrepancies between the simple oscillator
model and the experimental data, particularly in
the vicinity of the first ls exciton in CuC1, are sug-

gestive of possible improvements of the model.
(ii) An obvious extension of the model explored
here is to include coupling between the oscillators,
i. e. , spatial dispersion. Such an extension is de-
sirable in principle since it is known that excitons
are better described by coupled rather than inde-
pendent oscillators. This extension of the model
will be presented in a separate paper.
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