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A field-theoretical diagrammatic method is used to investigate the low-frequency ac impurity-pair

conductivity for doped semiconductors, originally treated semiclassically by Pollak and Geballe. The
result agrees with that of the above cited work. However, it is in disagreement with the recent work of
Aldea. Discussions on the latter work are given.

I. INTRODUCTION

The low-f requency impurity-hopping conductivity
of doped semiconductors at low temperatures was
first investigated by Pollak and Geballe "' (PG) in
samples of weakly compensated n-type silicon.
The physical picture in this case is as follows: The
introduction of a relatively small number of ac-
ceptors "robs" an equal number of donor atoms of
their electrons (which are all condensed on donor
sites at low temperatures); electron transfer can
then occur between occupied and unoccupied donor
sites. Owing to the electric fields arising from
the (negatively) charged acceptor sites and the
(equally numerous) ionized donor sites, local site
electronic energies are in general noncoincident;
a real energy-conserving charge transfer re-
quires the simultaneous emission or absorption of

one, or more, phonons.
In the original treatment by PG, attention was

focused on the situation (prevalent for low compen-
sation), wherein the principal contribution to the
ac conductivity is provided by "back-and-forth"
electron hopping between isolated donor pairs
(each pair situated in the vicinity of an acceptor
site). The two-site ac hopping conductivity was
recently treated by Aldea by means of the standard
temperature-diagram technique; as will be shown
below, his result disagrees with that of PG. How-

ever, as will also be shown below, his analysis
is beset with serious errors. In what follows, we
present what we believe to be a correct tempera-
ture-diagrammatic calculation of the ac conductivi-
ty. The result is in complete agreement with that
of PG.

Following PG, we restrict our analysis to the
indirect process, which prevails when the external
frequency (&o) is much smaller than the energy dif-
ference (b,e) of the pair sites. At high frequency
(i.e. , hap- de), the direct (resonant) process be-
comes dominant. To find the bulk conductivity,
a complicated statistical averaging has to be per-
formed on the pair conductivity ': It is known

that the indirect process leads mainly to an (d
'

or dependence of the bulk conductivity, where-

as the direct process predicts an ~ dependence.
Some systems show deviations in temperature,
frequency dependence, and even the magnitude of
the bulk conductivity at low frequency from the
result predicted by the PG's pair-hopping mech-
anism. In these cases multiple hopping should be
considered. " ' A comprehensive discussion of the
PG model as well as the frequency dependence of
the conductivity is given in Ref. l(b).

The Hamiltonian of the above-described system
may be written as

H=Hp+Hi+H h,

Ho= Z e„' 'a„a„+Z J,„ata„,
nm

H&= —Z u; )r~;(e"'~b;+e '~' ~bf)ata„,

H,„=Z R(u~ b;b,",
q

where at (a„) creates (annihilates) an impurity
state at site r„with an energy e„' 'and J„~, ~qy
b~ (b;) are, respectively, transfer integral, phonon
frequency corresponding to the wave vector q, and
phonon creation (annihilation) operator. Finally
u; is given, respectively, for acoustic and optical
modes:

2 2
u--= ~ ' u- =

2MN(h&o-) ' ~ 2MN(K+-)

where N, M are number and mass of atoms and

g, r are coupling constants. Only the acoustic
phonons will here be considered.

It is convenient to transform the above Hamilto-
nian to the so-called "small-polaron" representa-
tion. This is achieved by a canonical transforma-
tion (cf. e. g. Schnakenberg, ~ especially pp. 624-
626). The result is

H=Hp+Hi+Hph,

Ho= 2 (e„' ' —E~)aJ a„+Q

J„adyta

~n =~n &&~)
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II. AC CONDUCTIVITY

The ac-conductivity tensor is given by

o~(&o) = —i(dne'F~ (ff(d +iO),

where F„„(g(d+i0) is the analytic continuation of
the correlation function,

1 "~
F,„(K&d,) = — F„„(u)e""'"du,

w o

F,p(u) =- (Tf),(u)PB(O))
(4)

where &u, = 2vri/KP (r = integer), and the operators
are in Heisenberg representation. The dipole mo-
ment operator is given by

p= ~ rn~nQn ~

n

In conformance with the remarks in the Introduc-
tion, we confine the treatment to the two-site
problem involving transitions between a single
pair (s, m). In addition, for low-frequency con-
duction OI~«b, e' '=-a„' '-c' '), one can neglect the
contribution from the direct (or resonant) process
(lf(d —- n&( '). Therefore we drop the resonant
term of Hn in (1) (i.e. , the term proportional to
J„„).

IH. EVALUATION OF CORRELATION FUNCTION AND
CONDUCTIVITY TENSOR

For the evaluation of the correlation function
one has to use the canonical ensemble rather than
the grand-canonical ensemble characteristic of

H, = p Juana„(B —(B~&)2
nm

where Z~ = X;u;K(d; is the polaron binding energy
and

B e„x=p r«]t .[(e u""—e """)2!—H. c.]I,~n

a

(2)

(B )=expI-2Z«;sin [2 ~ (r„—r„)/2]
i

x cote(PI!u; /2)I,

the standard temperature-diagram technique; in
addition, one must project out the contributions
from the unphysical states representing cases
where none or both of the sites (n, m) are occupied.
This may be achieved by adding to the physical
Hamiltonian (1) Abrikosov's "projection" Hamilto-
nian H„=]].Z„at a„, multiplying the correlation func-
tion by a factor e~" and then taking the limit PX- ~.
One thereby has for the correlation function of (4)

Z,oZoe~
F„,(u) = lim

BX«

Trn(s-n(& ),&Te«& &B)p s n«&),-)p $

p

where Z, Zp are the canonical partition function
of the total system and the unperturbed partition
function for the phonon system, respectively. The
symbol Tr* means that one sums over both physi-
cal and unphysical states. Z~ is the unperturbed
canonical electronic partition function including
the projection Hamiltonian (i. e. , Z„=Tr*e @"o'")t]).
It can be readily seen that lim» „Z„=1.

The most important contribution to the correla-
tion function arises from a series of "ladder"
diagrams such as shown in Fig. 1. The solid
(broken) lines are full electron (multiphonon)
propagators and the wiggly lines are external field
lines.

At this point it is pertinent to state that, in the
treatment of Aldea, only the first term in Fig. 1
was retained. However, it is well known that all
terms in the ladder series are equally important,
because, as will be seen explicitly in Appendix B,
each rung introduces a factor J„„(B ) /I&o or
J„(B ) /I'& (j= m, n), whichever is smaller due
to the overlapping resonances of the electronprop-
agators. In view of the remarks of footnote 9
this is of zeroth order in the interaction strength.
Therefore all of the terms in Fig. 1 should be
considered. Physically, as will be seen later in
Eq. (15), the series of ladders give rise to the
scattering-in term in the transport equation.

For the multiphonon propagators we will use
"bare" propagators given by the unperturbed ther-
modynamic average:

D n](u)= (T(B n (u) (B~)) (Bnm (Bnm))0

=(B ) Seep Zpu;s' [2. ( „— )/2][ otn(22;/2)co«op;u-sin«pe;u] —i],
-i

(6)

which upon Fourier transformation and concomi-
tant use of the weak-coupling approximation re-
duces to

((d 2) = — D' '(u) e""'du = —Z(o 1 yg

p P q+ SQ)q kQ) g

y;—= 4u;(B~) sin q (r„-r„)/2,
where (d, = 2sil/ P(l = integ'er) and subscripts are
dropped from the phonon propagators due to sym-
metry with respect to interchange of site indices.
The full electron propagators are given by
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n, f ,n

g+fi(u+ ———— +m]' « ~t l m, f ~

1~0

/I
I
I

FIG. 2. Lowest-order
electronic self-energy
part.

&n &n

FIG. 1. Ladder diagram contribution to the correlation
function.

ni, i

1 ~QCg

(Ta„(u)a„)=
P

Z
&

E&0&

where

(21+1)&(i
P

(l = integer),

The above thermodynamic average for the electron
propagator includes the effect of the unphysical
states as well as the projection Hamiltonian.

The main contribution to the self-energy part
G„(g,) arises from the diagram shown in Fig. 2,
and is given by

G 1 =Z'v'- 1P
n ~&) ~nm ~ ~a

[g + (g g )] [~ E(0&

the l' summation can be performed according to

where one defines PIf(d «1, PI'„«1. (12)

f (x) = (&„1, N(+ x) =() 1 1

The integration contour 1" is shown in Fig. 3.
This can be deformed into I'0 using the fact that
the residues at phonon poles vanish. The result
of the integration is given by

In Appendix A we show, using the second condition
of (12), that the derivative of the electron self-
energy part is very small except for some weak
divergences (inverse-square-root type) arising
from the Van Hove singularities in the phonon den-
sity of states, i.e. ,

I p f' '(E")+N(+I(d&I)
n & nm Pl g +(g

g g yg N(+ K((&g)"";,5(d;+(0, —E")

-=G(C E")- (10)

where the second equality is due to the fact that
lIX-~. In(10), therenormalized energyE" is given
by E" -E„'O' -M (E~) =0, where the real part of the
self-energy M„(f) is defined by

—G(l'~iO) «l.8

8&

(z t+t)
II i

I
1

I I &

I

I

Ii&Ii~0
Im(=0

(13a)

G „(E"„viO) =M „(E"„)+ iF„(E"„)= M „siI' „

(I(= m, n). (11)

Because the self-energy is a slowly varying func-
tion of energy at P=E'„„& [cf. Eq. (13)], one has

Experimentally one has
FIG. 3. Contours I' and I'0 for the evaluation of the

electronic self-energy part.
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In particular,

(13b)

To evaluate the ladder series, it is convenient
to define the external-field vertex parts (A) ac-
cording to the diagrammatic relations shown in
Fig. 4, and given by

(14a)

J' D&0'(L, L—,) A..(L, ~, L &
~ +}«.)

mn( & s &+ r) ~ [t E&0) G (t }][g +g&d E& ~ G (f, +I'&d )]
(14b)

The l' summation can be performed according to
(9). However, the integration contours I', I'0 are
given in this case in Fig. 5. In Appendix 8, Eqs.
(14) are evaluated and the result analytically
continued to the real axis is given by the coupled
transport equations,

2F„—«@~=yn+ "
(@ n

—@nnh

(15)

where one defines

iffA (E"„—i0, E"„+R&o+i0) p=m, n.
(16)

In the above derivation use has been made of (12)
and (13). It is seen in (15) that the ladder series
give rise to the scattering-in term.

The correlation function is then given by the
diagrammatic relation shown in Fig. 6, which can
be written as

The evaluation of (17) is given in Appendix C. The result based on the assumption of (12) and (13) and
analytically continued to the real axis is given by

0

&,„(I«+i0)= ~ Z (x„pe "~ o'(i7&&dC„„+y„)+is~I(dC „„e"'~ a&')

Z e 8&. s&&+& )/a a~1
(

Z2kT coshP4E/2 (18)

where, as noted before, E& is the polaron binding energy (negligible in the weak-coupling regime), and e „
is the renormalized electronic energy given by E"„=a„-E~+X[cf. E&l. (8)]. One notes that the above re-
sult is independent of the choice of the origin of the coordinate. Using'a Z/Z~=e~"~ a& '+d a&'~ a&' (—=Z, ) and
inserting (18) into (3), one obtains finally

ne )r„-r ) cos eI' (K&d)'-ia&dl'
4KkTcos PAE/2 (K&o) +I' (19)

where 9 is the angle between the direction of (n, m} and the external field. One notes that (19) coinicides
identically' with the expression derived by Pollak and Geballe "in a semiclassical way (cf. Ref. 1, left-
hand column of p. 1750).

As already mentioned, the approximation of Ref. 2 corresponds to retaining only the first diagram on
the right-hand side of Fig. 4(a), discarding the rest of the diagrams with rungs in Fig. 4 (see the diagonal
term in E&l. 6 of Ref. 2). Algebraically, this means setting A =y„and A =0 in (14). The correlation
function is then given by

es' —1 &ff Jn
s,- Z. ~ 0 &

[t'& —E'i"-Gn(f&)ll4+ff&d. E'i' —Gn(f&+g&d-. }]
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which upon summing on f, and analytically continuing to the real axis yields

Hence

(If + i0) = lim —Z
Z, „S(g)+ 2iF„

ne~ a(sf &-)(Zi)/egi) 2r„(5 )~

g „y"™z, ya )'+(2r„)' ' (20)

Choosing the coordinate origin such that r„+r = 0 and defining r = r„-r, one finds

ne~ ~ t cos 8 . e~ —8f' '(Z„)l 2r„(jf )'
„„z, sz„" &~ (a~)'+(2r„)' '

The above result is equivalent ' to the "indirect" absorption term in Eq. 11 of Ref. 2 apart from the factor

in the bracket, which, if one does not project out the unphysical states, would be replaced by —sf ' '(&„)/e~„.

The cosine factor was incorrectly omitted. We note that (20) is not even invariant under the transla-

tion of the origin of the coordinate.
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APPENDIX A

P N(x') N(- x)
(A2)

4 —ig0+x (—ig0 —g~ ~ ~

(A1)
After taking the angular average and using the
Debye approximation, '

y; is a function of fre-
quency, i.e. , Y;

-=z(jf&o;). Introducing the phonon

density of states n(R+;), (Al) is rewritten as

In this appendix we study some properties of the

electronic self-energy part. This is given by (10),
which may be written as

G(~,„0) p +'Yr&„„N(+bur;) („1)
& —i&0 a L)~

Defining

G(t' —iq0) = M(f) +ivlr(f),

one obtains

r(t')=-v J„„n(f)r(L')N( 0), -
t' & 0 (phonon emission)

r(f) =v Z' n( L) r( 0)N( --L), -

f & 0 (phonon absorption)

(A3)

(A4)

and the Kronig-Kramer's relation

V.
&n

(a)
&n

(24+ 1)
GL

g V

I„I
I
I

I, ,
l

a)
Imp =0

(b)
Yn

/I II
I

y Y

I
I
I

I

Im(g+4cu, )=0

FIG. 4. Diagrammatic equations for external-field
vertices.

FIG. 5. Contours & and I'p for the evaluation of the
external-field vertex.
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Fxy (a~„)= elm
2', Z'„e'"

(n,m)

+ "'A

e -1 1
= P ))) PAZ

P 00

(t' —x) dx, (A9)„dx e ~-1-'

Yn

FIG. 6. Diagrammatic expression for the correlation
function.

where S(x) is artificially introduced to insure that
the phonon density of states vanishes beyond a
certain upper limit. Therefore S(x)-1 for x&x~
(Debye energy) and S(x) decays to zero above
x-x&. The integral is expected to be of order
unity. Therefore if PRE is not too large,

(A5) 8M(g)
B(

(Al0)

To estimate the magnitude of the derivative of the
self-energy, one assumes n(x)=C, x, y(x)=Ca/x
(C, , Ca= constant) in conformance with the Debye
spectrum and in view of the definition of u;" given
in the text just prior to Eq. (1). Then in view of
(12) and assuming SPAZ~ not too large,

ar(t') es —1 8 y
B( PhE By e~ —1

(for all y), (A6)

'
(&) PI' &, PI' «P,

where y = —P f, ~ =E„-E~ . In particular

In particular

8M(Z" —Z„")
BEjt

8M (E —E"„)
BEx (Alla)

Furthermore

8'M(Z". —Z„")
BExz

m

B2~ E)t8 M(Z E )
p (Allb)BE)t2

The above estimation of the derivative of the
self-energy is not correct at some points of 5

where one actually has weak divergence. These
arise from the Van Hove singularities in the gen-
eral form of the phonon density of states n(x) which
is given, for example, near a typical singularity
x-=xo~ by

ar(z". —z'„)
BEA

r(zx Z)))
BExz

m

The derivative of

er(z" -z„')
BEx

amr(zk Ex)
BE„

)a" «P

real part is given by
*"

[dI'(x)/dx]
f —x

(A7a)

(A7b)

(A8)

n(x) = n~+ C, (x -xo)'t (n, , C, = constant).

Hence from (A4) and (A8),
(A12)

ar(x) 1 8M(x) 1

ex (x-xo)" ax (xo-x)' '
'(AI8)

which diverges at x= xo. However, usually xp
» AE and (A7), (All) are always valid.

APPENDIX B

In this appendix a derivation of (15) is given. As already explained in the text, one can replace the l'
summations in (14) by integrations, introducing a contour I' and then deforming it into I'o as shown in Fig.
5. Here one assumes that A(t', t+h&u„) is continuous over the whole complex plane, with exception of two
cuts Imf =0, Im(t'+h&o, ) =0, as can be proved a posteriori. By using (7) and by analytically continuing to
the real axis, one thus obtains for (14)'~

dd P„da f'' '(d')+N)+std;) f' ')) +K )+N(+R;) 'I

[g' E '„O' G „(t' —i--O)]-[-L'+K+ —E&„'—G „(1'+8++-iO)] 2vi
a dO

~ ~

~

~

[f ' )(g'+R))+N(ak(us)] A „(f' -iO, 5-'+K(o —iO)
[t'+ iO —5

'
+ Kg g] [f' —E '„„'—GT, (L' —iO)] [-f' +R(o —E-'„~' —G-„(i," +hco —iO)]

[f' '(f')+N(+Kcog)]A~„(L'+iO, '
(+K(o +iO)

[t' —iO —f' + ji(g~] [t' —Ep„' —GT(k'+iO)] [0' +K(o —Z~„' —G „(L' +R(o + i-0)]
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8 oo dpi
A„„(t'+i&&0, f+lio&+i&&0)=y„5„„+ . Z +'Yo J„~

2g z

ff' '(1') f-' '( 1' +t&o&)] A „„-(0'-i0,0'+go&+i0)
[I+i)0—f'+Ko&;] [I' —E-'„' G-„(W-' —i0)] [I'+K &o—E-'„„'—G „(L-'+I&o+iO)]
""d4' + +r&fJo ff' &(f'+go&)+N{+Io&o}]A„„{L-'-i0,4'+bio& i—O)

2«i;, (+i&&D —I'+Ko&o [I' —E-'„„'—G „(I-' —i0)] [I'+So& -E~„'-G)(f'+go& —iO)]
~& ~00

I f '(k') +Nb Fog&)] A.„(I-' +i0, 0'+}Io& +i0)
[O' E '„-„' —-G „(0-' +i0)] [t'+tfo& E '„-„' --G „-(0'+I&o +i0)]

where (p, , p) = (n m) or (m, &&), q= +1. In the above derivation use has been made of the relation f' &(t'

+%a„)=f (P ). Noting that the dominant contribution to the integrals in the above equations arises from
near the resonances (i.e. , f' - X.}one can drop the Fermi factors. Therefore one obtains, using Eqs. (10)
and (A3),

""dL' 2ii'(0 —l') A~(g' —i0, i'+go&+i0)
2 i [I' —E' ' —G (g'-i0)][I'+}Io& E' '-G(t-'+I +iO)]

dI' G(t' — I'+i 0)A „(I'—i0, 'I+}Io&—i0)
2&&i [I' —E' „' —G (I' —i0)] [0'+So& —E~' —G (I'+}I«& —iO)]

G(I —f ' -iO) A (I' i+O, I' +No&+iO)

f I' —E'o' —G (1'+i0)] [I'+lfo& —E' && —G ( I' +}fo&+i 0)]

t " dI' 2il'(t' —t') A„„(f' —iO, t' +R o&+iO)

2&&i [O' —E„'„'—G„(I' —i0)] [E'+So E„'„'--G„( I' +%o +i0)]

1" dt' G(f —I'+i0) A (g'-i0, L' +5 &o i0)—
„„2&&i [ L' —E„'&",

—G„(k' —i0)] [0'+f&o& —E&P —G„(g'+ So& —iO)]

G(I —I' —i0) A(I' i+0, 'I+ I&o+i0)

[0' E„'„'—G„(—4' +i0)] [I' + I'& —E„'„'—G„(I'+Ko& + i0)]

""dg' A „(I' -iO, 't+h o—& iO)
A (t'+iq0, 0+So&+&g0)=y„+

2
. G(t' — t' +iq 0) [I E&o& G (I;0)][I+g~ E&o& G (I +}I~ iO}]

[I' —E'&, —G (I'+iO)] [I +ho -E~„G(I'+-}f+o&i )]0

df' A„„(t'—i0, I'+So& —iO)
A~(I+i&&0, I+}fo&+i&l0)= . G(I —I'+i»0) [, &o& (, "".

)][,'
&o& (, .

)]

A„„(L'+i0, I'+g«&+iD}
[O' —E„'„'—G„(I'+iO)] [1'+}Io& —E„'o' —G„(I'+So&+iO)]

First of all, to solve (B2c) and (B2d) one uses an iteration method. Namely, one assumes that the sec-
ond term of (B2c) is very small and sets A~(5+i»0, 0+%v +i»0) =y„ in (B2d). Then one substitutes the ob-
tained value of A„„(I+i»0, L+ff&o+i»0) into (B2c), etc. It will be shown that the series converges rapidly.
Thus

oo

y„'A„„(f+i»0, 0+}fo&+i»0)= . G(t —L'+i»0)
71~

1
X' I (0)[f'-E~ G„(f' —iO)] [-f'+So& —E„„—G„(f'+go& —iO))

&o& I, ( $0 iO)

For the quantity in the curly bracket, one introduces the identity

1
[O' -E~& —G„(C' +iO)) [I' f+&Eo&„'„'—G„(g' +f&o& +iO)]
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1
Std O' —Z,' '-G„(( v'i0) ( +'%a —Z„' '-6, (('+))td v(0)I

One then approximates, using (10),

(I/%o) [G„(g'+R(o+i0) —G„(L'+i0)]
[t,

" —E„'„'—G„(L' +i0)] [1'+R(i) -E ~()
)- G(t'+R(dviO)]

[G„(L'+K(d vi0) —G„(t,
"

viO)] =, G(f' —E"„viO) (86)

In Appendix A it is shown that the above quantity [right-hand side of (BS)] is very small (compared to unity)
except for some weak divergences (inverse-square-root type) arising from the Van Hove singularities in
the phonon density of states. Actually for the case when Sz-G„, the left-hand side is always smaller than
unity and we are overestimating this value near the divergences by the above approximation. This kind of
divergence appears throughout the calculation. However, we will demonstrate in the following that the con-
tribution (Af) from said type of divergence is negligibly small; the total contribution (defined as I) from
the last term of (84) to (83) is given by

(86}

As shown in Appendix A, one has, in the vicinity of the divergence,

, G(L -E -i&0)((, ). . .~q~, &«(&0~@~ (&~A =Debye frequency).-1
8&' ~E -& +x,~

(87)

Since the quantity multiplying SG(t,
" -E" +iO)/St' has no singularity over a sufficiently large range (of order

dE = E„"—E"„}n—ear the divergence, one estimates

1( 8 8) ((1
Xo

(86)

where G&, Gz, Gz are values of the self-energy at intermediate, upper limit, lower limit of the integration
range. Therefore in view of (A6) and (A10) one can neglect (86) or the last term of (84).

To calculate the contribution from the first term of (84), one changes t,
" +K (d '(for -the second term in

the curly bracket, obtaining

y„A (1'+iq0, f+k(d+igO) = . —[G(f —L +iqO) —G(L —5(o —1' +i@0)]1
'" df' 1 I ~

27/ t SQ)
4

('-E„',"—G„(i' —iO) Z(„'," G (+ o()-Ii„

sL 2 [t' E„'„" M-.(f.')]'-+ r„(t,"}' '

Approximating

(89)

one obtains

y„'A„„(L+iq0, ) +5(d + i@0)= ——G(t; —E„+iq0)= „G(t; "„Eiq+O .}-
8f " 8E"„ (810)

It is to be noted that the approximations leading from (83) to (810) are equivalent to the replacement'8

1
[1' E„'„)—G„(L' v -i0)] [L'+I(d —E(p —G„(f'%)+v iO(),] 8 $' f' —E„'„'—G„(t' + iO)

Turning, now, to the evaluation of (82c), one has from (810}and (811}

~&~g g'-E"„+6, „. B11
& -En
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ao I

y„'A„„(t'+igO, t+ I'ur+iqO) = 1+ . G(t' —i, "+i)70) — „M(t' —E„"),5(f' -E")2'
()0

82
=1+ „G(g-E~+iq0) „M(E„-E )-G(g-E +iqO) ~ M(E~-E"„)

~

~

1
+ „—+ )

—O', „G(t.—t'+zq0)I'(g' —E„")df'. (B12)] ~

To estimate roughly the order of magnitude of the last term, one assigns a typical value to G(4' —i; —iq0)
-G(E"„—5 —iqO) and then takes this factor out of the integral:

—+ ~ G(f -E +F0)—,„" df' = — „—+ )p ~(G(i; —E +iq0)M(E" E„"))-.

~ ~

~

~

~

~

~

Therefore this term is approximately of the same order of magnitude as the second and third terms, and
can be discarded (as being of the same order). Using (12) and (Allb) one further neglects the third term
of (B12), obtaining

y„' „„(i;+iqO, 1 +K&o+iqO) - I-
~ M(E„E„') -„G(f E" +iq-0). (B14)

The right-hand side of (B14) should not be taken literally; it represents only the order of magnitude of the
terms in question. Terms generated by one more iteration are smaller by a factor of sG(E„"E~+f0-)/sE~.
One also notes that in view of (A6) and (A10) the right-hand side of (B10) and (B14) are small except for
some weak divergences already discussed in Appendix A. However, as demonstrated, these divergences
are quenched by the large denominators of the electronic propagators (which become off resonant at these
divergences), and are therefore not significant for the purpose of intergrations. In summary, the solu-
tions of (B2c) and (B2d) are (to order of magnitude I'/kT or better)

y„'A~ (g+iqO, t'+k(o+fqO) = 0,

y„A„„(f+fq0, 1'+ff++iqO) = 1.
(B15)

We are now to evaluate (B2a) and (B2b). In view of (B15) and our previous discussions leading to (B15),
we can drop the second integral of (B2a) and (B2b). To evaluate the remaining integrals in (B2a) and

(B2b) one approximates in accordance with (B10):

1
[O' -E'„„'-G„(C' —iO)] [f'+h(u -E'„~)—G„(K'+K(@+f0)]

1 1 1
i(~ —G„( (+ iioi+ ()0+ G((—i0) I

'E'"—(: (( ' —-(0„), „+'I(io -(Z'„", ( (+K(a+ )}(0-
2vi6(f' —E"„) 2vi 6(f' E")—

K&()+G„(E"„—f0) —G„(E"„+K()+fO) h(()+2iI'„

where the last approximation is due to (A6) and (A10). Therefore one finds

A„„(f—iOK+K, (() +iO) =y„+ 2r(t —E'.)

A())))(f —iO, t'+5(() +f0) = " 4'(I),
2r(g -E"„)

(B16)

(B17)

where 4)~ and C„„are defined by relation (16). Eliminating the A's on the left-hand side of (B17), one
has [with I'„—= I'(E"„—E"), I' = I'(E —E„)]

(
2r„2r„—&+ + C'nn = Xff + C'ffff ~

21 2I'
—ZQ) + C'nfl g C'nn t

(B18b)

(B18b)

which are obviously equivalent to (16).
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6S1

In this Appendix (17) is evaluated. One performs the I summation by replacing

and then deforming the contour I' into I'0 as shown in Fig. 5. The one obtains

Z, ei" ['" df' I f' '(t') —f' '(f+g )]A„„(f iO-, C+R[d+i0)
Z ~ '

"J 2vi [L —E„']„'—G„(t —i0)][ t+K[d E„'„"--G„(i; +fl [d+i0}]

f' '()+bed)A„„(f iO-, 1+5[d—i0) f' '(1') A„„(g+i0,f+K[d+i0)
[f —E„'),' —G„(f—i0)][t'+5 [d—E„']] G„(f'-+5[]]—i0)] [L -E„'],' —G„(f +i0)] [0+k[d-E„'„'—G„(k+K[d+i0)]

A' [f '(N) —f '(L+Ka&)]A (t'-iO, f +K&u+iO}

2vi [L —E„'„'—G„(L—iO)] [f +K[d -E~~' —G (I'+h[d +i0)]

f' '(0 +S(o) A„„(5—iO, g+K[d —iO) f' '(f)A„„(g+i0, t+K(o+i0)
[ [Z' ' —G ([—i „) 0[ ]+]If+ —Z', ' —G L[+If td— iO)] [ [Z' ' —G (+[i0„)][K +Kid E' ' —G ( E]w+i0)]

(Cl)
Using (B15) one simplifies (Cl) as

Z, e~" "" dt' [f' '(g) --f' '(t'+h[d)]A (g -i0, $ +5&]]+i 0)

Z „„"„2+i [f -E„'„' G„(f--i0)] [f %+o E„'„'—G-„(k+k&o+i0)]

(-& t. 1

l([g —}I E„'„'—G-„(i:- k(o - i0)] [L —E„' ' G„(f-—i0)]

1

[ f +gg E„'„'—G-„(f K+[d i+)0] [t —Ei„'—G„(L+i0)]

"" [fL [f (0) —f' '((+K(o)]A (0 —iO, 1+5 [d+iO)

2vi [ 0 -E~+' —G (k iO)] [0—+5~ E„~' G—„(L+%—o+iO}]

The most important contribution arises from the resonances. Although the contribution from 0«]]. (i.e. ,
j;- finite) appears to be more important (due to the Fermi factors), this will be shown to be negligible at
the end of this appendix. Thus using (16), (Bll) and (B16), and approximating to the lowest order in Pk~, '

f (-)I (@)ty
yfl Q, -j5(e~ sp)

[f'-'(E"„+~)—f '-'(E"„)]/W

one obtains

zo
F,„(%o+i0)= —~ Z {-x„[iP&pe„„e + &'+ f[[y„e i'+ &'] -ix Pk&u@ e "~ &'], (CS)

In the above e„ is the renormaiized electronic energy given bye'"„=e„-E~+a [cf. Eq. (8)]. Inserting the
solution of (15), namely,

into (C3), one obtains

y„(I —2r /i7f&) —2r~„/i7I~
@Ntl .g p y @t&f (C4)

zo
F,„(8'[d+iO) = —~ Z . {2z„y„I'„e i"~ &' —2z„y„I'„e '+ &'), (C 5)

which in view of the detailed balance condition I'„e i'~ = I'„e i'" leads to (18).
It remains to be shown, however, that the off-resonance contribution from f «X is negligible. To show

this one substitutes (B15) and (B17) into (Cl) and rearranges terms:E,.o 4
Zoea ~ „' dk (2/K}[f()(k}-f()(4+K~)lr(k-E'-}4-
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y„f '-'(&) 2ir(& —E')
f+fi(g -E„'f' -G„(i;+if(g+io) [L -E„'„'—G„(f-io)] [L -E„'P G„(L+io)]

y.f' '(L+&(o) 2ir(0+I& -E")
L —E~t' —G„(f—io) [f+S(o -E„'„' G„-(f +8'(o —io)) [5 +t(o —E„'t' —G„(f+So +i0)]

~ ~ ~ ~
(2/]f)[f ' '(L) -f ' '(&+Ito)lr(L -E.")C..'"" . 2 t [g E-~' G-„(g iO-)] [&+I~ E„"-„' G„-(g+n&+iO)]

The imaginary part of the self-energy, r(P —E"„)vanishes for E"„—f & xo due to the absence of the phonon
density of states. Therefore there is no contribution to the integrations in (C6) from the region g «X.
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