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Resonant Raman Scattering at the Critical Points of Semiconductors
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We formulate a theory of the one-phonon resonant Raman scattering of light in semiconductors.
Emphasis is placed on the scattering near the critical points. Resonance enhancement is found at the
saddle points just as in the case of the M() edge. The effect of the electron-hole interaction on the
scattering is discussed within the framework of the Slater-Koster interaction. An enhancement is
predicted near the saddle points. The treatment is extended to include the effect of metastable excitons.
Again an enhancement is predicted in addition to resonant scattering near the metastable exciton
energies. It is suggested that more careful experiments are needed in the III-V and II-VI compounds to
make contact with the theory.

I. INTRODUCTION

Resonant Raman scattering (RRS) is the enhance-
ment of Raman scattering cross section when the
frequency of the exciting radiation is near one of
the allowed optical transitions of the medium. A
theoretical description of RBS in semiconductors
was first given by Loudon for noninteracting
Bloch electrons. He described light scattering at
the Mo edge with the assumption that virtual inter-
mediate scattering states are free electron-hole
pairs. Early work on CdS by Leite and Porto
showed an enhancement of Raman scattering (RS)
cross section for laser energy slightly less than
that of the direct gap. The observed enhancement
was found to be more pronounced than predicted by
Loudon's~ theory.

A more complete theory was given by Ganguly and
and Birman, s in which they took into account the
interaction between electrons and holes. They con-
sidered hydrogenic excitons as the intermediate
states in the scattering process. The experimen-
tal results of Leite and Porto on CdS and ZnSe
were found to be in agreement with the theoretical
predictions of Ganguly and Birman.

Baman scattering measurements have also been
made at the nonfundamental gaps, such as the Ez
saddle point in III-V compounds. Pinczuk and
Burstein4 report measurements on InSb. They ob-
served a large scatterigg cross section with a He-
Ne laser whose energy is near that of the Ej edge
in InSb.

This work was extended by Leite and Scott, '
who measured scattering cross sections of InAs
and InSb using argon-ion lasers. They showed
that though there is an enhancement of scattering
cross section in InAs at E&-2. 5 eV, no enhance-
ment was observed in the case of InSb at Ej+&&
-2. 5 eV, the argon-ion lasers being operative at
2. 50, 2. 55, 2. 60, and 2. 65 eV. RS measurements
were also made on GaAs and InP by Leite and
Scott.' None of these materials were found to ex-

We first calculate the RS amplitude at the M~
edge in the absence of e-h interaction. The one-
phonon Stokes RS amplitude A(&g) is given in per-
turbation theory by

d'uA((o)-
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hibit any significant dependence of BS cross sec-
tion upon argon-laser frequency. In InAs overtone
scattering was observed near the Ej gap, while for
GaAs no overtone scattering was observed. This
is compatible with the fact that there is no inter-
band gap in GaAs near the laser frequencies used.
The absolute cross sections in GaAs were, in gen-
eral, very large. Leite and Scott~ plotted the scat-
tering cross section in InAs as a function of laser
frequency, and the resulting resonance curve was
compared with that obtained in CdS and ZnSe. The
shapes of the curves were found to be quite differ-
ent in the two cases. This shows that whereas
Ganguly and Birman's theory predicts correct re-
sults at the Mo edge, the behavior of the BS cross
section at the saddle points cannot be described by
their theory, since at a saddle point the exciton
is no longer hydrogenic.

In this paper we formulate an approximate theo-
ry of resonant Raman scattering at saddle points.
It is natural to emphasize the Van Hove critical-
point dependence of the BS and this is done in Sec.
II. Section III describes the BS amplitude at sad-
dle points approximating the electron-hole (e-h)
interaction by a Slater-Koster (SK) potential. The
Coulomb nature of the e-h interaction at saddle
points and its effect on the RS is discussed in Sec.
IV. Concluding remarks are made in Sec. V.

II. RAMAN SCATTERING NEAR THE CRITICAL POINTS:
NO ELECTRON-HOLE INTERACTION
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where ~ and ~p are the energies of the incident
photon and the phonon, respectively. The momen-
tum dependence of the scattering matrix elements
is neglected in Eq. (1). As a simple illustration
and to establish the procedure for the saddle
points, it is instructive to calculate the A(~) ap-
propriate to the Mp edge. Assuming parabolic
bands

-(1/~p)(&o, +~p-&o)' ' & &u, &o&&u, +~p (7)

+ (d + QP&+(dp ~ (8)

A constant-background density of states will only
contribute a constant term to the Raman amplitude.

We will now calculate the RS amplitude at the
Mg saddle point. In this case we assume

(o»= (g»+ kk /2m, (2)
(o» = (u, + (g/2m) (k,' —k,'), (9)
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p

dQ) g de
(Q)»+ +p td) (QJ» Q)) V»tg»

(3)

k being the total wave vector and (d, the band gap.
Then, Eq. (1}becomes

where k, is the wave vector in the basal plane, and

k, that along the z axis. Equation (9) has been put
in the above form to take into account the signs of
effective masses aloag the different principal di-
rections Ag. ain we can write down Eq. (3), i.e. ,

where

V~» = (8/m)k

&((o)-

where
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FIG. 1. Contour of integration used to calculate the
integral in Eq. (5).

dS~ = 4n'k

The integral

dS»

+aa
is the interband density of states, which is -(&»
—&,)'~ at the Mp edge. Therefore Eq. (3) be-
comes

(~» ~»)
(QP» co) ((0»+Q)p ~)

Taking the upper limit of the above integral to be
I k )

= ~, we can evaluate it as a contour integral
with the contour shown in Fig. 1. We find~

dS» = 2v(k»+ k,) I dk»

V,~,=(e/2m) (k', +k,')"'. (10)

For the present case, therefore, Eq. (3}becomes
~max

A((o}-
0

(CO»+ Mp &d) ((d» (0)
(k, —k, „).

From Eq. (9) we find that
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This determines Raman scattering for noninteract-
ing electrons in the neighborhood of the Mz critical
point. The RS amplitude near the M2 critical point
can be calculated in a similar way. In the neigh-
borhood of the Mg saddle point, Eq. (9) is written

(o» = (u, —(8/2m} (k',—k',}, (17)

because the effective masses along the principal

Since k, is a constant, the RS amplitude corre-
sponding to it, i.e. , the first term of Eq. (11),
will be a slowly varying function of (d near , which
we call C. Therefore Eq. (11) becomes

1/2d(d»(tdg M»)

((o»+ (op —(u) ((u» —a))

The above integral can be evaluated using the con-
tour shown in Fig. 2. The results obtained are
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A((g) "C+ (1/(gp) [((gg —(g)' ' —((g, —(g + ~p)'~']
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(22)
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Egnstions (21)-(23) describe the RS for noninter-
acting electrons in the neighborhood of the M2 sad-
dle point. The behavior of the RS amplitude at the

Mp, Mz, and M& critical points for noninteracting
electrons is shown in Figs. 3 and 4.

FIG. 2. Contour of integration used to calculate the
integral in Eq. (13).

=0 if rg)q& (g~,

(18)

(19)

and 4,. ~ is a constant. Then
~A @, d(d&(|d &

—Q7~)

((Op (d + hip) (&dp (d)
A((g)- C— (2o)

Integrating, we get

directions at M& have signs opposite to that of the
corresponding effective masses at the M, saddle
point. The Raman amplitude at the saddle point
Mp is given by Eq. (11), with
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FIG. 3. First-order Stokes-Raman spectrum of a
typical semiconductor (CdS) at the Mo edge. The dashed
line represents a fit to Eqs. (6)-(8) with ~~ =2. 6 eV and

coo=37 meV. The solid line represents Ganguly and
Birman's result with R' =28 meV.
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FIG. 4. (a) First-order Stokes-Raman spectrum of a
typical semiconductor at the M~ edge. The solid line is a
fit to Eqs. (14)-(16) for typical values in II-VI semicon-
ductors. The dashed line is obtained by evaluating Eqs.
(36)-(38), taking Igl =0.12 eV and K=1. (b) First-order
Stokes-Raman spectrum of a typical semiconductor at
the M2 edge. The solid line corresponds to the case of
noninteracting electrons. The dashed line is obtained by
considering SK interaction between an e-h pair. The
value of constant C has been chosen arbitrarily in both the
cases.
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III. EXCITON EFFECTS: SLATER-KOSTER INTERACTION

So far the interaction between electron and hole
has been neglected; i.e. , we have considered free
e-h pairs as the intermediate scattering states.
Ganguly and Birmans extended the calculation of
the RS amplitude to include the effect of hydrogen-
ic excitons at the Mp edge. Their theory is inap-
plicable to RRS near the M~ edge, since Coulomb
effects at the saddle points do not result in hydro-
genic excitons.

Several models have been given for the e-h in-
teraction at the M~ edge. The common feature of
these models is the truncation of the interaction
beyond a certain value of the e-h separation r. The
simplest of these is the SK contact interaction po-
tential V(r) = 6(r)g, which is zero except when the
electron and hole are in the same unit cell. This
model has been used to discuss the metamorphism
of the critical points due to e-h interaction dis-
cussed by Velicky and Sak and Toyozawa. Fur-
ther, ithasbeen usedtodiscuss Coulomb effects on
electroreflectance line shapes by Bowe and
Aspnes. In this case the result is model indepen-
dent, since the exciton binding energies are of the
same order of magnitude as the phonon broadening.
Therefore it is meaningful to discuss RRS at saddle
points within the framework of this model.

The SK potential in the k representation is given

r

A((d)- d k
((d p (d + (dp)((d p (d)

x[1+2lgl ReF((dp)], (29)

where real part of F((d) is the Hilbert transform
of N~((d):

+po

ReF((d) = N '(P, N, ((d') .

The RS amplitude at the saddle points can be cal-
culated by rewriting Eq. (29) with the help of Eq.
(11):

(30)
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Simple integration of Eq. (30) gives

ReF((d) —v((d —(dg) if (d & (dg
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for ReF((d) at the M, saddle point, and

ReF((d)- p(, —(d)'~'

(32)
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at the M, saddle point. Combining Eqs. (31) and

(32) one gets

&kl vlk'&=gN '5~ (24) A((d)-
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for all states belonging to a given set of valence
and conduction bands. N is the number of unit
cells per unit volume and g is a constant which
gives the strength of the interaction.

The RS amplitude at a critical point can be writ-
ten

A((0)- d k

( ) ( (f(d Ng&(d )
CO hl + &Q

(27)

Np((d') being the joint density of states For gF(.(d)

~
y~(0)~P

((d, —(d + hk'/2m) ((d, + (dp —(d + %'/2m)

(25)

Here Q'(0) is the envelope function of the exciton.
From Velicky and Sak~ we have

I
@'&0)I'= 1/ I

1+gF&~) I',
where
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for the Mi point. The values of k, „have been
taken from Eq. (12). We have already stated in
Sec. II that the integral

~ Sax
kg ~- C . (35)

((dp+(dp —(d) ((dy (d) ™~
The integrals on the right-hand side of Eq. (34) are
evaluated using suitable contours as before. We
arrive at the following results for an Mi saddle
point:

A(~)-C+ [&~, -~) -(~, -~+~p)2K)g) K i/2
COp
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For an attractive e-h interaction, Eq. (25) becomes lf Q) & Q)g + (gp (38)
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where we have replaced k, ~ by K. Similarly at
the M2 saddle point, we obtain

A(4)) C+ (I/(do) [(Qli M) ((dz (d + (do) ]
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The integral in Eq. (46) is simply evaluated as

v'W, l'"
1+exp-
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When the energy of the incident photon is near one
of the metastable resonant energies ~, —W„(0), the
Raman amplitude becomes

(d &+~+a)0 ~ (41) 16m((o)- o(2
'

1)o

IV. EXCITON EFFECTS: COULOMB INTERACTION

Coulomb interaction between an e-h pair at sad-
dle points leads to resonances or metastable
excitons which give rise to characteristic line
shapes in the optical spectra of semiconductors.
Metastable excitons are different in character
from the hydrogenic ones. The theory of the
metastable excitons is made complicated by the
nature of the energy surfaces and it is only re-
cently that a quantitative theory was given. ~ ~~

The envelope function for Coulomb effects at
the M& edge is

(42)

for the resonant states, where m, is the trans-
verse mass, and

I y(0) I'= e "/coshr (43)

for the continuum states, where

v( Wg(0)l
r((0) —

2( g g o (44)
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The RS amplitude, Eq. (25), becomes

16m~
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1
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The results for the M~ and M2 critical points are
compared with the corresponding ones for the non-
interacting electron in Figs. 4(a) and 4(b). By way
of comparison, Fig. 3 illustrates the difference in
the Raman amplitudes near the Mo edge for the non-
interacting electrons and hydrogenic exciton mod-
els.

1
[&g)~

—W„(0)—(g] [(g)~ + (go —W, (0) —(g]

(46)
The result is analogous to that obtained by Ganguly
and Birmans for the hydrogenic excitons and has
the same analytic structure; i.e. , the amplitude
diverges at the resonance. For photon energies far
away from the metastable resonant energies, the
Raman amplitude is given by Eq. (47).

V. DISCUSSION AND CONCLUDING REMARKS

The Raman scattering amplitude has been cal-
culated in the vicinity of the various critical points
and the results are plotted in Figs. 3 and 4.

As noted elsewhere, the Raman amplitude is en-
hanced when the energy of the incident light ap-
proaches that of the M~ edge. Hydrogenic excitons
are incorporated into the theory~ and again one
finds resonance enhancement near the discrete (ex-
citon) energies and near the continuum (Mo edge).

A similar analysis can be given for the M& edge.
For noninteracting electrons the results are given
by Eqs. (14)-(16), and are plotted in Fig. 4(a). In
this case one gets an enhancement of the scattering
as the photon energy approaches cot+ coo from the
high-energy side. A similar enhancement is ex-
pected as one approaches the M& edge from the low-
energy side. Typical resonant structure would be
found between co~ and u~+ ~go. The situation for the
Mo edge is similar and is given in Fig. 4(b).

Coulomb effects at the saddle points complicate
the situation considerably. Assuming a SK model
for the e-h interaction, the A(&) is given by Eqs.
(36)-(38) for the M& edge. The effect of this is to
reduce the enhancement near the edge compared to
the noninteracting case [see Fig. 4(a)]. This is
analogous to the smearing out of the singularity in
the real part of the dielectric function a~(up) near
the M& edge due to e-h interaction. Similarly,
the SK model near the M2 edge sharpens the struc-
ture [see Fig. 4(b)].

A more realistic treatment of the e-h interaction
leads to the existence of metastable (hyperbolic)
exciton resonances near the Mz edge. Typical
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resonant structure associated with these reso-
nances appears in the RS amplitude, Eq. (O'I).
This is analogous to the resonant scattering owing
to hydrogenic excitons near the Mo edge. In addi-
tion to resonant scattering, scattering due to the
continuum states takes place near the M& edge.
The problem is similar to that of the dual relation-
ship between the local and band aspects, which re-
sults in the metamorphosis of the critical points. '

The precise extent to which the singularity at the
M& edge would be smeared out would depend upon
the detailed study of the interference effect be-
tween the resonant and continuum states. The
resonant states would be modified to include an
antiresonance, whereas the Van Hove singularity
would be modified suitably. The qualitative trends
are, however, clear: the Raman amplitude at the
M& and M2 edges would be smeared out and sharp-
ened, respectively. Such effects may be masked
by broadening due to phonons, defects, and elec-
tron correlations.

The resonance enhancement in the RS due to dis-
crete and continuum at the Mo edge has been stud-
ied experimentally in detail, and the agreement be-
tween theory and experiment is good. The situa-
tion for the M& edge is less clear owing to the
paucity of experimental data. This can be remedied
only by more careful experiments near the M& edge
in III-V compounds.

The structure due to the metastable excitons in
the optical spectra of III-V compounds is weak, and
typically the binding energies are of the order of
magnitude of phonon linewidths. Consequently their
effect on the RS at the Mz edge is likely to be
small. Optical spectra of some II-VI compounds,
e.g. , CdTe, show prominent peaks due to meta-
stable excitons with large binding energies. RS
experiments at these energies would determine the
effect of these resonant states on the scattering
pl ocess.

The above remarks hold provided the momentum
dependence of the scattering matrix elements is
neglected in Eq. (1). This approximation is valid

if the dominant electron-phonon coupling is of the
deformation-potential type. ' It has been found that
there is a breakdown of dipole selection rules in
RRB when the energy of the incident light is near
that of the 18 hydrogenic exciton in CdS. This is
due to interactions which are lineax in the excita-
tion momentum q, so that the scattering amplitude
is proportional to qao, where ao is the radius of the
exciton. For CdS the radius of the 1s Nannier
exciton is 2S A, i.e. , qao = 0.15. The forbidden
scattering which takes place through momentum-
dependent Frohlich interaction, shows rapid en-
hancement for photon energies near those of large-
radius %Pannier excitons and result in Raman cross
sections comparable to those for allowed scatter-
ing. In this case, Eq. (1) must be modified to in-
clude the momentum dependence of the matrix ele-
ments. Away from resonance, forbidden scatter-
ing decreases rapidly and become small compared
to allowed scattering.

The situation for metastable excitons is similar.
For III-V compounds the exciton radius is large,
and so one might expect a large q-dependent for-
bidden scattering. In actual fact, owing to the
small oscillator strength of the exciton, continuum
scattering would predominate.

The situation for II-VI compounds is quite differ-
ent. Here the metastable excitons have large os-
cillator strengths and radii. For instance in
CdTe, '4 the exciton radius is 25 A, which is com-
parable to that of the 1s hydrogenic exciton in
CdS. Therefore, in this case a large q-dependent
forbidden resonant scattering is expected.

ACKNOWLEDGMENTS

This work was begun when one of the authors
(K.P.J.) was at the International Center for Theo-
retical Physics, Trieste, Italy. He wishes to
express his thanks to Professor A. Salam and Pro-
fessor P. Budini for their kind hospitality. Thanks
are also due to Professor S. Lundquist for
his interest in the work.

'R. Loudon, Proc. Phys. Soc. Lond. 82, 393 (1963).
'R. C. C. Leite and S. P. S. Porto, Phys. Rev. Lett. 17, 10

(1966).
'A. K. Ganguly and J. L Birman, Phys. Rev. 162, 806

(1967).
'A. Pinczuk and E. Burstein, Phys. Rev. Lett. 21, 1073

{1968).
'R. C. C. Leite and J. F. Scott, Phys. Rev. Lett. 22, 130

(1969).
6Y. Toyozawa, M. Inoue, T. Inui, M. Okazaki, and E.

Hanamura, J, Phys. Soc. Jap. Suppl. 21, 133 (1967); J.
Hermanson, Phys. Rev. 166, 893 (1968).

'B. Velicky and J. Sak, Phys. Status Solidi 16, 147 (1966).

SY. Toyozama et aI., J. Phys. Soc. Jap. 22, 1337 (1967).
J. E. Rome and D. E. Aspnes, Phys. Rev. Lett. 25, 162

(1970).
' J. C. Phillips, in Sohd State Physics, edited by F. Seitz and

D. Turnbull (Academic, Near York, 1966), Vol. 18, p. 125; K.
P. Jain, Phys. Rev. 139, A544 (1965).

"E. O. Kane, Phys. Rev. 180, 852 (1969).
"R. M. Martin, Phys. Rev. B 4, 3676 (1971); R. M. Martin,

in Light Scattering in Sohds, edited by M. Balkanski
(Flammarion, Paris, 1971), p. 25.

'3R. M. Martin and T. C. Damen, Phys. Rev. Lett. 26, 86
(1971).

' M. Balkanski and Y. Petrol, Phys. Rev. B 3, 3299 (1971).


