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The resonance aspect of chemical bonding is extended to solids with particular emphasis on
its consequences for structux'al and vibrational properties. It is shown, for example, that the
square of the infrared effective charge is pxoportional to the high-frequency dielectric constant
in xesonance-bonded systems. The IV-VI compounds and the group-VI elements axe shown to
exhibit the features of such resonance bonding. The dependence of resonance bonding on long-
range order is discussed with respect to differences in the properties of the amorphous and
crystalline phases of these materials.

I. INTRODUCfION

The physicist has traditionally sought a quantita-
tive description of the optical and electronic prop-
erties of crystalline solids in terms of band theory.
The recent work of Phillips and his co-workers,
principally Van Vechter, "has demonstrated the
applicability of a chemical-bonding approach for a
quantitative description of the properties of the tet-
rahedrally coordinated semiconductors. This work
emphasized one aspect of the chemical bonding, the
partial ionic character of the covalent bond between
dissimilar elements which was characterized
through an ionicity scale parameter f,. This is a
particular application of the more general concept
of resonance (sometimes called mesomerism ).
The purpose of this paper is to extend the concept
of resonance bonding to solids in general. We shall
show that it provides a useful description for under-
standing certain properties of solids, particularly
those related to structure. In Sec. II we consider
in more detail the relation between the electronic
and vibrational polarizabilities to be expected in a
mesomerically bonded system. Then, in Sec. III
we analyze the structure and infrared properties of
the IV-VI compounds and group-VI elements and
indicate how the concept of mesomeric bonding pro-
vides a natural explanation of certain properties
such as very large infrared effective charges '

and the linear relationship between the lattice and
electronic yolarizabilities. Specific models for
mesomeric bonding in these systems are discussed.

An important condition for the existence of reso-
nance bonding in solids is the presence of long-
range order. Therefore, we might expect materi-
als which exhibit resonance bonding in the crystal-
line phase to have different yroyerties in the amor-
phous phase. This is discussed in Sec. IV.

Resonance, as employed by the chemist, is an
attempt to construct a many-body wave function as
a linear combination of valence-bond configurations.
Although such a basis is neither orthogonal nor

complete, it provides a convenient qualitative de-
scription. Thus, if 4x and 4» are two such valence-
bond configurations, the ground-state wave func-
tion g is approximated by

1
2)1/ I (@K+ +@II) ~f1+a j

where the mixing coefficient e is determined by
oytionization of the binding energy. In extreme
cases where a is either very small or very large,
the most stable ground state is, respectively, I or
II. In the more interesting cases where a is of
order unity, the ground state of the system involves
both structures, i.e. , it is said to resonate between
I and II. The binding energy of the resonant sys-
tem is greater than either I or II; the difference in
energy between the ground state and the more
stable constituent structure is called the resonance
energy. Resonance is generally favorable only if
each of the constituent structures has the same
configuration of the nuclei and the same number of
unpaired electrons.

The most familiar bonding situation taken as an
example of resonance is that of the benzene mole-
cule~ CeHe The carbon-carbon distance in benzene
is 1.39 A which lies between that of the single-
(1.54-A) and double- (1.32-L) bond lengths. There-
fore, if one takes 4x and 4x& to differ only in the
location of the alternating double bonds, then one
can choose e to account for the "abnormal" bond
lengths. This points out one weakness in this ap-
proach; namely, by taking enough basis states,
one can always introduce a sufficient number of
adjustable parameters to explain a particular prop-
erty. In practice however, the number of basis
states can be restricted by energetic and symmetry
conditions so that this weakness is at least in part
overcome.

Aside from the structural implications of reso-
nance, i.e. , "abnormal" interatomic distances and
bond angles, there are other manifestations of
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resonance present in both the chemical and physi-
cal properties. These include very large polariz-
abilities, both electronic and vibrational, as well
as chemical properties that are different from
those expected from~ any one of the constituent
structures. A specific relationship between the
electronic and vibrational polarizabilities is de-
rived in Sec. Q.

x&g~.x(1)a(1)ps.x(s)p(2) ~ ~ ~, (3b)

where N is a normalization factor, 8 interchanges
spin functions, and I' permutes the orbitals. Here
4&,~ is a hybridized sP orbital. The primes refer
to the oppositely directed orbitals shown in Fig. 1.
As we indicated above, such a system is stabilized
by adopting a resonant state of the form

II. EFFECTIVE CHARGE IN RESONANTLY BONDED
SYSTEMS

1
2;xla (@x+xx@xx) ~(1+a j

(4)

Structure in the infrared ref lectivity is conve-
niently related to a Lorentzian oscillator model for
the dielectric constant. The amplitude of this
oscillator is characterized by an effective charge'
e~. In this section we shall investigate the effect
of mesomeric bonding on the infrared effective
charge. This macroscopic, or Born, charge e~~

is defined by

(2)

where I' is the induced electric moment associated
with the atomic displacement u. To calculate e~,
we shall consider a simple one-dilnensional chain
consisting of two different atoms per unit cell each
of which contributes one electron to a resonating
sP bond. This one-dimensional model does not
restrict the generality of our result. The only
essential requirement is that the optical vibration
affect one of the valence-bond configurations dif-
ferently than the other. The iwo basis states are
shown in I'ig. 1. Analytically these wave functions
have the valence-bond form

4, =N Z Z (- 1)"R(- 1)

x& Q~(I) n(1))ex(s)P(s) ~ ~ ~, (3a)

C'xx =NQ g (- 1) R(- 1)

&exlXleg=&e „lXlexx) =X„ (5a)

(5b)

Thus

E(xx) =X„+[2a/(I+ a')]Xxx, .

Minimizing with respect to a gives a „=—1 (a ~
=+1). Therefore ED=X,x-Xxm and we see Xx~ is
the resonance energy we mentioned above.

Now consider the case of an ionic displacement
characteristic of a long-wavelength optic phonon.
At any given instant of time, the lattice will dis-
play a pair-wise "bunching" of the iona. As the
ions move, the electrons will adapt to their instan-
taneous positions. This will lead to a redistribution
of the electronic charge. In order to estimate this
redistribution, we shall assume that the primary
effect of the displacement is to produce a change in
the potential seen by the electrons. This change
will be proportional to the dilatation which, in this
case, is xx/a and the coefficient of proportionality
is the deformation potential D. A square-well ap-
proximation of this strain-induced potential is il-
lustrated in Fig. 1. Note that we are neglecting
the actual displacement of the ions themselves.
The total energy now becomes

The coefficient o is determined by minimizing the
total energy. If 3' is the Hamiltonian in the absence
of any ionic displacement, this energy is E(xx)
=&/ lXlg). In this case symmetry requires
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FIG. 1. OneMimensional model of a resonantly bonded
system. The top two rows illustrate the two bonding con-
figurations between which the system resonates. The bot-
tom line shows the potential introduced by an optical pho-
non displacement with amplitude u, . Here D is the defor-
mation potential.

«~) =&qlX+&(sly) lq&

2e 1 —a u
+ 1+~~ g

Ks +

Minimizing gives

xy = [I.+ (gag/Xxmxx) ] —I7g/Xxgxx

Let us now calculate the dipole moment associated
with this redistribution of charge. If we wish to do
this by taking the first moment of the charge den-
sity without having to worry about boundary effects,
then we must choose the boundaries of our unit cell
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such that there is no polarization on them. In gen-
eral, such a surface is difficult to ascertain. '
However, in our one-dimensional case, symmetry
considerations suggest that z =+a are the appropri-
ate boundaries. The charge density within this cell
is

P =[(1-~')/(1+&')](P -P ), (10)

where P&,~ is the dipole moment associated with
the sP orbital. This shows explicitly that the mo-
ment is zero for a homopolar material. Using the
result (8) for a and the definition (3), we obtain

This result contains a number of interesting fea-
tures. First of all, it involves the resonance en-
ergy X». From a molecular orbital approach
based on the directed orbitals Q~, s plus the Mul-
liken approximation relating off-diagonal matrix
elements of the form (Q~ IX I ps) to diagonal matrix
elements and overlap integrals one can show that
the resonance energy is proportional to the average
energy gap E~. Therefore, since the optical fre-
quency dielectric constant of a semiconductor has
the form e = 1+ (Ku~/E~)3 this predicts that (e$)~- (e„—1):&o& is the plasma frequency for the va-
lence electrons. Since the dielectric constant
varies over a wider range than the other param-
eters in Eq. (11), we expect this relationship to
provide a strong indication of the existence of res-
onance bonding in an isoelectronic series. One of
the attractive features of this result is that it in-
volves parameters that have physical relevance
and can be determined experimentally. One could
derive an effective charge from, say, a shell mod-
el but the result would involve a set of parameters
which are model dependent.

Another feature of this result is that the order
of malmitude of this effective charge can vary from
a very small value to as large as several times e.
This may be seen by taking the case in which orbi-
tal A is a 6s6p hybrid while orbital B is a 3s3P
hybrid. For this case

P„-P~= 1 — ' —ea =- ea . 12F(n=3, l=l} 1 3
In=6, l=l 8 8

+ lel 5(r+~az)+ lelt|(r- 2«} .

Noting the axial symmetry, the dipole moment be-
comes

III. APPLICATION TO CRYSTALLINE SOLIDS.

A. IV-VI Compounds

The IV-VI compounds occur in three structures
at STP; the rocksalt (Nacl} structure, and rhombo-
hedral and orthorhombic distortions of that struc-
ture. We shall here emphasize the properties of
the NaC1 structure crystals SnTe, PbS, PbSe, and
PbTe. (GeTe occurs in the rhombohedral struc-
ture, ' GeS, GeSe, SaS, and SnSe occur in the ortho-
rhombic structure. )

If we consider the nonmetallic NaCl crystals,
then SnTe and the Pb chalcogenides have very dif-
ferent properties when compared to other materials
that crystallize in the same structure. For exam-
ple, the alk~L~ halides and and alk~»ne-earth ma-
terials are wide band-gap (& 3 eV) insulators,
whereas SnTe and the Pb salts are narrow band-gap
(& 0. 5 eV) semiconductors; the alkali halides are
very soluble in water, to the extent that they are
hydroscopic whereas the IV-VI compounds are to-
tally insoluble in water.

The interatomic distances in the alk~» halides
and alk~&~ne-earth crystals can be understood in
terms of an ionic mode1 in which ionic radii are
assigned to the constituent atoms and in which the
equilibrium spacing is determined primarily by
Coulomb forces. In Table I we compare the inter-
atomic distances in the Pb chalcogenides with those
calculated from the ionic radii. The agreement
is generally poor, in particular when compared to
a similar analysis of the interato~i~ distances in
the alkali halide crystals. In Table II we also in-
clude interatomic distances calculated from me-
tallic radii. In all cases, the crystalline inter-
atomic distance is intermediate between the two
calculated distances, the one based on ionic radii
and the one based on metallic radii. We have not
attempted comparisons based on covalent radii due
to the fact that the IV-VI compounds do not have a
sufficient number of valence electrons available
for covalent bonding at octahedral sites. If we
make an assumption at this point, that the bonding
in PbS is intermediate between ionic and metallic,
then the wave function has the form of Eq. (1)
where 4z represents the ionic state and 4zz repre-
sents the metallic state. The parameter e could

Material Crystal
M-X distance (A)

Ionic radii Metallic radii f I fit

TABLE I. Comparison of the crystalline Pb-chalco-
genide-atom interatomic distance with distances calculated
from ionic radii and metallic radii. fi is an ionicity de-
fined by Eq. (13); f&" is an ionicity defined in Ref. 14.

For deformation potentials of the order of 10 eV
. with gape of the order of 1 V or less, we find e f, /
e~4

PbS
PbSe
PbTe

2.97
3.06
3.22

3.04
3.18
3.41

2.54
2.67
2.87

0.86 0.77
0.76 0.72
0,65 0.63
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TABLE II. Comparison of nearest- and next-nearest-neighbor distances in the stable (STP) forms of S, Se, Te, and

bvo of the metastable forms of Se. Also included in the table are comparisons of d~ with bvice the normal covalent radi-
us, and d2 with twice the van der Waals radius.

Material

Orthorhombic S
Trigonal Se
Trigonal Te

o,'-monoclinic Se
Amorphous Se

Nearest-neighbor
distance, d~

(A}

2.06
2. 37
2. 84

2.34
2.34

Next-nearest-neighbor
distance, d2

(A)

3.50
3.44
3. 50

3.80
3.75

d2/d)

1.70
1.45
1.23

1.62
1.60

dh/2r,
r~= covalent

radius

0.99
1.01
1.04

1.00
1.00

d2/2r&
r~=van der Waals

radius

0.95
0. 86
0. 80

0.95
0.94

(ef,)' =a(e„—1) (14)

where a-1. This agrees with the result derived
in Sec II.

We have thus far shown that the NaC1 IV-VI com-
pounds display all of the "anomolous" properties
of a resonance system; i.e. , their properties are
not consistent with a simple ionic picture (very
small band gap and insolubility in water), their in-
teratomic spacings are intermediate to those cal-
culated from pure bond-type models, and their

then be used to define an ionicity. Or, equivalently,
one can define an ionicity, f„based on the inter-
atomic spacing in the crystal d ~, and idealized
spacings calculated from ionic d &» and metallic
cfog radii i ~ e.

N

f t dAB dAB
g~

These ionicity parameters are included in Table I
where they are compared with ionicities calculated
by Stiles and Brodsky. ~~ Stiles and Brodsky de-
veloped an ionicity scale f", for the ten-electron
(per atom pair) diatomic crystals that is an analog
of the Phillips-Van Vechten ' scale. The two ion-
icity scales, (f q, f ', ') rank the materials in the
same order, i.e. , the ionicity decreasing in going
from PbS to PbSe to PbTe, and are in relatively
good quantitative agreement. For SnTe, it is im-
possible to make comparisons of this sort, since
the ionic radius for Sn ' is calculated from the in-
teratomic spacing in SnTe.

It is well known that both the electronic (e„—1)
and lattice (e f, ) polarizabilities of the IV-VI com-
pounds are unusually large ' '; here c„is the real
part of the optical frequency dielectric constant and
e f, is the macroscopic infrared effective charge
which characterizes the strength of the reststrahlen
and is in turn proportional to the contribution of the
lattice modes to the static dielectric constant.
Lucovsky, Martin, and Burstein noted that in the
IV-VI NaC1 crystals, that e~- a.„; in Fig. 2 we
replot their results and find that the points can be
fit by an equation
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FIG. 2. Plots of the lattice polarizability (eg ) vs the
electronic polarizability (c —1) for the IV-VI NaCl crys-
tals and for trigonal Se and trigonal Te.

electronic and lattice polarizabilities are unusually
large and satisfy Eq. (14). Before invoking a par-
ticular model for the resonance bonding that is
suggested for these materials, we illustrate a sim-
ilar situation that prevails in the group-VI elements.

B. Group-VI Elements

Table II contains the nearest (d~) and next-near-
est (d~) neighbor distances for the stable (STP)
phases of the group-VI elements S, Se, and Te.
The bonding in these materials, in particular, or-
thorhombic S and trigonal Se, is frequently de-
scribed by a molecular-crystal model, wherein the
nearest-neighbor bonding is covalent and the next-
nearest-neighbor bonding is by van der Waals-type
forces. In Table II we compare dz with twice the
neutral atom covalent radius (2x,) and da with twice
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the van der Waals radiuse (B'„). Note here that as
we go from S to Se to Te, d~/2r, increases,
whereas dz/2r„ decreases, suggesting that the
nearest-neighbor bonding becomes weaker and less
covalent, and that the next-nearest-neighbor bonding
becomes stronger. This systematic relationship
between crystal interatomic spacings and calculated
idealized interatomic spacings ie again suggestive
of resonance bonding. In Table II we have also in-
cluded similar comparisons for two metastable
forms of Se, e-monoclinic Se and amorphous Se.
In both cases, the molecular-crystal-type descrip-
tion of the bonding is better than in the stable form
of Se, trigonal Se.

Figure 2 also contains values of (sf, )„and
(e„—1)„for trigonal Se and Te. 8 a power-law
relationship between (ef~}„and (s —1)„ofform
(14) is assumed, the proportionality factor a is
about an order of magnitude smaller than in the
IV-VI compounds. Preliminary measurements
on orthorhombic S indicate a small value of ef,
consistent with the trends we have identified in
Se and Te.

Pb (Ss'SP') = Pb'", (S,'),
S (3s'3p)4 = S' (3s'3P')

For this case, the S~ ion achieves the closed-shell
electron configuration of the rare gas argon,
whereas the Pb ' ion has a non-rare-gas electron
configuration. In the metallic picture, a resonance
or mesomeric bonding scheme is achieved through
incomplete occupancy of the six pair bonds between
each atom and its neighbors. In this picture,

Pb (Ss' Sp')

S (3s' 3p')

= Pb- (Ss'SP'),
= S'(3s'3P'),

where the P electrons from bonds between the 8 and

C. Resonance-Sondinm Model

Much of the description of resonance bonding in
these materials follows directly from the discus-
sions given in Ref. 7. As we pointed out in Sec.
III A on the IV-VI compounds, the crystalline inter-
atomic distances suggest that bonding in the IV-VI
compounds is intermediate between ionic and me-
tallic bonding. A similar conclusion concerning a
metallic contribution to the bonding in the IV-VI
compounds was reached by I ucovsky, Martin, and
Burstein from an analysis of the lattice dynamical
parameters, the elastic constants, and optic-mode
frequencies. In a resonance picture there are two
important structures to consider. One of these is
an ionic structure, Pb ' and 8; the second is a
metallic structure. In ihe ionic structure, Pb gives
its P electrons to S, so that

Se(4s 4p ) ( ~2)am

In the resonance picture of the bonding in trigonal
Se and trigonal Te, the second configuration is a
metallic structure in which an additional pair bond
is formed between next-nearest neighbors in ad-
jacent chains. These additional yair bonds have
the helical symmetry of the chain structure, and,
as in the IV-VI compounds, require long-range or-
der. In this resonance description, the creation of
Se ions (Se', Se ) is required. Paralleling the
resonance description in CO&, on a time average
all atoms are neutral so that the ionicity is dynamic.
The existence of dynamic ionicity in the resonance
picture for trigonal Se and trigonal Te does, how-
ever, help one to understand the dynamic origin of
the large effective charges in these elemental

Pb atoms for only three of the six neighbors located
in orthogonal directions. Since there is an ambigu-
ity as to which neighbor is chosen in these pair
bonds, i.e. , in the (100) direction whether it is in
the +or —sense, one must invoke a resonance con-
figuration which is achieved only in the presence of
long-range order. H we use a line (—) to indicate
pair bonds, involving, in this case, overlapping P
orbitals from neighboring Pb and 8 atoms, then we
have a description of the following sort:

Pb-8 Pb —S Pb-S = Pb 8-Pb 8-Pb 8 .
(17)

Since 12 electrons are necessary for pair bonding
at octahedral sites, the six-electron (or half-sat-
isfied bonding) description leads to a metallic
structure. As Krebs has pointed out this type of
resonance is not possible in SrS where the Sr atom
electron configuration is 58 . The resonance de-
scription implicit in Eq. (17) requires P orbitals
on both of the atoms; for Sr the use of these orbi-
tals is unfavorable since they are well removed in
energy from the other valence states of the system.
In contrast, for the IV-VI crystals, the occupancy
of P orbitals in both the neutral Pb and S atoms
favors a resonance pictu. e..

As was pointed out earli, er, the usual bonding
picture for the group-VI elements is one in which
the nearest neighbors in either the ring or chains
are covalently bonded, and in which the rings or
chains are held together in a crystalline array by
van der Waal-type forces. It is well known that
this description holds better for orthorhombic S
than for trigonal Se or Te. In the molecular-crys-
tal model, each of the chalcogenide atoms makes
iwo covalent bonds to its near neighbors and con-
tributes its remaining four electrons to lone-pair
orbitals. The two bonding orbitals and one of the
lone pairs have (approximately} sP symmetry, and
the second lone pair P symmetry, so that in this
yicture, for example,
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TABLE III. Comparison of bond lengths in crystalline and amorphous GeSe and GeTe.

Material

GeSe

GeTe

Bond length
amorphous phase (A)

2.35

2.6b

Bond length
crystalline phase (A)

2, 71(2), 2.70(1)~
2.95(2), 2.96 (1)

2.92(3)'
3.02(3)

Bond length
from covalent radii (Aj

2.37

2.58

Reference 20.
Reference 19.

R. W. G. Wyckoff, Crystal Stncctures, 2nd ed. Qn-
terscience, New York, 1963), Vol. 1.

crystals. "'"
In each of the examples given above, resonance

effects occur in situations where there are an in-
sufficient number of electrons to satisfy the orbi-
tals required for covalent bonding, i.e. , it occurs
in unsaturated structures and is therefore almost
a direct antithesis of the more familiar bonding
situations in molecules. In the molecular cases
where resonance occurs, there are usually too
many electrons present to satisfy pair bonding so
that the resonance occurs in the w rather than in
the 0 orbitals. s In the case of PbS, there are only
ten electrons per atom pair, whereas 12 are re-
quired for saturated covalent bonding. In the case
of Se and Te, the local site symmetry is that of a
distorted octahedron, so that 12 electrons per
atom pair are also required for saturation. There
are indeed 12 electrons available; however, their
symmetries are not matched to the orbitals re-
quired for octahedral coordination (d'spa). The
fact that Po occurs in the simple cubic structure
and is a metal rather than a semiconductor, sup-
ports this argument concerning the necessity of d
orbitals for covalent bonding at octahedral sites.

IV. APPLICATION TO AMORPHOUS SEMICONDUCTORS

In Sec. III we demonstrated the applicability of a
resonance-bonding model for an interpretation of
some of the properties of the IV-VI compounds and
group-VI elemental crystals. In each of the ex-
amples, the interatomic spacings could not be ac-
counted for in a simple way, i.e. , they mere inter-
mediate, in the case of the IV-VI compounds, be-
tween values that would be expected from either
purely ionic or purely metallic bonding. In Table
II we have included values of dz and dz for two
metastable forms of Se, e-monoclinic Se and
amorphous Se. In each of these materials, dz is
smaller than d& in trigonal Se, and d& is larger so
that the ratios d,/2r, and ds/2r„are closer to unity.
In effect, these metastable forms of Se are more
molecular than trigonal Se. In our resonance pic-
ture their metastability can be attributed to the
absence of resonance effects; i.e. , the additional
binding energy in trigonal Se results from the in-

terchain resonance. Since this resonance requires
long-range order, and a favorable geometric ar-
rangement of polymeric extended chains or molec-
ular units, it is indeed more pronounced in the tri-
gonal form. Tge resonance-bonding picture is also
consistent with other differences between trigonal
Se, and e-monoclinic and amorphous Se. For ex-
ample, the optical frequency dielectric constant in
amorphous Se is 6 and is smaller than that of
trigonal Se (7.7 for E &c axis and 12.8 for E I~ c
axis). The contributions of the lattice modes to the
static dielectric constant in trigonal Se are also
substantially higher (-factor of 100) than in amor-
phous or e-monoclinic Se.

In the IV-VI compounds similar differences oc-
cur between the amorphous and crystalline counter-
parts. In this case, the bonding in the distorted
NaC1-structured materials, e.g. , GeS, GeSe, and
GeTe, is a resonance stabilized covalent-metallic
system '" which leads to approximately three near
and three next-nearest neighbors. In the amor-
phous phases of these materials, radial distribu-
tion studies indicate interatomic spacings that are
substantially less than in the crystals. 9' In Table
III we compare the bond lengths d, for crystalline
and amorphous GeSe and GeTe. For the amor-
phous phases d, is approximately equal to the sum
of the covalent radii of Ge and the appropriate
chalcogenide atom. For the crystalline materials,
the two values of d& for each material are inter-
mediate between the appropriate sum of ionic and
metallic radii. The lattice frequencies of the Ge
chalcogenides also reflect the large differences in
the chemical bonding between the crystalline and
amorphous phases. We have studied the far-in-
frared reflectivity of a polycrystalline sample of
GeSe and have found a single very strong reststrah-
len band. The resonance (or TO phonon) frequency
is 160 cm ' and the contribution of this mode to the
dielectric constant is comparable to that of the TO-
phonon mode in PbS. Table IV contains the char-
acteristic Ge-S, Ge-Se, and Ge-Te vibrational
mode frequencies for the amorphous phases of these
materials as obtained by Hilton etal. They have
also studied alloys of Ge and the chalcogenide atoms
with other glass-forming elements, e.g. , As and
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TABLE IV. Comparison of the stretch-mode vibra-
tional frequencies of amorphous GeS, GeSe, GeTe, As2S3,
and As2Se3 with those of their respective molecular
analogs.

Amorphous
material

GeS
GeSe
Gene
As2S3
As,se,

Vibrational
frequency

v~(cm )

349
234
196'
309b
218b

Molecular
analog

GeC14
GeBr4
GeI4
As C13

AsBr3

Vibrational
frequency
v~(cm-')

453c
328c
264c
370c
275

vA/vG

0.77
0.71
0.74
0.84
0.79

'.Reference 21.
'References 22 and 23.
G. Herzberg, Molecular Spectra and Molecular Struc-

ture (Van Nostrand, New York, 1945), Vol. II.

Si, and have confirmed that these frequencies are
indeed characteristic of the bond-sQetching modes.

For amorphous GeSe, Hilton etal. report a reso-
nance frequency of 234 cm; this is substantially
different from our value of 160 cm ' for crystalline
GeSe. We have also studied a polycrystalline sam-
ple of GeS2; this crystal has the SiO~ structure in
which each Ge atom is fourfold coordinated and
each S atom is twofold coordinated. By comparing
our spectra for GeS& with those for SiO» we have
identified the characteristic Ge-S stretch frequency
to be approximately 335 cm . This is very close
to the frequency of Ge-S bonds in the amorphous
material as studied by Hilton etcl. and leads us
to conclude that the bonding in the amorphous Ge
chalcogenides is described by the four-two coordi-
nation that would be expected if the Ge and chalcogenide
atoms were bonded according to the rules of classi-
~cal valence chemistry. This argument for local
valence bond satisfaction can be further substanti-
ated by comparing the vibrational frequencies of the
amorphous Ge chalcogenides with the stretch mode
frequencies of the gaseous Ge tetrahalides. This
comparison is included in Table IV. Also included
in that table are similar comparisons for amor-
phous AsaS~ and AszSez and their respective molec-

,
ular analogs, AsCl~ and AsBr&. The comparisons
in Table IV are based on a molecular model
for the vibrational frequencies of amorphous chal-
cogenides. For the As chalcogenides, the molec-
ular unit is an AsX, pyramidal molecule (X= chal-
cogenide atom); for the Ge chalcogenides, the unit
is a tetrahedral GeX4 molecule. The comparison
of the stretch mode frequencies yields a ratio of
approximately 0.82 for the As compounds and 0.74
for the Ge compounds. The important aspect of the
comparison is that the frequency ratio is essential-
ly the same for the three pairs of Ge compounds,
and for the two pairs of As compounds. The ratio
is less than one due to electronegativity differences
between the adjacent chalcogen and halogen atoms,
i.e. , S and Cl, Se, and Br, and Te and I. For the

group IV-VI materials, the interatomic distances
and characteristic vibrational frequencies are both
consistent with a substantial change in the local
order in going between the crystalline and amor-
phous phases.

In summary, for the amorphous and crystalline
elemental chalcogenides, Se and Te, the major dif-
ference in chemical bonding is a change in second-
neighbor effects. In our description the change is
brought about by a loss of long-range order, and
hence the inability to achieve a resonance in the
interchain bonding. For the IV-VI compounds in
general, and for the Ge chalcogenides in particular,
the change in bonding between the amorphous and
crystalline phase has a more striking effect on both
the coordination number and the nearest-neighbor
bond length. For Se and Te, there is no change in
coordination number and only a very small change,
for Se, in the bond length.

V. CONCLUSIONS

We have used a bonding model to account for cer-
tain "anomolous" or special properties of two
classes of crystalline solids, the IV-VI compound
and group-VI elemental semiconductors. In each
of these cases a resonance picture was invoked
wherein there were two possible electronic con-
figurations. The resonance in each case requires
long-range order and in this way accounts for some
of the large differences in properties between the
amorphous and crystalline forms of these materi-
als.

It is important to place the bonding picture into
proper prospective with respect to a band descrip-
tion. In a band calculation, one starts with some
basis such as plane waves, atomic orbitals, etc,
and determines the energy as a function of wave
vector. From the resulting eigenfunctions one can
determine the charge density as a function of posi-
tion within a unit cell. The bonding approach rep-
resents a zeroth-order approximation to this spatial
distribution. If these two descriptions are to be
consistent, then the symmetries of the orbitals of
which the chemical bond is constructed must also
appear in the valence-band Bloch functions. Thus,
for example, if we have octahedral bonds of the
form d sP a band calculation might show d-like
character at certain symmetry points, P like and
s like at others. These zeroth-order hybrid orbi-
tals could also serve as a basis for a quantitative
band calculation. An example of this approach is
to be found in Chen's recent calculation for se-
lenium. ' Of course, if the calculation is carried
far enough the result should be independent of the
original basis. Thus a bond description is partic-
ularly useful for semiconductors and metallic like
materials where the concept of spatially directed
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bonds is well defined. In a real metal involving
nearly free electrons, such a description would not
be appropriate.

A final point concerns the use of ionicity scales
for the description of the chemical bonding in
solids. The Phillips-Van Vechtens 4 scale f &

and
the Stiles-Brodsky" scale f," base their definitions
of ionicity on the antisymmetric components of the
atomic pseudopotentials. They imply pure covalent
bonding at one end of the scale, f„ f", =0, and pure
ionic bonding at the other, f„fq =1. In our de-
scription of mesomeric bonding in the NaCl-struc-
tured IV-VI crystals, we used a model [see Eg.
(13)]wherein f&

——1 implied ionic bonding but fq = 0

implied metallic bonding. The point to emphasize
here is that there are three types of contributions
to the chemical bonding in solids: ionic, covalent,
and metallic, and that all three of these should be
considered in the development of "ionicity scales. "
There are instances wherein a two-dimensional
field may be adequate, e.g. , the bonding in the
group-VI elements can be discussed in terms of
covalent and metallic bonding where fq, the cova-
lency, is approximately one for orthorhombic S and
zero for Po. However, there are other systems,
e.g. , the distorted (with respect to NaCl) IV-VI
compounds (GeS, GeSe, GeTe, SnS, and SnSe),
wherein all three contributions should be considered.
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Interband electronic Raman scattering for excitations from the light-hole band to the heavy-hole band
in p-type InSb and from the valence band to the conduction band in n-type gray tin has been studied.
The effect of the residual Coulomb interaction between the Bloch electrons has been incorporated by
treating it within the framework of the random-phase approximation, and by including the vertex
correction due to the final-state electron-hole interaction. Both the effects of the Coulomb interaction

- are found to play significant roles in enhancing the scattering cross section near the thresholds.

I. INTRODUCTION

In recent years the intraband electronic Raman
scattering, in which electrons are excited by light
within the same band, has been studied extensively
by various authors. ' The effect of the residual

Coulomb interaction is usually included in such
studies within the framework of the random-phase
approximation (RPA). s It leads to the well-known
screening of single-particle excitations due to
charge-density fluctuations in degenerate semi-
conductors. In such a case, for momentum trans-


