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The effective-mass theory of shallow impurity states is given a pseudopotential formulation. A
first-principles pseudopotential is constructed accounting for orthogonalization to the impurity core
states, spatial dependence of the dielectric constant, and the spatial dependence of the core shielding.
Valley-orbit coupling is included, and a correction is made for the energy shift due to the deformation
produced by the size difference of the host and impurity atoms. A variational calculation is done for
the ground states of P, As, and Sb in Si, and good results are obtained for the lowest ground states

(4)) of P and Sb, poor results for As.

I. INTRODUCTION

The effective-mass theory of shallow impuri-
ties given by Kohn and Luttinger! agrees well with
experiment in the case of the impurity excited
states. >"® However, there is serious disagree-
ment between theory and experiment in the case
of the impurity ground states. The energy levels
as determined by far-ir spectroscopy, ' 13(0) 12
as measured by EPR, ® and also [y(¥;) I% as found
by electron-nuclear-double-resonance experi-
ments, %° are all poorly predicted by effective-
mass theory.

One of the difficulties with the effective-mass
theory is that it breaks down if the potential varies

rapidly. This is precisely what happens when one
tries to account for various central-cell effects, *°
as must be done for the ground state. Morita and
Nara!! have circumvented this difficulty in the
case of donors in Si by dividing space about the
impurity into two regions. In the outer region,
effective-mass theory is valid and in the inner re-
gion the complete Schrédinger equation is used,
rather than effective-mass theory. They take ac-
count of the spatial variation of the dielectric con-
stant, the differing spatial dependence of the core
shielding of the host atom and the various impurity
atoms, the local distortion of the lattice due to the
different size of the host and impurity atoms, of
orthogonalization of the impurity wave function to
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the correct impurity-core wave functions, and of
valley-orbit coupling. Their calculated energy
levels are a considerable improvement over those
calculated by simple effective-mass theory. How-
ever, their energy levels are sensitive to the
choice of matching radius between the two regions
of space, in addition to which there is room for
considerable improvement in their values. Fur-
thermore, their calculations do not give wave
functions, and hence do not allow analysis of the
various resonance experiments. Apart from the
first-principles calculations of Morita and Nara,
there have also been a number of parametrized
treatments of the shallow-donor ground states, >~
The advantage of a first-principles treatment is
that one can then calculate the real wave functions.

This paper reports on a first-principles calcula-
tion using pseudopotential techniques. The cor-
rections to a simple 1/k» potential are the same
as considered by Morita and Nara, but the screen-
ing due to the core electrons is considered far
more carefully in this work. In addition, correc-
tions due to the deformation caused by the size
differences of the impurity and host atoms are
considered. Good results are obtained for P and
Sb, but relatively poor agreement with experiment
is obtained for As. The near equality of the cova-
lent tetrahedral radii of Si and As suggests that
the admixture of higher bands, as proposed by
Castner, 15 js responsible. In addition, the large
deformation correction for Sb indicates that a
more careful treatment of this effect than given
here is needed. )

In Sec. II the pseudopotential formulation used
in this calculation is given. In Sec. III, the im-
purity potential is developed. The repulsive po-
tential is calculated in Sec. IV, and the results
given in Sec. V.

II. PSEUDOPOTENTIAL FORMULATION OF EFFECTIVE-
MASS THEORY

The starting point for this calculation is a pseudo-
potential band calculation for the perfect crystal.
The pseudopotential used is similar to the original

Phillips—Kleinman pseudopotential 18

Vr@Pui=— E Ec[zpc('rl )) ¢ni] d)c(ri)a

CyTy

(2.1)

where the bottom of the conduction band is taken
to have zero energy. Vj is the repulsive potential,
@t is a pseudo-band wave function, the E, are the
core energy levels, and the y.(7;) are the core
wave functions of the atom at site ;. The sum is
over the core levels and over the atoms making
up the crystal.

This form of pseudopotential is Hermitian and
hence the 9,z form a complete set as they are the
eigenfunctions of the Hermitian pseudo- Hamiltonian

Hy:
Hy@u = (Ho+ Vi) @pp=Eo(K) @0 . (2.2)

The impurity states are solutions of the Schrd-
dinger equation

H¢=(H0+ U)([):El[) ’ (2- 3)

where U is the perturbing potential. The wave
function can be written in terms of the pseudo-im-
purity wave function ¢:

V=0 -2 [9rs), O19elr) =2 @e, 009, (2.4)
"y

where the prime on the summation sign denotes the
omission of the impurity site in the sum over the
host cores, and y, are the impurity-core wave func-
tions. In this manner we have constructed a wave
function that is orthogonal to the impurity core
states at the impurity site, but orthogonal to the
host core states at the other crystal sites. The
impurity repulsive potential is

2 0==2"E{p:ry), @19,0r)) =23 Ee, @)¥:.

CiT t
(2.5)
The shallow impurity energies E are much less
than the core energies and are therefore neglected.
Since the ¢,z form a complete set, ¢ can be ex-
panded in them:

¢= f 2 a,(K) @ pdk . (2.6)

Therefore
o= f T ay®) Vs 00 Ak =D Eulbr, oWy
n

5 f o) E [9,(0), @,519:(0)

=V @+27 Eoo, ¢)zpc-§E,(¢,, @),

(2.7
where it is assumed that Vj is not 2 dependent in
the region of & space in which a,(k) is nonzero.
The final sum over the host core states in (2. 7)
is for a host atom located at the impurity site.

The impurity problem now has been transformed
to the solution of the following pseudo-wave equa-
tion:

Ho+ U+ V§)¢=(H,+ U*?‘Ec(‘pc’ 2 %'
‘tEEt(‘Pn ‘P)%> @

=H,+U,)¢=E¢p , (2.8)
where U, is a pseudo-difference potential. If one
now proceeds to develop a pseudo-effective-mass
equation in complete analogy with the procedures
of Kohn and Luttinger, ! an effective-mass equation
is obtained:
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h—z
(- s% V. +Uy)F=EF, (2.9)

®=F ¢uz,, (2.10)

where ¢, is the pseudo-band wave function at
the conduction-band minimum located at k=k;.

X one then includes valley-orbit coupling, fol-
lowing Twose, V" the following coupled equations
are obtained (taking the effective mass to be iso-
tropic):

(— 2;::* vis U,-E)a_,F,(;)

s 2 e ne
{(k,~k;)e 2 3 -
’%} a et Erper (— ¥ ¥ +U,-E)F,(F)-o.

(2.11)

The wave function ¢ is given by
(4 =2 aij(?) ‘Pni',(F) ’

where the sum is over the various degenerate con-
duction-band minima from which the donor wave
functions are constructed. The a; are determined
from symmetry considerations.

III. IMPURITY POTENTIAL

The impurity potential of Nara and Morita®® is
used in this work, but with the core screening ap-
proximated more carefully. The impurity poten-
tial is

__1 P v,z(l’:)
U(F)— (2")5 jdke € ) ’
where v,,(l?) is the Fourier transform of the un-
screened donor potential and €(K) is the wave-
number-dependent dielectric constant, Nara and
Morita approximate €(k) by the function
1 Ak? Bk? Cy?
€(k)  ki+a® ML g +k2+'yz ’

(2.12)

3.1)

(3.2)

8
where
a=0.7572, B=0.3123, y=2, 044,
A=1.175, B=-0.175, C=1/€(0)=0. 08547,

and €(0) is the static dielectric constant of Si. The
unscreened impurity potential is

v,)=Vr; Z3)-Vir; Z8), (3.3)

where V(r; Z}') is the core potential of the n-fold
ionized atom with atomic number Z;. Nara and
Morita approximate V(r; Z}") by

Vir; Z7)=[n+(Z,;-n)e™ "] (-e?/r). (3.4)

The 0; are tabulated in Table I

Castner has calculated a different set of 0, 1
obtained by fitting the screening functions calcu-
lated from Hartree- Fock calculations with a func-
tion of the form (3.4) at »=0. These 0, are also
tabulated in Table I. One can express U(7) in the
form

Ur)=~(2/7)Qq(r). (3.5)

The Q4(7) calculated using both the Nara—Morita
and the Castner 0, are plotted in Figs. 1(a)-1(c)
for P, As, and Sb impurities in Si. Since these
two sets of screening functions give very different
screening functions @,(r), it was felt that a more
careful approximation of the screening was neces-
sary.

Green, Sellin, and Zachor® have developed the
following screened potential for neutral atoms:

V)=~ @/7){1+(Z-1)
x[Ee/*-1)H+1TY, H=dZ-1)** (3.6)

where d is a parameter. They solved the one-
electron problem with this potential numerically,
and determined d so as to minimize the differences

TABLE I. Core-screening constants o, (in units of aj!).

Si P As Sb
Nara and Morita (Ref. 18) 4.28 4.75 3.57 3.29
Castner (Ref. 15) 2.380 2.470 3.225 3.75
This work (small 7) 1.933 1.927 2.609 2,697
This work (large 7) 1.581 1.546 1.942 1.769
This work (small 7)
0’(1)1 4,2625 4,2841 5.6671 5.9686
0‘(2), 1.31981 1.26457 1.64524 1.3842
A(l)j 0.443817 0.468 068 0.501603 0.59714
A (2), 0.556183 0.531932 0.498 397 0.402 86
This work (large 7)
0‘(1), 1.233321 1,164 342 1.516 216 1.171989
0‘(2), 3.3353 3.2832 4,2071 3.991 520
A(l)j 0.459531 0.426 201 0.391577 0.268186 0
A(Z)j 0.540469 0.573799 0.608423 0,7318140
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between the one-electron energy levels of this po-
tential and the Hartree—Fock values. (The values
of d obtained by Green et al. for Si, P, As, and
Sb are 0.817, 0.868, 0.663, and 0.870, respec-
tively.) Unfortunately, this potential cannot be
Fourier transformed in closed form and hence
cannot be directly used to calculate the impurity
potential. Thus the approach was adopted of fitting
this potential by a simple screening function of the
form (3. 4), with z=1 for the neutral atom, the as-
sumption being made that the screening constant
for the ion in the crystal is the same.

This fit was accomplished in two ways. First,
‘there was the “small-7 fit, ” in which the value of
0; was adjusted to minimize the function

Q=27 |emm—[(em/t - 1)H+1]? |, (3.7)
i

where the 7; ranged from 0.0 <7 < 3. Oa, in steps

of &r=0.01a,. The values of the 0, so obtained

are tabulated in Table I. In addition, there was

the “large-v fit,” in which o, was adjusted to mini-

mize the function

Q=20 |logyg(e™i™) — logyo[(e™/* = 1)H + 1] l s
i

(3.8)
where the 7; range from 0.0 <7 <3.0a, These
values of 0; are also tabulated in Table I.

Figures 1(a)-1(c) show that the impurity screening
functions thus obtained differ greatly for the two
fits. This suggested that a two-exponential fit
was necessary in order adequately to approximate
(3. 6) over a wide range of ». Therefore, Eq. (3.4)
was replaced by

Vir; 23 ={n+Z,-n)[AQQ)e™1V"
+A(2)e-°"(z)r]}(—e2/r), A1)+ A(2)= 1.
(3.9)

TABLE II. Parameters for @,(») (small-y fit) (a, in units

of agl).

P As Sb
Ay 0.88059 -0.15519 -5,2749
A, -0,172 08 -0.13815 -0,049791
Ag -0,0021219 -2,5913 ~1,9971
Ay 4,7357 14,1579 27,6713
A; 9,4889 21,6578 30,5815
Ag —4,4906 -4,4906 ~4,4906
Aq -9,5259 -9,5259 -9,5259
ay 0,7572 0.7572 0.7572
as 0,3123 0.3123 0.3123
ag 2,044 2.044 2,044
ay 4,2841 5.6671 5.9686
as 1.26457 1.64524 1.3842
ag 4.2625 4,2625 4,2625
ag 1,31981 1.31981 1.31981

TABLE III. Parameters for @,(») (large-r fit) (a, in units

of ag').

P As Sb
Ay 0.73779 -0.16408 -7.0760
A, -0,17148 -0,13694 -0.,037165
Ag 0.025437 -1.3794 -0.29386
Ay 8.4135 17.2434 24,1285
Ag 5,7972 17,2396 34,0811
Ag -8.4244 —-8.4244 -8.4244
Ay -5,4636 -5.4636 -5,4636
ay 0.7572 0,7572 0,7572
ay 0.3123 0.3123 0,3123
as 2,044 2,044 2,044
a, 1,164 342 1.516216 1,171989
as 3.2832 4.2071 3.99152
ag 1.233321 1,233321 1.233321
ap 3.3353 3.3353 3.3353

Again, large-7 and small-7 fits were obtained,
analogously to the method outlined in Eqs. (3.7)
and (3. 8), but with e™" replaced by A(1)e V"
+A(2)e™®"  and with the range of 7 for the large-»
fit expanded to 0.0 <7 <6, 0a,. The resulting
screening constants are given in Table I. The as-
sumption is again made that this screening function
is appropriate for the ionized impurity in the crys-
tal, and the impurity potentials constructed. The.
resulting screening functions @,(») are also plotted
in Figs. 1(a)-1(c) andthetwofits canbe seentoagree
much more closely than the various single-exponen-
tial fits. It is evident that the repulsive nature of
the impurity potential for Sb for 2. 25a,<7 <5. 5a,
is real, and in addition the impurity potential for
As in Si, is also repulsive in the range
2.25a4 < 7 < 3.25a,.

Q,4(7) has the form

7
Qur)=C+25A,e™n" (3.10)
1

where C= 0.08547=1/¢€(0). The A, and a, are
tabulated in Tables II and III for both fits of two-
exponential screening functions.

IV. REPULSIVE POTENTIAL
The repulsive potential, from Eq. (2.8), is

=D By, 9) % -y, ol | 1)
¢ t @

where the §; and E, are the core wave functions
and core energies of the impurity, while the 3,

and E, are those of the silicon atom, and ¢ is the
impurity pseudo-envelope function. For the ground
state, ¢ can be well approximated by a constant in
the core region. We then have

V&=>§Ec(¢0, l)wc—ZtJE,(zp‘, ;. (4.2)

The E, and E; were obtained from the Hartree-
Fock calculations of Mann. 2® The values of (¥, 1)



8 PSEUDOPOTENTIAL THEORY OF SHALLOW-DONOR GROUND... 657

04 4.0 T T T T T T

ogf |
10

! -
—_— o
o o
o >
o
> c
x r ] 2
:) "40
S
30F -

-80F:!

Y004y 1

1
O 04 0810 r(a)— 20 30

FIG. 2. Pseudopotentials (in Ry-ay). (a) P in Si, (b)
As in Si, and (c) Sb in Si. ,vU@); ===, vU, ) [ap-
proximation (1)]; ***, »U,(») [approximation (2)]; —<—,
rU,(r) [approximation (8)]; ——x—, U, () [approximation
(4)]. Approximations (3) and (4) coincide for P in Si when
drawn to the scale of this graph because of the small rel-
ativistic core shifts of P and Si.

wave functions used are those of Burns, 2 which
have the form (for s functions)

Yp=NrTle™n", (4.3)

TABLE IV. Hartree~Fock energies of s-like core
states E,g, dielectric core shifts of s-like core states
AE,, and relativistic core shifts of s-like core states

AE,, in Ry.
Si P As Sb
E* -137.64 -159.98 -865.20 -—-2171.2
AE, 4.79 5.11 8.47 12.7
AE, -0.35 -0.48 -13.1 -82.6
E,,*  -12.326 -15.057 -112.65  —329.54
AE, 3.481 3.805 7.27 11.55
S B N . . A L AE, -0.052 -0,073 -2.93 —-20.24
O 04 0810r(a,~ 20 30 £yt 16089  —67.296
AE, 5.013 9.395
AE, -0.469 —4.185
and (y,, 1) were obtained by numerically integrating a
i 21 Eyq -12,150
Mann’s wave functions. AE, 6.058
In the construction of V%, analytic approxima- AE, -0.808

tions to ¥, and y, were used as this greatly simpli- -
fies the calculation of the energy. The particular %See Ref. 20.
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FIG. 3. Ionization energies (in meV) for the lowest
(A,) ground states of P, As, and Sb in Si, ==, experi-
ment, (Ref. 7); ——, effective-mass theory (Ref. 1);
---, Morita and Nara (Ref. 11); —*—, this work.

The Burns functions differ from Slater functions
in that # is an integer, and the values of the a,
are chosen to provide a good approximation to the
Hartree-Fock wave functions. The 3, were then
orthogonalized to each other and these orthogonal-
ized core functions used to compute V%.

As a refinement to this V%, the effect of the di-
electric shielding of the medium on the core states
was considered by means of a perturbation calcula-
tion. The perturbation for the isolated neutral
atom was taken to be

e-u?-?-

r_ 1 we
V= Gy f & e®
<[ fd;'eu‘-f' v, ZD]-ve, 2. @y

The main effect of this perturbation is a core
shift AE;. A somewhat smaller further correction
is obtained by calculating perturbed Burns func-
tions for the core states /%, and recalculating the
integrals (., 1). This gives a new repulsive poten-

tial
7 _ ¢ (HF (1/)'3 1)
VE=ZE (T, 1) iy v

JoEF 1y @35, 1)
-2 E{@FT, 1) T2y, (4.5)
t e, 1)

where E.=E_+ AE,, y2¥ is the Mann-Hartree- Fock
wave function, and the p2 are the unperturbed
Burns wave functions. One further correction was
the inclusion of relativistic shifts AE, in the core
shifts. In Figs. 2(a)-2(c) are plotted U(r) and
U,(r) for P, As, and Sb impurities in Si, respec-

|oo

tively. U,(r) is plotted in four approximations:
(1) unperturbed, (2) dielectric core shifts included,
(3) dielectric core shifts and dielectric perturbed
wave functions included, and (4) dielectric and
relativistic core shifts and dielectric perturbed
wave functions included. In Table IV are tabulated
the Hartree- Fock energies of the s-core states, 2°
the dielectric core shifts AE, calculated from
Eq. (4.4) to first order, and the relativistic core
shifts AE, calculated by taking (Eps)re1— (Ens)uonrer "2
in the Herman-Skillman approximation to the Har-
tree-Fock equations.

V. RESULTS

Using the impurity pseudopotential constructed
from Egs. (3.5), (3.10), and (4.5), and trial func-
tions of the form

F=NE"+e™), (5.1)

variational solutions to the effective-mass equa-
tions (2. 11) were obtained. For the E and T,
states (€=0)

Ay a=(1/V6)(1,1,1,1,1,1),
E: a;=%(1,1,-1,-10,0),
T, a;=(1/¥v2)(1,-1,0,0,0,0).

One further correction considered in the calcula-
tion of the energies of the A, states was that due to
the deformation produced by the size difference of
the impurity and the Si atom. This was calculated
using results of Weinreich.?® He estimates the
first-order correction to the energy to be E,
= BEuA/roa(z), where Z, is the deformation potential
constant, Z,=8.5 eV in Si.® 7, is the tetrahedral
covalent radius of the donor atom, a, is the radius

(5.2)

TABLE V. Donor-wave-function parameters and

energies.
P As Sb
Ay
6 (agh 0.03187 0.03209 0.02509
¢ 2,555 -0.630 —-0.854
@ (agh) 0.0851 0.0527 0.451
E (meV) —46.0 -35.0 —48.0
E (expt.)* —45.31 —53,51 ~42,51
E
5 (agh 0.02411 0.02327 0.02172
E (meV) —27.98 —-27.29 —-25.96
E (expt.)* —32.36 —-31.01 —-30.37
Ty
6 (agh) 0.02490 0.02299 0.02098
E (meV) —28.73 -27.13 —25.38
E (expt.)* —33.69 —32,42 -32.67
3See Ref. 7.
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of the impurity ground state. The constant A may
be evaluated from the expression for strain, which
in a cubic crystal is

A 3?
Uex= T 1——7-2- .
Evaluating the strain along a cubic axis gives
Uyp=—24/7%.

(5.3)

(5.4)

Setting u,,= Av/7, where A7 is the difference be-
tween the tetrahedral covalent radii of the impurity
and Si, ¥ we then get

E4=-4E,7,07/a5 . (5. 5)
Taking a,= 20 A (obtained from a simple hydrogenic
model), E;=0.007, -0.001, and - 0.019 eV for

P, As, and Sb impurities in Si, respectively. This
correction is added to the pseudopotential energies
for the A, states.

The results of these calculations are given in
Table V, and plotted in Fig. 3. Agreement is good
for P and Sb, but poor for As. Since the tetra-
hedral covalent radii of Si and As are nearly
equal, 27 the lack of agreement with experiment in
this case cannot be due to the crude calculation for
the size effect. A likely cause is the neglect of
admixture of higher bands, as proposed by Cast-
ner. ' In addition, the large value of E, for Sb
suggests that a more careful calculation of the
deformation correction is necessary, and that the
good result for Sb obtained here is probably for-
tuitous.
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