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rate G consistent with the incident photon flux is
2x10% electrons/cm?sec. For this value to yield
the measured maximum injected NL of ~10™ elec-
trons/cm? shown in Fig. 2 we must take the car-
rier lifetime to be 7=0.5 nsec. Diffusion lengths
under the high-intensity conditions of this experi-
ment have not been measured, but estimating®®
this length to be ~1 pm yields a maximum electron
density ~ 10'® cm™ for all samples measured.

In conclusion, we have obtained a reliable mea-
sure for the total number of electrons injected in
GaAs under intense optical excitation. This mea-

surement is independent of any assumption concern-
ing the unknown spatial distribution of the carriers.
Further, we have been able to deduce effective
carrier lifetimes. All these results demonstrate
that even at high excitation levels a significant
fraction of the injected carriers can relax to the
band edge, where they live long enough to diffuse
into the bulk of the crystal.

We thank C. H. Henry for a critical reading of
the manuscript. We also thank J. C. DeWinter for
growing some of the epitaxial layers and A. L.
Albert for sample preparation.
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A method is given for calculating the electron micrographs of amorphous materials. It is based on the
kinematical theory of diffraction and should be valid for specimens of amorphous silicon, for example,
up to 100 A in thickness. It is found that the random-network model for amorphous silicon accounts
qualitatively for much of what is observed in electron micrographs obtained experimentally, but features
of results obtained by Rudee and Howie using the off-set bright-field configuration appear to require
the presence of at least a small proportion of crystallites. More conclusive experimental results could be

obtained by using thinner specimens.

L. INTRODUCTION

It is a surprise to a newcomer to the field to find
that there is still scope for debate about the struc-
tures of certain amorphous materials. The ran-
dom-network model'~* for amorphous germanium
and silicon appeared to be gaining general accep-
tance but has recently been opposed by Rudee and
Howie® who presented evidence from electron mi-
croscopy which they interpreted in terms of a mi-
crocrystallite model. Chaudhari et al., who have
obtained similar electron micrographs, ® claim
that the observations are not inconsistent with a
random-network model.” In this paper we put for-

ward a general method, based on the kinematical
theory of electron diffraction, ® for calculating the
electron micrographs of amorphous materials,
and present some preliminary calculations for sili-
con. While it is concluded that the random-net-
work model can account for much of what is ob-
served, the experimental evidence is not conclusive,
but could be made more so by the use of specimens
somewhat thinner than is current practice.
II. KINEMATICAL DIFFRACTION THEORY FOR
AMORPHOUS MATERIAL

The kinematical approximation is valid only

when the amplitude of a diffracted wave is very
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small compared with the incident-wave amplitude,
which we take to be unity. Let S be the scattering
vector, so that S=(2sinf)/x and £(S) is the atomic
scattering factor for electrons. Using the kinemati-
cal approximation, the scattering cross section per
atom in amorphous silicon is

o=212% [S£3(S)dS +)22 [ F(S) £3(S)dS. @)

F(S) is the “reduced-intensity function” defined for
example by Moss and Graczyk® and measured ex-
perimentally by them for amorphous silicon. Eval-
uation using data appropriate to silicon, wich A
=0,037 .f\, gives ¢=2.43x102 A%, The second
term in Eq. (1) contributes only about - 16%; the
first term gives the intensity appropriate to atoms
in random positions, without preferred interatom-
ic distances. The intensity scattering out of a
specimen of thickness ¢ is therefore ot/v, where

v is the atomic volume. For a specimen of thick-
ness 33 A this is 3.75x10"% so that 96. 2% of the
intensity remains in the direct beam. The kine-
matical approximation should thereforebe valid for
thicknesses of amorphous silicon of this order of
magnitude. (We also note that approximately 95%
of the scattered intensity is within 26=5° of the
direct beam. )

Two experimental configurations were used by
Rudee and Howie. In the first the direct beam and
a segment of the diffraction pattern were allowed
through the objective aperture. This is illustrated
in Fig. 1, where O is the position of the direct
beam (the origin in reciprocal space), and the
heavy line is a segment of the first maximum of
the diffraction pattern, which for silicon occurs at
§=0.32 AL, The aperture defines a limiting circle
in reciprocal space of radius So=0. 345 A-!, and the
center of this circle is at a distance S,,=0.19, At
from O. The center of the aperture was assumed
to coincide with the axis of the instrument. With
the wavelength used, it is an excellent approxima-
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FIG. 1. Position of the direct beam O and a segment
of the first diffraction maximum in relation to the aper-
ture, for the off-set bright-field configuration.
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FIG. 2. Specimen of thickness ¢ is imagined to be com-
posed of structureless material with a constant potential,
and of blocks containing atoms.

tion to take the Ewald sphere to be a plane over the
area defined by the circle of radius S,. The normal
to the plane which is a closest approximation is in-
clined to the direct beam at an angle somewhat less
than AS.,, . Numerically \S. is 0.4°, so that for
all practical purposes the image formed in the mi-
croscope must correspond to a projection of the
specimen on a plane perpendicular to the direct
beam. In the second experimental configuration,
which gives a dark-field image, S was 0.44 A"!
so that the direct beam was intercepted. (Rudee
and Howie experimented with germanium, we have
scaled the dimensions to be appropriate to silicon, )
The next step was suggested by the work of Hen-
derson and Herman? in that periodic boundary con-
ditions are imposed in specifying the structure of
the amorphous material. In this way the problem
is converted into one involving a “perfect crystal”
as specimen. No serious error or approximation
is involved however since the unit cell can be made
arbitrarily large. In Fig. 2, the specimen of thick-
ness ¢ is taken first of all to be a completely
smeared-out distribution of atoms giving a constant
potential inside the specimen. Electrons are not
then scattered, but the phase of the direct beam is
retarded by the correct amount, to correspond to
the refractive index. A “block” of this material
measuring b,,b,, b, is now imagined to be removed
and replaced by a block of perfect crystal, or by a
block representative of the random-network model,
or any other model. These blocks are repeated in-
definitely with spacing a,, a, in two dimensions to
give a unit cell of volume a,a, b, which thus consists
partly of material with a specified atomic structure
and partly of smeared-out material. The smeared-
out material above and below the two-dimensional
array can be ignored since it merely retards equal-
ly the phases of the direct and diffracted beams.
The material between the blocks could be eliminated
by making a,=b, and a,= b, but we shall see that it
is advantageous not to do so immediately. The al-
lowed values of the scattering vector are now given
by

S=H, @)
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where H is a vector in the two-dimensional recip-
rocal lattice, for which the spacings are a;! and
a;'. (It is more convenient to exclude the cus-
tomary factors of 27.) The structure factor of

the “crystal” which we have constructed in this way

is

F(H)=f(H) (f) pifief, _y Sinmb.H, sinﬂ-byH”).

j=1 mh H, mbyH,

(3)

There are N atoms in a block, T, is an atomic co-
ordinate (the z coordinate is irrelevant, as ex-
plained earlier), and the second term takes account
of the smeared-out material removed from each
block. The origin is at the center of a block.

The amplitude of each diffracted beam is now
given by

i\b, F(H)/ V=i F(H)/A @)

(see, for example, Hirsch et al.®) where V=a,a,b,
is the volume of the unit cell and A is its area in
projection. In what follows we take a,=a,=a so
that A=a? It is now easily shown, following the
discussion of the situation which involves the direct
beam and one diffracted beam, 8 that for the first
experimental configuration the intensity at a point
T in the image is given by

2
1+i ;1)-‘ 2 F(H) e2rinsF

I(F)=|3(F)|%= (5)

For the second experimental configuration the in-
tensity is

Y \
)= ( A)_
In each instance the sum ¥ is over the points of the

reciprocal lattice which fall inside the circle of
radius S, and center S,,. Now writing

F(H)= | F(f)|efo® ()

and defining

Z;’ F(ﬁ) e-Zti;l-; 2 (6)

C, @)= i—" >'|F@)|sin[2nl-F- @],  (8)

@)= 2 5| F(ll) cos[2nH-F- o],  (0)

it is found that Eq. (5) reduces to
I(F)=1+C,(F) + 1 [CAF) + C3(F)] (10)
(off-set bright-field configuration), while Eq. (6)
reduces to
IF)=4[CiE)+C3@) (11)

(dark-field configuration).

Equation (10) is much the more interesting of the
two. For the thickness b, with which we shall be
concerned C,(F) is small compared with unity,

typically < 0.3, and the term 1 [C3F) + C4(F)] can be
neglected. (It is of the same order of magnitude
as an error already introduced by taking the ampli-
tude of the transmitted direct beam to be unity,

and partly cancels this.) We therefore have for

the contrast in the off-set bright-field micrograph,

1) - (@)
C®=""1a)y

= ZA—A Z'|FE)|sin[2nH-T- ()]  (12)

The interesting feature of this result is that it in-
volves the structure factors linearly. We also

find later that the intensity or contrast originating
in a particular block, of area about 10x10 A,
“spills out” very little from the corresponding area
in the image. Thus the linear dependence on struc-
ture factor enables us to superpose the contribu-
tions originating from different areas of a specimen,
two representative blocks placed side by side do

not produce overlapping images until they are quite
close, but if placed one behind the other the in-
tensities which each contributes simply add. Thus
we can imagine the specimen of thickness ¢ to be
built up by adding blocks, all different from one
another, until the smeared-out material is elimi-
nated. These results do not apply to the dark-field
image. Blocks which are sufficiently separated
laterally do contribute independently, but those
separated only in the z direction do not. We must
then take b,=1¢.

III. NUMERICAL CALCULATIONS FOR SILICON

These were made first of all for a block of sili-
con having the diamond structure, with (111) on the
S, axis and (220) on the S, axis. Its dimensions
were 9.4x9.6x13.45 A, with N=60, and thus three
(111) planes in the x direction. The computed con-
trast, using Eq. (12), is shown in Fig. 3(a) for
y=0, that is along a line passing through the center
of the crystallite. The result shown was obtained
with a,=a, =40 A, but since the function falls prac-
tically to zero for x> 6 A all that is necessary is
that a, and a, should exceed about 20 A. The in-
tensity is constant in the y direction until the edge
of the block is approached, falling to zero beyond
about y=6 A. The amplitude of the fringes is close
to the value 0.133 which is that appropriate to a
crystal of indefinite extent in the xy plane, and
thickness 13.45 A.

Spherical aberration is the most important lens
aberration in an electron microscope. The phase
shift of a beam inclined at an angle « to the axis of
the instrument is®

M0 2

C 4 A 2
=-5) (13)

<=z«(
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FIG. 3. Contrast produced in the off-set bright-field

configuration by a crystallite (a) in a perfect microscope,
(b) with allowance for spherical aberration and defocusing.
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where C, is the spherical-aberration constant. The
effect of underfocusing the objective lens by an
amount A is also included in Eq. (13), and this may
be used to minimize the effect of spherical aber-
ration. This phase shift results in the replace-
ment of ¢ (H) by ¢(H) +€(H) - €(0) in the bright-

field configuration, and of ¢(i) by ¢(H) +€ (H) in the
dark-field configuration.

The calculation described in the first paragraph
was repeated with C,=1.6 mm and A=4.7x10"®
cm; the result is shown in Fig. 3(b). The fringes
remain quite recognizable but ripples now spread
further into the area surrounding each block.

PRl

L | ] J

o 2 4 6 R
FIG. 4. Contrast produced by a block of material
10.85 A thick having a random-network structure. Con-
tours are drawn at + 0.05 to + 0,15 with interval 0.05.
The unbroken diagonal lines have a spacing of 3.13 A,

To represent a block of silicon with the random-
network structure we took a 61-atom structure
generated by the computer program of Henderson
and Herman.? The volume of the block was taken
to be (10. 85)° 53, 10. 85 A being twice the dimen-
sion of the cubic unit cell of crystalline silicon.
We are thus taking the relative density of amor-
phous silicon to be &, areasonable value.® The
Henderson-Herman structure satisfies periodic
boundary conditions but we have not made use of
this fact. We use XY Z to denote directions in this
structure. Figure 4 shows the computed contrast
for x=X, y=2Z (the choice will be explained later).
The contours are at +0.05, 0.10, 0.15, and the
block is outlined (ignore the diagonally drawn lines
meantime). The contrast falls practically to zero
within 1-2 A of the boundary. Inclusion of the
phase shifts € did not produce an essential altera-
tion of the pattern. To simulate a thicker speci-
men without the mental effort of imagining several
such contour maps superposed we piled the 61-
atom structure on top of itself so that the xy pro-
jection was a superposition of the XY, ZX, and
YZ projections, giving a thickness of 32.6 A.

The computed contrast is shown in Fig. 5. The
maximum contrast is now about 0.25, the mean-
square contrast is three times greater than in Fig.
4. The number of maxima is about the same in
both.

These calculations were repeated for the dark-
field configuration, using Eq. (11). The position
of the aperture was as given in Sec. II. It should
be remembered that we now have to consider the
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FIG. 5. Contrast produced by a block of material 32.6
A thick having a random-network structure. Contours
are drawn at + 0.05 to + 0,25 with interval 0.05.
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FIG. 6. Intensity produced in the dark-field configura-

tion by a crystallite (a) is a perfect microscope. (b) with
allowance for spherical aberration and defocusing.
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thickness ¢ of the specimen to be equal to b, [un-
less the material behind and in front of the block
we are considering is highly crystalline, and not
oriented so as to give a (111) reflection].

Figure 6 shows the computed intensity in the
image of a crystallite of the same dimensions as
before, without and with allowance for instrumen-
tal effects [Eq. (13)]. Particularly in the former
instance, the intensity spreads little outside the
boundaries of the block. Figure 7 shows the com-
puted intensity for the 32.6-A thickness of random-
network structure. The contours are at 5, 10, and
15x10-3, It should be recalled that the scale is
such that the intensity in the absence of a speci-

men would be unity in the bright-field configuration.

As a check on the internal consistency of these
calculations, the intensity in the dark-field image
was calculated for Sp=1.3 A~ and S, =0 (a con-
figuration that could not be achieved in practice).
The average intensity in the image (7) was found
to be 2.76x107%, Making an estimated correction
of +19% for the contribution still cutoff by the
aperture raises this to 3.25x%107%, in reasonable
agreement with the estimate of the fraction of the
intensity diffracted, made in Sec. II for material
of this thickness.

IV. DISCUSSION

The intensity in the image for the dark-field con-
figuration, shown in Fig.7, and in other maps
which have been calculated but are not shown, has
all the features of the micrographs which are ob-
tained experimentally, 5% as far as can be deter-
mined by examination of the published photographs.
The off-set bright-field configuration, however, pro-
vides a more critical test. The contrast shown in
Figs. 4 and 5 resembles qualitatively much of what
can be seen in the photograph published by Rudee
and Howie; a pattern of bright and dark “blobs, ”
each bright blob having typically some four or so
nearest neighbors at distances between 3 and 4 A.
This distance, incidentally, is more a feature of

the position of the aperture than of the random-
network model; a random model in which there

are no preferred interatomic distances does not
give a very different computed contrast in its
general features. There are however in the photo-
graph regions where the bright blobs line up to give
the appearance of a “string of beads,” and there
are just a few places where as many as four bright
fringes can be seen, somewhat broken in the direc-
tion perpendicular to the wave vector and not ex-
tending further than 6 A in this transverse direc-
tion. It is highly improbable that the random-net-
work model can account for this feature. Let us
return to a consideration of Fig. 4, which shows
the contrast arising from a block of random-net-
work structure of thickness 10.85 A. This pro-
jection was chosen for illustration because a struc-
ture factor for which H is very close to 0. 32 A,
the reciprocal of d(111), is unusually large, al-
most half the value appropriate to a diamond-type
crystallite of the same volume.” Yet no fringes
are to be seen in Fig. 4. However when the crests
(continuous lines) and troughs (dotted lines) of a
wave of wavelength d(111)=3.13 A are drawn in, as
in Fig. 4, it is apparent that most positive peaks
fall on crests, and most negative peaks in troughs.
For a block of random-network structure to pro-
duce recognizable fringes covering an area A’, one
of the “essentially independent” structure factors,
of which the number is!® wSﬁA', must be large, and
the remainder must be small, or the fringes will
be broken up and become unrecognizable. One can
estimate that the fringes will be recognizable only

O @)
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FIG. 7. Intensity produced by a block of material 32,6
A thick having a random-network structure. Contours
are drawn at 5, 10, and 15 x 103,
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when their amplitude, produced by one structure
factor, is at least as large as the root-mean-
square contrast produced by all other structure fac-
tors. The probability of this occurrence has been
estimated using the theory of the statistics of struc-
ture factors'!; to give the calculation here in full
would be too great a digression, suffice to say that
for any reasonable area of fringes and thickness

of specimen the probability is extremely small.

(See Appendix. )

Conversely, let us suppose that a block of crys-
tallite in the correct orientation has produced a
few fringes of amplitude 0. 14, as in Fig. 3. For
these to be recognizable, any material in a random-
network, or simply random, array which fills the
space between randomly oriented crystallites, and
which comes behind or in front of the crystallite
producing fringes, must give a root-mean-square
contrast less than about 0.14. Consideration of
the experiment of Rudee and Howie, where the
specimen had a thickness of 200 A, suggests that
the necessary condition could seldom be satisfied.
More conclusive results could be obtained by using
thinner specimens, which would have the added ad-
vantage of making possible a quantitative compari-
son of theory and experiment. We estimate that
the theory given here will give reasonably satisfac-
tory results for specimens of silicon up to 100 A
thick, subject to some obvious conditions such as
the absence of crystallites of comparable dimen-
sions of course. 12
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APPENDIX

It was shown by Wilson'! that the probability
distribution for |F|?is

d|F|® (_ |F|2

P(|F|®d|F|?=575 e ——-2——) Al
where (|F|2) is the average value, appropriate to
the range of S=(2sin6)/x under consideration. It
follows that the probability that |F| exceeds some
specified value |F,| is
P(|F|>|Fy|)=exp(~ |Fy|%/{| F|?). (a2)
Suppose fringes are to be formed covering an area
A’. The number of atoms above this area of a
specimen of thickness ¢, which contribute to F, is

N=A't/v, (A3)
where v as before is the atomic volume. A pat-
tern confined to an area A’ requires

m=nSZA’. (A4)

Fourier coefficients in order to define it, ° where
1783 is the area in reciprocal space from which the
coefficients are drawn. The m points are to be
taken to be distributed on a lattice with a unit-cell
area (A’)"! in reciprocal space. _To form fringes
of maximum contrast C, or greater we require a
structure factor of magnitude at least

|Fy|=A"Cy /20 (A5)

[see Eq. (8)]. The value of S appropriate to this
structure factor must be acceptably close to 0.32
to give fringes of the correct spacing [d(111)=3.13
A for silicon]. The remaining (m - 1) structure
factors are to give a “random” contrast of root-
mean-square value not exceeding C,. We take the
condition to be that each such structure factor
must not exceed F, /(m —1)/2,

To illustrate the principle of the calculation we
can take the atomic coordinates to be random so
that

(|F|?=nNr? (A6)

and also ignore the variation of f2 across the aper-
ture. The probability that one structure factor is
adequately large and all others are adequately
small is now

m-1

v'-ex (- it ) [1-em (G e )| -

(A7)
However, of the m points it is estimated that

n~n(A)Y2/4(111) (A8)

of them will have a value of S acceptably close to
1/d(111). The probability of “recognizable” fringes
covering an area A’ with contrast greater than C,
is thus approximately

p=np’

when the atoms in the specimen are distributed at
random.

It is estimated that an area of at least 40 A% is
required to define fringes of measurable spacing.
Substituting values appropriate to silicon, with
Se=0.34 A~ and C,=0.2, onefindsthat p asa func-
tion of ¢ does not vary greatly between ¢= 20 and
100 A, the maximum value being 8.3x10® at ¢
~40 A.

A better calculation takes account of the varia-
tion of (| F|%) with S, and thus of the radial dis-
tribution of the atoms, and of the fact that any two

(A9)

- structure factors at +S and - S cancel from the

Fourier series for C;. The maximum value of p
is then increased to 8.9x10°®at ¢~ 50 A. This,
while small, is not negligible. However p de-
creases rapidly with increasing A’, In the pub-
lished micrograph® a “degree of regularity” in the
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contrast, covering as much as 100 Az, can some-
times be seen; the pattern is such as could result
from fringes produced by a crystallite, with a
superposed random contrast from another part of
the specimen, behind or in front of the crystallite.

Considerations set out above make this a much
more likely explanation than that the fairly reg-
ular pattern observed could all originate from a
volume A’t of material with a random-network
structure.
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The temperature and the magnetic field dependences of the ultrasonic attenuation are measured at low
temperatures in lightly doped p-Si samples with various impurity concentrations and dislocation densities.
In the dislocation-free sample, a peak is found in the temperature dependence, which is related to the
content of acceptors. In the sample with high dislocation density (2 X 10* ¢cm2), an additional
attenuation is found below 3 K which is ascribed to the resonance absorption by acceptor holes and
the attenuation is quenched with a lower magnetic field (about 10 kG) than that in the dislocation-free
sample. It is also found that the stress caused by an In-bonded quartz-plate transducer changes the
attenuation remarkably below 3 K. Therefore ZnO piezoelectric thin films were used in the present
study. The observations are explained semiquantitatively in terms of the acceptor-hole-lattice
interactions in the effective-mass approximation by taking the distribution of the internal stresses into
account after Suzuki and Mikoshiba. The apparent difference in the contributions to the attenuation
from the correlation among the impurities and from the dislocations is ascribed to the differences in
the distribution of the internal stresses. It is pointed out that the degeneracy of the acceptor ground
state is lifted even in the samples with boron content of 5X10' cm~> because of the electronic
correlations among the randomly distributed impurities.

1. INTRODUCTION tors at low temperatures. The model is based on

the following terms: (a) The coupling between

Ultrasonic attenuation at low temperatures in
lightly or heavily doped n-type Si is well explained
in terms of the relaxation process of electrons
among donor levels or among valleys of the con-
duction band. ™" The change in the elastic modu-
lus in keavily doped p-type Si is also explained in
terms of the coupling between acoustic waves and
degenerate hole gas.®

Recently, Suzuki and Mikoshiba® proposed a
model to explain the ultrasonic attenuation in light-
ly doped p-8i, ! in which holes are bound to accep-

holes and acoustic waves is calculated in the re-
gime of the effective-mass approximation by using
the acceptor-hole-lattice coupling Hamiltonian?®
and by assuming that the wave functions of the rele-
vant acceptor states are representable by s-like
envelope functions. (b) The presence of randomly
distributed internal stresses is assumed, which
split the fourfold ground levels of the acceptors
into Kramers’ doublets.!' To take the internal
stresses into the theory in a tractable way, the
random local stresses are represented by the nor-



