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Vibrational Edge Modes for Small-Angle Wedges

T. M. Sharon, ' A. A. Maradudin, ' and S. L. Cunningham~
Department of Physics, University of California, Irvine, California 92664

{Received 2 July 1973)

Moss, Maradudin, and Cunningham recently calculated the velocities of long-wavelength acoustic phonons
localized at the apex of a variable-angle semi-infinite elastic wedge. We present here a method by which
more precise results may be obtained for small wedge angles.

Recently, Moss, Maradudin, and Cunningham'
(hereafter referred to as I) performed numerical
calculations to obtain the speeds of long-wave-
length acoustic-phonon modes localized at the apex
of a variable-angle semi-infinite wedge consisting
of an isotropic cubic elastic medium. After map-
ping the wedge into a right-angle wedge, they
solved the equations of motion by expanding the
displacement components in a double series of
Laguerre functions, qr~Q}=e '~L4(x}/kl(, where
L,(x) is the kth I~~uerre polynomial. For wedge
angles of from 30 to 180' the convergence of the
lowest eigenvalues given by this series was good.
However, for angles of less than 30' the conver-
gence was not very rapid, and the eigenvalues
were estimated by visual extrapolation of the
curves of eigenvalue versus p, where p is a mea-
sure of the number of terms taken in the double

erre expansions. The slow convergence of
the expansions for small wedge angles is due to
the fact that as the interior angle of the wedge de-
creases, the edge modes become more localized
at the apex of the wedge, i.e. , the displacement
amplitudes decay more rapidly with distance into
the wedge from its apex and from the plane faces
that bound it. However, the exponential factor
which multiplies the T&mxerre polynomials in the
Laguerre functions used to expand the displace-
ment amplitudes has a fixed decay length, inde-
pendent of wedge angle, for a given value of q,
the wave-vector component parallel to the edge of
the wedge. Consequently, to reproduce the more
rapid decay of the displacement components with
decreasing wedge angle, more 6444„uerre poly-
nomials had to be retained in their expansions.

This suggests that an improvement in the rate
of convergence of the series expansions for the
displacement components could be achieved by de-
creasing the decay length in the exponential factor
in the I~guerre functions with decreasing wedge
angle, so that fewer terms in the expansions would
be required. To achieve this, the change of vari-
ables,

(Ia)

(lb)

was made in Eq. (IIV). This variable change has
the effect of introducing a into Eq. (I22) for the
Laguerre function,

e *12eL,(x/a)
S»(x/44) = (2)

A 4~y» (m }= ~{Eq (I25b)J (3b)

A",g.,'»(m) = —{Eq. (125c)), (3c)

Auo", „(m)= ~{Eq. (125d)), (3d)

A',q, ~4(m) = A4».",,(m),

A4s, '44(m) = —{Eq. (125f)],

(3e)

(3f)

A 41;44(m)= {Eq (125g)] (3g)

A's"ar (m) = A4y)'44(m), (3h)

Thus, by changing 0. it is possible to affect the
rate of decay of the»guerre functions, thereby
improving the rate of convergence of the series.
Followiag exactly the methods of I, we obtain the
eigenvalue equation [Eq. (I23) is effectively Eq.
(23) of I]

3 a
0'a'„I'=2 5 A"~'(m)a'~' a=i 2 3

i&1 A~l~o

for the expansion coefficients {a4~,'] of the dis-
placement amplitudes, where 0 is given by

II = pm /C44q

From Eq. (I24) we see that II is the speed of
propagation of the edge mode in units of the speed
of the bulk transverse-acoustic mode in the [100]
direction. In our calculations the sum on k and l
in Eq. (I23) was restricted by the condition 0 ~ k
+E~p.

With the change of variables of Eqs. (1), the
matrix elements {A'+~4', (m)) are given by

A'z, '4, (m)=~{Eq. (125a)]+(1—I/a3)5+5», (3a)
1
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FIG. 2. Dependence of 0.~ for lowest I'2-mode eigen-
values on wedge angle e for p= 3. The dependence is
nearly linear.

FIG. 1. Dependence of I'2-mode eigenvalues on the
convergence factor QI for a wedge angle of 25' for p = 3.

A'+",~, (m)= ~(Eq. (125i))+A(1- I/O )5a5&, . (3i)

Use of Eqs. (3) in Eq. (I23) results in an eigen-
value matrix that may be diagonalized by standard
numerical routines for nonsymmetric matrices to
yield values for 0 .

Using the results given by Eq. (I23) and Eqs. (3),
we have carried out calculations of eigenvalues for
a number of wedge angles of less than 30', for
which convergence was found, in I, to be poor.

By choosing a small value of p, it was possible,
by observing the dependence of the eigenvalues on
0. , to find an e which gave a minimum value for
the lowest eigenvalue. We call this a„(the opti-

0$ I ~ I

0.5—

0.4—

mum a). In Fig. 1 we have plotted the dependence
of the three lowest eigenvalues on e for p = 3 for a
wedge angle of 25'. We note that for small P the
minimum for higher eigenvalues occurs at a value
of a(a„) different from a~. We found, however,
that as P was increased, e„ for higher eigenvalues
decreased and approached 0.~ in the limit of large
p. For these higher eigenvalues it is necessary
both to increase P and adjust for a new o, to give
the best convergence. It should also be noted that

TABLE I. Values of the lowest I'2-mode eigenvalue
for a 20'-angle wedge as a function of the number of terms
retained in the expansion of the displacement amplitudes,
obtained with the use of the appropriate convergence fac-
tor 0(~ and without the convergence factor (n =1.0).

Q
0.3—

1
2
3
4
5
6
7
8
9

10
11

0 with e~=0, 20

0.111459 56
0.11068304
0.11067785
0. 110677 83
0.11067783
0. 11067783
0.11067783
0.11067783
0.11067783
0.110677 83
0.11067783

0 with 0. =1.0
0.478 380 22
0. 304 96966
0.220 35977
0. 174 695 20
0.148 539 52
0. 133058 86
0, 123 775 43
0.118217 79
0.114931 59
0. 113025 77
0. 111945 82
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FIG. 3. Dependence on wedge angle 8 of the lowest
three eigenvalues for p=3. Dashed curves are results
from I. Dotted portions of curves indicate extrapolations.
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o,,~ for the lowest eigenvalue does not change as p
is increased.

To illustrate the value of using e~, we present
in Table I the results for the lowest I'2-mode
eigenvalue of a 20'-angle wedge. Using an a„of
0.20, we obtained convergence to eight significant
figures using only p =4, while with an a of 1.0 (no
contribution from the convergence factor) conver
gence was not found, even out to P =11. A choice
of p=11 gives a matrix of 156x156 to be diago-
nalized, whereas a choice of p =4 corresponds to
a 30 x30 matrix. The use of the convergence
factor o not only gives far greater accuracy for
small angles, but also yields a considerable sav-
ings in computational time.

In Fig. 2 we present the dependence of e~ for
the lowest eigenvalue on the wedge angle e. From
Eq. (2) we see that the decrease in a as 8 de-

creases indicates that the displacement pattern is
more localized at the apex of the wedge as the
wedge angle gets smaller.

Figure 3 summarizes the dependence of the low-
est three eigenvalues on 8 for angles less than 45 .
These eigenvalues were calculated for p =3 and
using a~ for the lowest eigenvalue. Consequently,
the second and third lowest eigenvalue curves
should be considered as being somewhat less pre-
cise than the lowest eigenvalue, although they are
in error by less than 1%. We also show, in the
same figure, for comparison the lowest three
eigenvalues versus wedge angle as found in 1 for
p= 12 (a 182x182 matrix).

Thus, we have found that the use of a conver-
gence factor enables us to obtain good results for
As using eigenvalue matrices very much smaller
than those used in I.
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