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The uniform-charge-background (jellium) model of a bounded metal is shown to give good estimates of
the electrostatic surfaceWpole barriers in simple metals.

The uniform-charge-background (or jellium)
model of a metal surface has been found to give a
good account of the measured work functions 4 of
simple metals. Corrections to first order in
the pseudopotential 5v(r ) have also been calcu-
lated and found to be small.

Recently there has been a fair amount of inter-
ests in the electrostatic surface-dipole barrier
hP, often in connection with the study of the ener-
gy required to remove a positron from the metal.
Here we wish to point out that, to first order in
the perturbation 5v(r ), the change of the dipole
barrier 5(hP), when properly defined, equals the
change of the work function M, which we found
earlier to be &0.5 eV in magnitude. Thus the uni-
form-background model also provides a rather ac-
curate estimate of the dipole barriers bP of sim-
ple metals. Recent assertions to the contrary~ 9

will be shown to be based on an incorrect compari-
son of dipole barriers defined in two different
ways.

The electrostatic dipole barrier haft), the work
function 4, and the bulk chemical potential p. , are
quite generally related as follows:

here

where p(+ ~) and $ are, respectively, the electro-
static potential far outside the metal and the mean

electrostatic potential deep inside the metal; and

p, is the bulk chemical potential relative to the
mean interior potential P.

We shall now show that, to first order, the per-
turbation 5v(r ) does not change y, from its uni-
form background value:

6p, =0.
Denoting quantities associated with the uniform-
background model by the subscript u, the desired
result,

(4)

(again to first order in 5v) will then follow im-
mediately from Eq. (1).

In the theory of Hohenberg and Kohn' there oc-
curs the universal functional of the electron densi-
ty n(r ) defined by (in atomic units):

G[n(r)]=-(q
I
T+ ~le)

1 n(r)n(r')
d &,

where 4' is the electronic ground state and T and
U are, respectively, the kinetic- and Coulomb-
interaction-energy operators. The bulk chemical
potential p, relative to the mean interior potential
$ is given by"

1 5G[n]
A,~,t, g 5n(r )
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TABLE I. Electrostatic surface-barrier heights, as defined by Eq. (2), calculated for
nine simple metals. btQ)5„ is the barrier height computed in Ref. 4 for the uniform-back-
ground model; hP is this barrier height corrected to first order for the effects of the dis-
crete-lattice pseudopotential. The pseudopotential core radii r~ employed were those given

by Ashcroft and Langreth (Ref. 14) (in some cases these authors give two possible r~ values
for a given metal). The barrier heights b~ and b, tQI)" are discussed in the text. The bar-
rier height defined by Eq. (2) (d,P) is relatively insensitive to ambiguities in the pseudopo-
tential, whereas the barrier height defined in Refs. 7-9 Q, P —see text) is sensitive to such
ambiguities. This makes the comparison of b, tI[) and 4@" in the Table difficult in some
cases (e. g. , Pb).

Metal hP„(eV) r, (a. u. )

~y(eV)
(110) (100) ay~ (eV) ~y- (ev)

Al
Pb

Zn
Mg
Li
Na
K
Rb

Cs

6. 2

4. 8

4. 8

3.3
1.8
0. 9
0.4
0.2

0. 1

1.12
1.12
1.47
1.27
1.39
1.06L

1.67
2. 14
2.61
2. 13
2. 93
2. 16

6, 0
4. 8
4. 8
5. 1
3.7
2. 0
0. 9
0. 4

—0. 2

0. 3
—0. 1

0. 2

6.4
4. 8
5. 1

1.6
0. 5
0

—0.4
—0. 1
—0.6
—0.2

6.6
4. 9
5. 5

for (0001) face
for (0001) face

1.7
0.6
0

—0. 3
0

—0. 5
—0. 1

2. 4
4. 7
1.7
0. 2

0. 7
1.2

0. 3
0. 1

—0.4
0. 3

—0. 5
0.4

5, 8
5. 0
2. 0
3.1
2. 7

1.0
0. 3

—0. 3
0.4

—0, 8
0. 3

'Two r~ values were given for Li in Ref. 4. Only the one which leads to a computed work
function in agreement with recent measurements [V. K. Medvedev, A. G. Naumovets, and

T. P. Smereka, Surface Sci. 34, 368 (1973) (high-coverage limits)] is retained here. Also,
only that result for hp ' from Ref. 7 which was based on thip recent value (= 3 eV) was used
to compute htI5" for Li.

(0 is the crystal volume). Now let 6o(r ) be a
small perturbing potential and let 5n(r ) and 6p
be the corresponding changes of n(r ) and p, . Then,
by Eg. (6),

1 6'G[n]
6p, = — drdr'

( ) (,)
6n(r') .

Since our starting point was the uniform-background
model, 52G/6n(r )6n(r') must have the form

6'G[n]
6n(r )6n(P)

where f is, by its definition, a short-range func-
tion. Hence

5p. = — drdr' r —r' 5n r'
cryst al

(9)

since the total number of electrons remains con-
stant. This is the desired result.

In Table I, column 2, we reproduce the results
for hP„, the electrostatic dipole barrier of the
uniform-background model, from Ref. 4. Next
we use the work-function changes M' due to the
pseudopotentials, from Ref. 4, together with Eq.

—Z/r, r&r,
n,. ~,(r)=

Vp
(10)

with r, determined from bulk properties, and as-
sume the electron density to be uniform in each
sphere. In this way we obtain

(4) to calculate the corrected dipole barriers hP,
defined by Eq. (2).' Here $ is the mean interior
electrostatic potential in the pseudopotential mod-
el." These values are listed in columns 4-6.

The dipole barriers dg' given in Ref. 7 (the sym-
bol D is used there) were generally considerably
smaller than our values of bP„or hP (by up to
several eV). This was interpreted in Refs. '7-9
as a serious deficiency of the uniform-background
model. However, the quantity 6@' of Ref. 7 does
not represent the dipole barrier in the sense of
Eg. (2). Rather it is the additional barrier, com-
pared with the barrier hP~s that exists in a hypo-
thetical reference model in which the half-solid
consists of identical perfect Wigner-Seitz cells
right up to and including the last layer. To esti-
mate bP», we replace the Wigner-Seitz cells by
spheres of radius R, take for the external poten-
tial in each cell a potential of the Ashcroft form"
[these pseudopotentials were used in Ref. 4 to con-
struct 6o(r )]:
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&$,= ~ (Z/R)[1 —5(r, /R) ].

In column 7 of the Table we list b,p», calculated
from (11), and in column 8 the quantity

(12)

with 4P' taken from Ref. 7. This is the quantity

which should be compared with dP„or AP, and it
will be seen that the comparison is rather satis-
factory, making allowance for the problem de-
scribed in the legend of the Table.

%e conclude that the same method which we have
used in Ref. 4 to calculate work functions also ap-
pears to lend itself well to the calculation of sur-
face-dipole barriers of simple metals.
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