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The fluorescent lifetime of the 'T, excited state of Co + in KMgF is measured from 1.6 to 550'K.
The radiative lifetime is calculated from the oscillator strength of the 'T, 'T, transition and the
nonradiative decay rate deduced. This varies over four orders of magnitude. Its temperature dependence
is in good agreement with that predicted for linear coupling to a continuum of harmonic phonons, with
parameters deduced from the zero-phonon and one-phonon spectrum. To obtain agreement, the decrease
of the energy gap with temperature, which is primarily due to anharmonicity, must be taken into
account. The absolute value of the nonradiative decay rate is two orders of magnitude smaller than
predicted by the model. It is shown that this discrepancy, and. the much more dramatic discrepancy
found in ruby, can reasonably be attributed to anharmonicity. The continuum model is compared with
a discrete-frequency model, and it is shown that the "effective frequency" of the continuum, however,
defined, is closer to its mean frequency than to its maximum.

I. INTRODUCTION

The mechanism of nonradiative transitions in
molecules, and in isolated centers in crystals, has
attracted much theoretical attention recently. A
simple model can account for the nonradiative
transition rates observed in some transition-
metal- and rare-earth-ion centers. ~'3 However,
the same. model fails completely in other cases;
for instance, the nonradiative decay rate pf the E
state of ruby is a factor of order 10' faster than
predicted. More attention has been paid to the
absolute value of the transition rate (usually near
0 'K), than to its temperature dependence, which
might, however, be expected to provide a more
critical test of theory. Measurements of the tem-
perature dependence of nonradiative transitions
of Er ' and Ho ' in LaF3 and Dy

' in Laars have
been made over a limited range without uncover-
ing any gross failure of the theory. Measurements
on d systems up to quite high temperatures have
given little information about nonradiative decay
rates, since the change in lifetime is dominated by
the rapid variation of the radiative decay rate as
different excited electronic states are occupied.

We report here measurements pf the
fluorescent lifetime of Co~' dilutely incorporated
into KMgFs. The energy-level diagram for this
d' system is shown in Fig. 1. The spin-orbit
spl, itting in the lowest vibronic l.evel of Tz is
strongly quenched by the dynamic Jahn-Teller ef-
fect, leaving the residual splittings shown.

In KMgF3, as in other octahedral. fluoride hosts,
Co ' fluoresces strongly in the infrared under ex-
citation in any of its stronger absorption bands.
The emission spectrum at very low temperatures
(below 5 'K) is shown in Fig. 2. It consists of a
sharp no-phonon lIne at 6900 cm ' corresponds, ng

to the Ts(I's) —T&(I's) transition, and a broad and
strongly structured vibronic sideband peaking at
about 6000 cm '. Superimposed on the sideband
is a strong no-phonon line at 5950 cm . This is
the Ts(I's)-4T, (+el's) transition, which has been
made to lase under flash-tube excitation. The
one-phonon structure associated with each of these
no-phonon lines has a strong resemblance to that
pbserved in the fluprescence pf 7 ' and Ni ' in
KM@F3, although the spin-orbit splitting of the

6900 em

FIG. l. Energy-level diagram of Co ' in the Mg
' site

of KMgF3 (0& symmetry). The order of the levels in
the T2 term is the same as in T&.
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FIG. 2. Infrared emission spectra of Co ' and Ni ' in
KMgF3 at 1.6'K. Frequency is measured downwards from
the no-phonon line.

0

'T, term (some 1000 cm ') makes the Co ' band ap-
pear much broader. The spectrum of Ni ' is also
shown in Fig. 2. As in V ' and Ni ', measure-
ments of the polarization of the Co~' emission by
uniaxial stress show that the bulk of the emission
is magnetic dipole in character, and is associated
with Afg or Eg vibrations.

The fluorescent lifetime varies from 3.3 msec
at 1.6 K to 2. 5 p, sec at 550 K. Even at the low-
est temperatures nonradiative decay makes an

important contribution (about ~) to the inverse life-
time, and it is completely dominant at higher tem-
peratures. The nonradiative decay rate is always
in a conveniently measurable range, although it
varies by nearly four orders of magnitude. It is
this feature which makes the system KMgF3: Co +

an attractive one to study. Very slow rates are
difficult to disentangle from the much faster radia-
tive decay, while rates faster than 10 sec ' re-
quire special equipment not readily available to
us.

II. EXPERIMENT

A. Radiative and Nonradiative Lifetimes

It was focused to a spot 10 p.m across at the
oevelled edge of the chopper, whose peripheral
speed was 1100 cm/sec. The chopping time was
measured to be 1.1 p, sec. The fluorescent light
was filtered to eliminate wavelengths less than
1.1 p. m, and was detected with a cooled InSb de-
tector, whose response time is less than 1 p,sec;
the signal was amplified by a low-impedance am-
plifier, with a bandpass of 0. 1 Hz to 300 kHz.
Below 300 'K, the signal-to-noise ratio was good
enough to permit direct observation on an oscil-
loscope; above this a box-car integrator was used.
A correction for the finite chopping time was ap-
plied to lifetimes of less than 10 p, sec.

The reciprocal fluorescent lifetime w is plotted
in Fig. 3 (full circles). It is the sum of the non-
radiative and radiative decay rates, w» and w&.
The latter can be found, with the help of the
Einstein relations, from the integrated no-phonon
absorption in a sample of known concentration,
and the observed ratio of the total emission rate
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The samples of KMgF3: Co ' were those used in
a previous study of the Jahn-Teller effect in the

T~ excited term. Co ' concentrations of 0. 03
at 0. 1 at. '% were used. Over most of the temper-
ature range both concentrations have identical
lifetimes. Above 400 K the fluorescence of the
0.03-at. k sample was too weak to measure, while
below 77 'K the lifetime of the 0. l-at. % sample
was perceptibly shorter. Furthermore, below
15 K the apparent lifetime of the 0. l-at. % sample
lengthened slightly, presumably because of radia-
tion trapping. We have used only the 0. 03-at. %
data below 77 K.

Fluorescence was excited by an argon-ion laser
emitting about 1.3 W in all lines. The beam was
chopped mechanically at 300 pulses per second.

0 0

0 OO
o

IO

10
0

I

100
I I I I

200 300 400 500 600
T(K)

FIG. 3. Inverse lifetimes (decay rates) of the T2 state
of Co ' in KMgF3, as functions of temperature. Full
circles: observed fluorescent decay rate m; open circles:
radiative decay rate ~R (see text).
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FIG. 4. Nonradiative decay rate of the T2 state of
Co ' in KMgF3. Circles and vertical bars: nonradiative
decay rate deduced from the data of Fig. 3; full line:
decay rate deduced from Eq. (16), with 80=2. 0, and the
energy gap varying with temperature as observed; dot-
ted line: the same with $0=2. 0, and the energy gap fixed
at its O'K value; dashed line: Eq. (5), with r=l8, So
=2. 0.

to that in the no-phonon line. For one sample the
integrated absorption f adv in the T, (I'6)- Tz (I', )

no-phonon line was found to be 10+1 cm 3. Spin-
resonance measurements on this sample gave a
Co~' concentrations of (7+1.5)x10' ions/cm .
The Einstein relation for' a magnetic dipole tran-
sition can be written

NP Bv l4~(gi/gR)c 1 (1)

Here av» is the emission rate in the no-phonon

line, v is the wave number in cm ~, p,„ is the re-
fractive index (l. 4 for KMgF, ), o(v) is the absorp-
tion cross section a(v)/N, and gq/gz is the ratio of
the upper- to the lower-state degeneracy. Equation

(1) gives

M)wp = 11 + 2. 5 sec ~

The ratio of the total emission (measured in pho-
ton, not energy, units) to that in the no-phonon
line at 1.6 'K was found to be 21+1. Thus the ra-
diative decay rate at 1.6'K is wa{1.6)=230+ 50
sec '.

This value of ~ is, as we shall see, rather
larger than expected from purely magnetic dipole
transitions. The discrepancy is due to phonon-
induced electric dipole transitions. Thus MIR

might be expected to increase somewhat with tem-
perature. The temperature dependence is diffi-
cult to measure directly, since the no-phonon line
ceases to be clearly distinguishab], e from the rest
of the emission band above about 100 K. Instead
we measured the integrated 4T~ —T'3 absorption

as a function of temperature. Making the reason-
able assumption that the temperature dependence
of se„ is the same in emission and absorption, we
obtain the values for ~ indicated by the open
cixcles in Fig. 3.

The nonradiative decay rate se» given by m»
= se —zo„, is plotted in Fig. 4. Only a representa-
tive selection of points below 100 'K is shown. Be-
cause of the uncertainty in the Co ' concentration,

~ is less accurately known than se; hence u»
is rather uncertain at low temperatures, as in-
dicated by the error bars.

8. Temperature Shift of Energy Gap

Since the calculated nonradiative decay rate de-
pends strongly on the energy gap, we need to know
the gap as a function of temperature. The no-pho-
non line is not distinguishable above 100 'K, but
we can find the change in its position with reason-
able accuracy by measuring the shift of the cen-
troid of the absorption band. If quadratic electron-
lattice coupling is not important, so that there is
no change in the average effective phonon frequency
upon excitation of the Co~' ion, the separation of
the centroid from the no-phonon line should be
independent of temperature.

%e can estimate the contribution of quadratic
coupling as follows: It can easily be shown by
semiclassical arguments that the mean of the
centroids of the absorption and emission bands,
et 0 K, differs from the no-phonon energy by an
amount proportional to the quadratic coupling.
The observed mean at 30'K is 6935+ 35 cm ', not
significantly different from the no-phonon energy
of 6920 cm '. The frequency shift on excitation
must be less than 5/q, producing a negligible shift
of the band with temperature.

The centroid of the absorption band is plotted
against temperature in Fig. 5. Part of the ap-
parent shift is due to the redistribution of the pop-
ulation over the spin-orbit split levels of the ground
state. The open circles in Fig. 5 show the re-
sult of correcting for this effect. The corrected
shift is found to be proportional to the thermal
dilatation of the lattice, 5l(T)/f, as shown by the full
line. The proportionality constant is V. 5X10
cm ' per unit dilatation.

This proportionality is to be expected if l.attice
anharmonicity is the cause of the shift. The
proportionality constant can be predicted from
the shift of the mean position of the no-phonon l.ine
under uniaxial stress, which is 0.46 cm ' kg '
mm .6 Combining this with the known elastic con-
stants of KMgF~' gives a predicted shift of 3
X10 &f/f cm '. The observed shift is 2& times as
lax'ge. Since we have eliminated quadratic cou-
pling as an important contributor to the shift, we
must suppose that the anharmonicity in the region
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later.
For the purposes of illustration, we begin with

the hypothetical case of a singLe, discrete, totally
symmetric vibrational mode of frequency ~p. The
vibronic spectrum associated with such a mode
has the well-known "Pekarian" form at 0 K 3:

g(r)=e OS'! .
Here x is the number of phonons emitted in the
transition, so that for a nonradiative transition,
0= r(dp Sp is the Huang-Rhysparameter which
specifies the strength of the electron-phonon cou-
pling, and is equal to the mean number of phonons
emitted in a radiative transition at 0 K. Equation
(3) describes a line spectrum, g(r) being the nor-
malized integrated strength of the rth vibronic.
If we assume that each vibronic is broadened an
amount of order a&0, Eq. (3) becomes

g(Q) =e
oSO /&uoI'(r+ 1) (4)
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with r=Q/&uo. Equation (4) gives quite a good ac-
count of many observed spectra.

At finite temperatures, Eq. (8) is replaced by"

FIG. 5. Centroid of the T~ —T2 absorption band as
a function of temperature. Full circles: measured cen-
troid; open circles: centroid corrected for the redistribu-
tion of population in the ground state; full line: the curve
E=7740 —7.5 x10 (~l/l), where &l/l is the thermal dilata-
tion.

g(r) = (e eoS'/r! )F„(T,So),

where

(6)

F„(T,S0)=e &r!S0~(1+n-~)" I„(2SO[n(n+1)]'~ )

of the Co ' ion is considerably l.arger than in the
crystal as a whole.

III. THEORY OF MULTIPHONON TRANSITIONS

The rate I)» of nonradiative transitions between
two electronic states I j) and !i) separated by an
energy IA is given by the Golden Rule

auNa =8w~c ~M~~g(Q) (2)

where M = (i!K!j) in cm, g(Q) is the density of
vibronic states in the final state, and 3C can be any
operator which connects states i and j. In the
present case, Y represents the spin-orbit inter-
action. Vibronic coupling to nontotally symmetric
modes will be shown to be less important for the
transitions considered here. Chief interest cen-
ters on the calculation of g(Q). We shall find that
this is not a simple task, and requires many sim-
plifying approximations. '

Two approximations which are basic to most.
calculations of g(Q) are the following: (i) the sys-
tem is harmonic, and (ii) the electron-phonon
coupling is linear (i. e. , there is no change in the
vibrational frequencies as a result of the electronic
transition, only a displacement of the origin of the
vibrational coordinates). We will return to the
question of the validity of these approximations

A, ((o) =
2

Z a, 6((o —(u, ) (8)

The Huang-Rhys parameter for this spectrum is

(6)
Here 1„(y) is the modified Bessel function of order
r, and n=(e""~"r—1) ', the mean thermal occupa-
tion number of the vibrational mode. For small
n and So, and large r, Eq. (6) reduces to

F„=(1+n),
which is the expression used by Riseberg and
Moos. Equation (7) has an obvious physical in-
terpretation in terms of the induced and sponta-
neous emission of phonons, absorption and reemis-
sion being neglected.

This theory has been extended by Gummel and
Lax ' and by Pryce' to take the continuous nature
of the phonon spectrum into account. We follow
Pryce's formulation here. A phonon is described
by an index a, a frequency co, and a coupling co-
efficient a which represents the displacement of
the origin of coordinates of the mode by the elec-
tronic transition. Then the effective phonon spec-
trum is
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Equation (4) is to be replaced by

g(Q) = e oo P A„(Q)/rl,
T=o

(10)

where A„(Q) is the result of convoluting A&(a&) r
times with itself:

A„(II)= f A„g((u )A, (A —ar ) d(u . (11)

At finite temperatures, Eq. (10) holds with A„(v)
replaced by B„(&o), where

B,((o) =A, ((u)(1 —e " "r) ',
B„(Q)= f B„,((u')B, (A —(u') d(o'

and A, ( —ru) —= -A, (ar). [Note that B, in Eq. (12)
differs by a factor S from Pryce's definition. ]
Correspondingly, So is replaced by S(T), where

S(T) = f B,((u) d(o

A, (&u) coth(h~/2kT) dv
0

(13)

The convolutions in Eq. (11) can, in principle but
with great labor, be done to arbitrary r; how-

ever, the problem can be greatly simplified and re-
duced to closed form by use of the central limit
theorem. This teLLs us that for large r, B„(Q)
can be approximated by a Gaussian:

B( f)l-(2wr y)
~ exp[ —(II —rx) /2ry ], (14)

where

x=S f +B, (&u)d(u

and

y = So f „~o Bi (ar) d~ —x

In terms of the effective phonon spectrum,

x = So&(u&/S,

where

((d& = So f (dA ~(tu) d(d

and

y = S f &ooA&(tu) coth(@cd/2kT) dw —x
0

(14a)
As T increases, x decreases steadily; y initially
decreases, but for kT K&&u& it levels off at a
limiting value of about twice its 0 'K value. The
high-temperature limits are

S(T- ~)= 2So&&u '&kT/h,

x(T- ~) = h &(o&/2&(u ') k T,

y'(T- )=&& &/&~'& —x',
where

&&u-'& =S f (u 'A((u)der .
For Large r, the sum in Eq. (10) can be replaced

by an integral. This integral is found to be'3

exp[ —S+ 1+r + u(1 —u/r )x /y ]
{n"r [x'+ 2y'(1+ Lnr /S)])'"

(16)

where u = 0/x and r is the solution of

u = r {1+ 2[in(r /S) + r '] y /x ] ' ~o (17)

g (II) g(2vE kT)-& n e-sg ter (19)

where E„=(kQ —E,)a/4E, . Equation (19), when
substituted in Eq. (2), gives the thermally activated
nonradiative decay rate predicted by classical con-
figuration coordinate arguments using a harmonic
potential. "

Englman and Jortner' have shown that for suf-
ficiently large So, Eq. (19) holds at all tempera-
tures, with T replaced by P", where

T" = (k~/2k) coth(hru/2kT) (2o)

This is the mell-known "semiclassical" result.

IV. APPLICATION OF THEORY TO EXPERIMENT

In a static lattice, of cubic symmetry, the only
operator connecting the T~ and T& states is the
spin-orbit interaction. Its squared matrix cle-
m'bnt, averaged over the substates of Tz and
summed over those of T, (F), is o4& where g

is the one-electron spin-orbit coupling param-
eter. ' For Co ' in KMgF~, &=500 cm . Note
that since this is an off-diagonal matrix element,
it is not quenched by the dynamic Jahn- Teller ef-
fect. ' Thus the spin-orbit contribution to C Ml

[There is a typographical error in Pryce's expres-
sion equivalent to Eq. (17)]. In Eqs. (16) and

(17), r is the value of r which makes the largest
individual contribution to g(fl). S is given by Eq.
(13).

At )ow temperatures, for most reasonable
A, (&u), x/y-2-4, and r approaches u if So is not
too large. At high temperatures y/x and S be-
come large and proportional to T. In the high-
temperature limit

r = S —1+x (zP —So)/2yo (T- a&),

Z(f1) = (2vSy )' ~ exp[ —(0 —So&op&a/2Sya]

(T- ) . (18)
This is the classical result: a Gaussian centered
at So&+& with dispersion Syo = 2SokT&&u)/Lf. In this
limit, So and &v& only appear in the combination

So&&a&, and E, = RSo&u&& is the stabilization energy due

to the vibronic interaction in the excited state (E,
is just one-half of the Stokes shift). As one expects,
the nature of the phonon spectrum is irrelevant in
the classical limit.

Equation (18) can be written in a form more ap-
propriate for nonradiative transitions:
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in Eq. (2) is 2. 6&10' cm
The contribution of symmetry-breaking vibra-

tions to lM! is

Ro l(4T, I VI4T~) I

vibl Q~

~D= +v p p . s L+28 (22)

where co is some average phonon frequency, p. is
the ionic mass, and V represents the electron-
phonon interaction. For the dominant E, part of the
interaction, (~T, I V I 4T2) can be estimated from the
known electron-lattice coupling in the T& and T~
states"' to be about 2PPP cm 'A ', whence, for
&u/2vc = 300cm ', IM„~I3-100 cm . Thusthedirect
contribution of symmetry-breaking vibrations is
negligible.

However, it would not be correct to leave sym-
metry-breaking out of the picture completely. We
see from Fig. 3 that the lifetime changes by less
than 5'%%uo as the temperature is raised from 1.6 to
50'K. The nature of the initial state, on the other
hand, changes drastically, since at 1.6 K only the
I', level of Tz is populated, whereas at 50 K the
I'8' level 10 cm ' higher contains 60% of the popula-
tion. Since IMI is four times as large for the 18
states as for I'~ or I'7, " and about 30'%%uo of the decay
at 1.6 K is nonradiative, we might have expected
a 50% decrease in lifetime. The reason this does
not happen, we believe, is that in a nonradiative
transition the spin-orbit levels are thoroughly
mixed up by the symmetry-breaking part of the
electron-phonon interaction. The appropriate ma-
trix element is (5/2p&u)'~~(4T2I Vl'T2), which is
about 700 cm '. 6 This is much greater than the
separation of the spin-orbit levels of Tz. For this
reason we give I M. I

~ its average value over all
the spin-orbit levels, rather than its value for any
particular level.

The T& term spreads over some 1000 cm ' be-
cause of the spin-orbit interaction, and we have
to decide what value of the energy gap SQ we
should take. We have to remember that the initial
state is strongly affected by the Jahn- Teller in-
teraction. Nonradiative transitions are taking
place in a region of configuration-coordinate space
where the E, (Jahn-Teller) distortion is large.
This distortion tends to quench the spin-orbit
splitting of T~. ' The appropriate value of SQ is
therefore the separation of the centroids of the T&

and T~ terms, rather than that of their nearest
spin-orbit components. This separation is 6300
cm'atp K.

We need a value for the Huang-Rhys parameter
This is most easily obtained from the ratio

of the strength of the no-phonon line to the total
magnetic dipole transition strength. The latter
can be calculated from the formula

I I I

200 400
m/2mc (crn )

600

FIG. 6. Effective phonon spectrum A&(+) for Ni + in
KMgF3, deduced from the magnetic dipole phonon side-
bands of the T2 A2 emission.

where p„ is the refractive index (1.4), and P is the
mean wave number (in cm ') of the emission. The
sum of matrix elements is calcul. ated from the
known wave functions of Co ' in KMgF3 to be
14.5k, where k is the orbital reduction factor,
approximately 0. 9 in KMgF3. ' This gives ~D
=170+15 sec '.

In absorption, one-half of the no-phonon strength is
in j. ,- I'6 transition; the total emission rate in no-

phonon lines is 22+ 5 sec '. This is a fraction
e 0 of the total magnetic dipole emission; hence

So = 2. 0+ 0. 25. While the temperature dependence
of zv» is not very sensitive to So, the absolute
value is, and the 10% uncertainty in S~ leads to an
order of magnitude uncertainty in wNa (0).

The next step is to obtain an effective one-phonon
spectrum A, (&u) from the observed vibronic side-
bands. Because of overlapping transitions to dif-
ferent spin-orbit levels of T„ it is difficult to
extract this information from the Co ' data. Figure
2 shows that the vibronic peaks are much the same
for Ni~' as for Co2', and we use the magnetic
dipole part of the Ni~' vibronic spectrum. So is
sufficiently small (about 1.2) for Ni~' for there to
be no difficulty in deconvoluting the spectrum to
obtain A, (&u), shown in Fig. 6.

The temperature dependence of S/S0, x and y,
obtained by integrating Eqs. (13) and (14a) numer-
ically, is shown in Fig. 7. (We note that the high-
temperature limits, S~ T, x~ T, y -const, are
all reached within our temperature range. ) We
substitute these parameters in Eqs. (1.6) and (17),
with $0=2 and u=Q(T)/x, where Q(0) =6300 cm
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FIG. 7. Quantities g (T), y (T), and S(T)/Sp, deduced
from the spectrum of Fig. 6.

and Q(T) drops off with T according to the full line
in Fig. 5. We obtain the full curve for w~ (T)
given in Fig. 4. This curve has been normalized
to the data at 0 K; in fact the predicted value of

uzi(0) for SO=2. 0+0. 25 is in the range 103 to
5 ~ 10 sec ', compared with the observed value of
about 100 sec . This discrepancy is in direction
expected for anharmonicity (see Sec. V).

In a strictly harmonic lattice, with linear elec-
tron-phonon coupling, there can be no shift of the
energy gap with temperature. The result of taking
Q constant in Eq. (17) is shown by the dotted line
in Fig. 4. There is a discrepancy of a factor of
30 at 550 'K. Clearly the bulk of the anharmonic
effect is taken into account by our ad hoc proce-
dure of giving A its observed variation with tem-
pe ratur e.

It is of interest to compare the results of calcu-
lations using the continuum theory with those ob-
tained from Eqs. (4)-(6), which are based on the
assumption of a single effective vibrational fre-
quency. With our parameters, Eq. (16) gives
2vcg{Q)=3&&10' cm at O'K. This is close to the
value obtained from Eq. (4) with an effective fre-
quency +0/2vc = 350 cm ', corresponding to r= 18.
The temperature dependence of g{Q), obtained
from Eq. (6) for this value of r, is shown by the
dashed curve in Fig. 4. Notice that this curve is
for fixed 0, and that above 100 K it varies much

faster than the corresponding curve (dotted) for the
continuum. To match roughly the temperature de-
pendence over the range 200-600 'K we need r= 15
or 16, correspondingto ~J2vc =400 cm '.

Another effective frequency can be obtained by
considering the "energy-gap law. " In a wide range
of organic molecules, ' and also for rare-earth
ions in crystals, 3 the nonradiative transition rate
depends exponentially on energy gap: coNa(0) ~ e "",
for large ~. Something like this is predicted by

A = &u~'[1n(r/So) —1] (24)

The results of using the continuum theory [Eq.
(16)] are shown in Fig. 8, for three values of So.
The energy gap law holds approximately, and is
best for small Q, as expected. An effective fre-
quency can be found by substituting the slope at
(say) Q/2vc = 600 cm ' into Eq. (24). We find coo/

2 ' = 300 cm ', independent (within + 5%) of Q.
This is close to the mean frequency of the phonon
spectrum used, which is 285 cm '.

Thus we obtain three different "effective" fre-
quencies; roughly 300 cm ' from the energy-gap
law, 350 cm ' from the absolute value of g(Q), and

400 cm ' from its temperature dependence. All
of these are well below the maximum available pho-
non frequency, which is about 550 cm ' (see Fig.
6). There is a widespread belief that only the high-
frequency vibrations matter in multiphonon transi-
tions. '3 This is thought to follow from the fact
that the transition rate drops off rapidly with in-
creasing x. Our calculations show that, for the
parameters used here, this belief is mistaken.

io-"-

IO
-l 5

E
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0-20

-30
0 2000 4000 6000 8000

Q/27rc (cm '
)

FIG. 8. "Energy-gap law" in the continuum model;
g(Q) for T = 0, calculated from Eq. (16) for three values
of Sp plotted against 0/271c.

the single-f requency theory, since, if we use
Stirling's formula for r!, Eq. (3) becomes

g(r) ~ (2vr) '~~ exp[ —r(lnr- ln80 —1)], (23)

where r = Q/&oo. Since the preexponential term and

the term in brackets are both slowly varying when
r» Q, the energy-gap law holds approximately,
with
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V. EFFECT OF ANHARMONICITY ON VIBRATIONAL

OVERLAP I'+ o

The dominant contribution to the overlap integral.
comes from regions of configuration coordinate
space very far from the origin. %e might expect,
therefore, that anharmonicity shouM have a large
effect on the integral. While it is noi practicable
to cal.culate this for a solid, we can get a feeling
for the effect of anharmonicity by considering a
diatomic molecule at 0 'K.

%e assume that we have a diatomic molecule
with two electronic states. In the ground state, the
nuclei move in a Morse potential

io IO

~o
L

O
Ch

0)

-6~ IP

o

o o

V(q) = h (u(1 —e ~)~/2a~ (25)

Here ~ is the classical frequency of small vibra-
tions; q is the displacement, measured from its
equilibrium position, in units of (If/pa)' +, where
p, is the reduced mass; h&u/2a is the dissociation
energy. We assume for simplicity that Eq. (25)
also holds in the excited state, with q replaced
by q-qo and Vby V-SA, where

fl /&u = r —,' a (r+ -', )—

I I I

0
I I I I I I l I I

FIG. 9. Effect of anharmonicity on the overlap factor
of a Morse oscillator. The ordinate is the ratio of g(&)
to its harmonic value. Insert: schematic configuration
coordinate diagram for qo & 0; full lines: Morse oscilla-
tor; dotted lines: harmonic oscillator. For qo& 0, the
important region of overlap is q &qo, and the over1ap is
decreased by anharmonicity. For qo & 0, the important
region is q &qo, and the overlap is increased by anhar-
monicity.

g(r) =!(0I r)!'
The overlap integral is given by 3

(0~r)=(-1)"X„e-'"(1+5) - P C„(f" .
m=1

Here N„=(~)(l —2r/p), p=2a ~ —1, ~=aqo/2,
&=-tanhx, and

(25)

whence

Diatomic fluorides of divalent metals all have
dissociation energies of roughly 508~, 6 so we
take g = 0.1. With So = 2 and qo positive, we obtain

(27)

lt is essential. that the sum in Eq. (27) be evaluated
al.gebraically, since for large r and p there is
gross cancellation, roughly r significant figures
being lost on numerical summation. The sums
for r —3 are given by Jarmain and Fraser. A
general formula can be obtained with the aid of the
identity '

the values of g(r) (expressed in units of the corre-
sponding harmonic value, e eoS& /r! ) shown in
Fig. 9. The rapid falloff as r increases is a con-
sequence of the fact that for qo & 0 the Morse curves
are more widely separated in the region of overlap
than the corresponding parabolas (see insert in
Fig. 9). Thus we might expect multiphonon tran-
sitions with r-15 to be a factor -10 slower than
calculated from the harmonic approximation. The
effect is likely to be less pronounced in a solid,
where the potential curves cannot possibly be as
flat as Morse curves at large displacements. The
observed rate in KMgF3:Co, -10 ~ slower than
calculated, is perhaps reasonable.

A long-standing puzzle in this field has been the
nonradiative E- A3 decay rate of ruby
(A120~:Cre'). This transition is weakly coupled to
the lattice, with So «0. 25. In the harmonic ap-
proximation, soNa-2v(P/5 &u)e e0$$/r! and with
So=0 25, r=20, this gives sv„„-10' sec '. The
observed rate at low temperatures is 26 sec '.
For this transition qo is negative, since the energy
gap decreases under hydrostatic compression. 7

For negative qo with the above values of So and r,
Eq. (24) predicts the value of ! &Ol r)!~ to be 10 '
times its harmonic value, more than enough to ac-
count for the discrepancy.

This calculation confirms the assertion of
Makshantsev that anhaxmonic effects can have an
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enormous effect on nonradiative decay in a di-.

atomic molecule. We do not claim that it is quan-
titatively applicable to solids, even as to order of
magnitude. However, it does confirm one's intui-
tive judgement, that the decay rate is decreased
by anharmonicity if tIo is positive, corresponding
to an increase in the equilibrium internuclear dis-
tance in the excited state, and increased if qo is
negative.

VI. CONCLUSIONS

dependence of the nonradiative decay rate u» can
be accounted for over nearly four orders of mag-
nitude, provided that we take anharmonic effects
into account by giving the energy gap its observed
dependence on temperature. The absolute value
of sv» is not correctly predicted, but the deviation
is inthedirectionexpectedfor anharmonicity. An-

harmonic effects may also account for the enormous
discrepancy between theory and experiment in the
nonradiative decay of the E state of ruby.

We have set out to test how well the harmonic
continuum theory of multiphonon vibronic transi-
tions can account for the nonradiative decay of the

Ta excited state of Co in KMgF3. In this theory
anharmonic effects and quadratic coupling are
neglected, and the phonon spectrum is character-
ized by two parameters, the mean frequency and
the dispersion. We find that the temperature

I am most grateful to H. M. O'Bryan for mea-
suring the thermal, expansion of KMgF3; to H. J'.

Guggenheim for providing the crystals; to H.
Englman, M. Lax, and J. Van der Ziel for helpful
discussions; to B. F. Levine, F. R. Merritt,
and J. Van der Ziel. for the loan of equipment; and
to E. A. Sadowski for help with the experiments.
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