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Theoretical Evaluation of the g Shift in the Alkali Metals, Li, Na, K, Rb, and Cs
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The spherical-wave-expansion procedure has been used to solve, in the spherical-cell ap-
proximation, the one-electron Schr5dinger equation containing the spin-orbit interaction, and
the results have been used to evaluate the g shift in Li, Na, K, Rb, and Cs. Convergence of
the numerical work is clearly demonstrated. The cellular potential seen by the conduction
electron has been taken to consist of a local ion-core potential plus the Hartree fieM of the
other conduction electrons, assumed uniformly distributed. This model, with the choice of
local potentials made in the text, yields calculated values in good agreement with observed
values for Li, Na, and K. However, there is a large discrepancy between the results of this
model and observation for Hb and Cs. Possible sources of this discrepancy are discussed.

I. INTRODUCTION

Recent measurements ' of the conduction-elec-
tron g shifts in rubidium and cesium indicate that
some corrections must be made to the theoretical
determination of this quantity. Corrections, of
course, can be made either to the theoretical for-
mulation of the pxoblem or to the numerical eval-
uation of existing theories. It is this latter aspect
that is examined herein.

Rather extensive numerical work has been car-
ried out by Bienenstock and Brooks. 3 We comment
that an earlier cesium measurement disagrees
with all later values. Chly two modifications to
the numerical work, these being for lithiums and
sodium, have been made since. %e investigate
one of the possible sources of the discrepancies
suggested in Ref. 3, namely, that the k power-
series expansion of the one-electron wave function
may be slowly convergent. Slow convergence of
this expansion has been noted in the evaluation of
other properties. ~'8

The theoretical formulation of the g shift due to
the conduction electrons was initiated by Yafet
and gradually developed, ' ' with the latest work
being by de Graaf and Qverhauser. '3 %e use the
equations as written down in Ref. 3.3.

The first step3 in the evaluation of the g shift is
to solve for the wave function of the one-electron
Hamiltonian including the spin-orbit interaction
[e.g. , see Ref. 13, Eq. (3)],

H= +V(r)+ 3 z [o&&vV].p .=
p' 8

Since we do not wish to confuse the results of a
model and the numerical approximations we use
the single model where V(r) is taken to consist of
a local ion-core contribution plus a Hartree-field
contribution from the other conduction electrons.
This latter field is taken to be that of a uniform
charge distribution equal to the conduction-elee-

tron charge. Bienenstock and Brookss have con-
sidered alternative models in which they allow for
the inclusion or omission of a slightly different
Hartree field. It has been retained here on the
basis that it is physically reasonable to include some
such effect as it appears necessary in other cal-
culations. ~ Further, since the Fermi surfaces of
the alkali metals are nearly spherical and the net

g shift is given by a Fermi-surface average, the
spherical-cell appx oximation is made at the outset.
One does not anticipate this approximation intro-
ducing a significant error and it is tacitly assumed
in all previous calculations. In Sec. II the solu-
tion of Eq. (1) is obtained using a modification of
the spherical-wave-expansion procedure' to in-
clude the effect of the spin-orbit interaction. The
solution in this form is readily accommodated on
a computer and eonvergenee of the results ascer-
tained.

The second step is to use the solutions obtained
above to evaluate the g shift [e.g. , see Ref. 13,
Eq. (30)],

2 8e , 8n
~g(k) =- v",„, „v,*—„, +[~g(k)]"QSg(k)]"'

h 8k„ 8ky

2
+ I [XO&ot v0&0& VOtat v0&0&] + 3[xoto& ~y VO&0~ ~el

(2)
The various terms will be defined in See. III where
they are reduced to forms that can be evaluated
using the results of Sec. IL

The numerical results and analysis are presented
in Secs. IV and 7. Note that the calculations have
been carried out for lattice constants at 20 C ex-
cept for cesium which is at —10 C. This was
simply a matter of convenience in using tabulated
values. The volume dependence in going to low
temperatures (generally, 5 'K) was checked and
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found to be insignificant (less than + 5/o in the g
shift). This is consistent with Ref. 3 over the
same range.

Good agreement is obtained between the observed
and calculated g-shift values for lithium, sodium,
and potassium. However, a large discrepancy
still exists for rubidium and cesium. This work
confirms the general character of the earlier cal-
culation and shows that the discrepancies do not
arise from any numerical inaccuracies. Also,
the method presented is applicable to a number of
alternative models.

II. SOLUTION TO THE SCHRODINGER EQUATION
CONTAINING THE SPIN-ORBIT INTERACTION IN THE

SPHERICAL-CELL APPROXIMATION

and is the standard one-electron equation; here

H = —V, +U(p). (5)

The solution of this equation in the spherical-cell
approximation has been discussed adequately
elsewhere ' ' and hence we merely summarize
the relevant results in what follows. The solutions
are of the form

(6a)

and

As previously pointed out, the first step in eval-
uating the g shift is to obtain a solution, in one
form or another, of sufficient accuracy to the
Schrodinger equation, Eq. (1), including the spin-
orbit term. Throughout, we shall measure length
in atomic units p = r/ao, where ao= lf /me is the
Bohr radius, energies are in rydbergs, W=E/
(me /2)f ) and U= V/(meo/2I ). Also, the com-
plete calculation will be carried out in the spheri-
cal-cell approximation of the Wigner-Seitz unit cell.
The conversion of Eq. (1) to the prescribed units
and the spherical approximation yields

H = —V, + U(p)+ — o
n' dU(p)
4p dp

where (2 = ea/gc is the usual fine-structure constant
and L = L/k, L being the usual angular momentum
operator. Since the g shift is to be calculated to
first order in a we look for a solution using a as
the expansion parameter.

The zero-order equation is readily written down,

where the FL's are the usual normalized spherical
A A

harmonics and p. =0 ~ p is the cosine of the angle be-
tween the vectors k and j5. The radial functions
are normalized in the Wigner-Seitz sphere and are
solutions to the homogeneous radial equations

d 2 +U(p)+ 2
—W (k) PFa 0. ——d L(L+1) o o

dp p

The eigenvalue W (k) and the coefficients Ca(k)
are determined by the normalization condition

(8)

Z [C (k)] =1, (9)

~(pep

Bp
p-' (p) e ia'() -yo g)

gp kS
O=P 0

(10b)

before the series, Eq. (7), is truncated. The
solution is tested by the accuracy by which the
boundary condition, Eq. (10a), written in the form

L 0 0
L=o( ) zl+1 21+) 22+1(P cot(k, 1) ) 1 (1 1)
Ec,=o( ) Caw Far, Yaz. (P)

is satisfied.
Before discussing the first-order equations, we

remark that all matrix elements of the form

(P
~

— o'L
~

(t) ) -=0
Rs 4p dp

(12)

where the integration is over the Wigner-Seitz
sphere. Hence there is no first-order contribution
to the energy and also no mixing of the degenerate
levels so that the usual nondegenerate perturbative
expansion is valid. Equation (12) follows from the
angular integrals

fYoa, (p) L,Ya( p) sin8, d8, dg,

6„,Zm
~
Y,"(k)('=0, (12}

where the argument k denotes both angular factors.
The above result is most simply obtained using
the spherical-harmonic addition theorem,

and the Kohn variational equations. " We remark
that in the spherical approximation the Kohn varia-
tional equations represent an optimization of the
spherical-cell boundary-condition equations; that
1S~

(10a)

and

0-'„o))=l())(' N),

where in the single cell

(t-„'(W=+ 2 C (k)F'(W (k);P)Y (P).
L-"0

(6b)
and the usual orthonormality properties of the
spherical harmonics. The same results follow
for L, and L„ from the rotational properties of
these operators and the spherical harmonics.

We are now ready to discuss the first-order
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equation which will be

[H —W j p-„(j5)+& o L'p- (p) =0. (15)o i 1 dff(p)- - o

First, from the above discussion and the fact that
P' must be orthogonal to P we know that f' has
no admixture of either spin-up or spin-down zero-
order wave function. Second, since the operators
L, (i = x, y, z, +, —,whichever is appropriate) all
commute with H and the radial function in the in-
teraction, then the components of P' can be writ-
ten in the form L, g-'(P). Finally, on application
of the boundary conditions we find that only a sin-
gle g-'(j5) occurs for all four components possible
in the spin-up and spin-down wave functions. Thus

P- (j~)=~
~

0 (P)+-~ o L~ 0 (0)+-~ ~, ~ (16)o o-" t'1

gt
I 0~ g ~0

P-, is given simply by reversing the spinor
throughout.

Substitution of (16) into (15) and removal of the
angular momentum operator yields a differential
equation for tj-'(P). The spherical symmetry per-
mits us to write

im e 'o' —tj-' =0
8P, If

(20a)

8 8
Re e-"' —y.' =O.

Since these equations are independent of L, they
are identical for all the components of the first-
order solutions, thus proving our earlier asser-
tion that only the single function g-„' occurs. Equa-
tions (20) can be reduced to

(20b)

ergy, for an aribtrary number of terms in the ex-
pansions, with the now available present-day com-
yuters. Thus convergence of the numerical re-
sults can be ensured.

Finally, to complete the analysis, the bounda, ry
conditions, Eqs. (10), must be applied to first or-
der in ot . Notte that they are satisfied to zero
order in n by the ehoiee of the CL's. Now» since
the operators L& act only on the angular compo-
nents, the factors L; p, , which will aypear through-
out, can be removed from both sides of the equa-
tions. When this is done, Eq. (10) reduces to

{(,'(0) = & ~' C.(k)F.'(W'(k);p) F'.(p),
L-"a

g a» [Ef+ n, Fo~], = 0, L even
!=a

(2ia)

where we notice that the L = 0 component must be
absent. The EL s satisfy the differential equation

—~ ~U(p)+ o
—W (k} pEI, +——&1,=0.do L(L+1), 1 dU o

dp p 4dp
(is)

The solutions for EL will be of the form

EI', = EL+ &LEL» (19)

where EL, the zero-order solution, is the com-
plementary function in this case and E~~ is the par-
ticular solution. The nL's must be chosen so that
the boundary conditions are satisfied. %e remark
that all the components of the first-order functions
satisfy the same differential equations and the
boundary conditions give the same equations for
the aL's, and hence we conclude that only the sin-
gle g-„occurs.

Notice that using Eq. (13) one sees that the solu-
tion, Eq. (16), defined by Eqs. (7) and {17)satis-
fies all the orthonormality relations to first order
in a . Further, the form of the solution obtained
here is identical to that presented by Bienenstock
and Brooks3; however, the authors feel that the
present derivation is considerably simpler and
more concise than theirs. Also, the above solution
is the general solution, reducing to that of Bienen-
stock and Brooks' only when the C~(k)'s and the
E~(W(k); p)' s are expanded in power series in k.
It is on this last point that the major difference
occurs between the bvo works. The solution writ-
ten in our form is readily solved, at a given en-

and

8 p 8Q u —F~+nLl
gp j l ep

where

Eg =0» L odd
Po

(21b)

f(l+1) ~', , , (2l +1)

L+1+a
x 1(f'f —i ooI I,o)

I
oA, (kp) — 2 f'(- i)'"~'

S'= lL-r-a l,2

[
(f'/+1 00[LO) )'g, ,(kp) . {22)

The j,,'s are the usual spherical Bessel functions
and the (f'f 00 ~LO)'s are the usual Clebsch Gor-
dan coefficients. Equation (21) constitutes a set
of linear inhomogeneous equations for the n, 's
and hence the solution is completely specified.

The solution is obtained by choosing a particular
cellular potential and numerically integrating the
necessary differential equations and solving for
the coefficients. In all instances the cellular po-
tential was taken to consist of an ion-core contri-
bution plus the Hartree field of the conduction elec-
trons, whose charge density was apyroximated by
an equivalent constant-charge density.

III. REDUCTION OF THE g SHIFT EXPRESSION TO
TRACTABLE FORM

The next step is to rewrite Eq. (2) in a form ap-
propriate for the solutions of Sec. II. The various
terms will be collected in a way to facilitate com-
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parison with previous calculations. Since the cal-
culations are being carried out to first order in e2
all higher-order contributions will be ngelected.
Further, of the first-order terms a number will

be such that their Fermi-surface averages are
zero and hence can be omitted.

Rewriting Eq. (2) in terms of the P's yields,
notice the subscripts can be suppressed,

Sg(k) =[qg(k)] +[Sg(k)]"+[Sg(k))'"+2 p (xfr, y&,-)pd r+2 i
k (&„]- s'g

+2H~)b, ]-b)ls.k]-2s I, 4'Iv. &-I k
&' Is & "'

)
" (8k )

where (oj for an operator 0 denotes

(o]=f 4'oyd' (24)

&= (1/g) v= —iV+ —,aso&&V U. (2S)

In this form Sg(k) is clearly dimensionless and
hence can be evaluated in any system of um. ts.

The first term in Eq (23}.are all those terms
containing the phase angle a(k) and has a Fermi
surface average of zero. '3

The second term is given by

and the integrations are all over a unit cell. Also

, ~ M'I I."(k)I'=-'L(L+1)»ns8
2K+1 „ (30)

the zero-order and first-order parts of the wave
function and is

[ Sg(k)])=2 asf [gs L,g'+(L, g')*L,g ]sd rs

Pp
=4a sin 8 Q —,'L(L+1)CI, F/F~p dp.

(29)
The reduction is readily made using the addition
theorem, Eq. (14), and the relation

where

=a f p V, pdp

= a'[(Uj —W'(k)]+ ~ ~,

(U)=f 4 U(p)4 d p

U(p) 5 (C F')'p'dp.
L=p

[Sg(k)]"= —,, f

y'pseud'r

(26)

(27)

(31)

where

s y-'ds—rp k t . 8

k„~ 8y

s (L+ 1)Cl, C/+,
PO (2L + 1)1/s (2L + 3)1/2

The fifth term in Eq. (23) has a linear term in
a resulting from the product of a first-order con-
tribution of (i 8/8k, ) and a zero-order contribution
from {s,). The net result can be written as

[Sg(k}]g,= —2 a A, A,'sins8,

The third term is at least second order' in e .
The fourth term can be reduced to a number of

terms, only bvo of which are first order in n . The
first one arises from the n2 component of fr and is

[qg(R) ''Iu'f y" x —+y —rr, y's'»

0 0-
FD 8FL+1 Fs 8FL (32'L 8p L+1 8p

Pp

The reduction to the surface values follows direct-
ly from the differential equations satisfied by the

&2 $04 p gp sin28
TABLE I. Lithium: boundary-condition check and the

Fermi energy in Rydbergs as functions of L(max).

—[(—,
' sin 8 —cos 8)(i —p )])d p,

where 8 is the angle between k and the z axis and
p=P ~ k=r ~ k. The Fermi-surface average of the
factor ~ sin 8 —cos 8 is zero and hence one has only
to evaluate

PQ

[+(k)](=—,
' a sin 8 p —Q (C/F~) p dp. (28)

dP LP

The second contribution arises from the mixing of

0
15
30
45
60
75

~ (Ay)

0.691
0.759
1.421
0.837
1.282
l.751

0.2954

1.050
1.075
1.035
1.170
0.992
0.832

0.2989

1.035
1.007
0.925
0.973
0.984
1.045

0.2985
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TABLE II. Lithium: convergence of the coefficients
Cl, (jh) as functions of L, (max).

L(L+1) Ca
" a FoFr a&

L~i
~/0

(33)

0.380 75
0. 894 35
0 21222
0. 082 31

—0. 058 02

0.462 05
0. 844 00
0.271 14
0. 006 44

—0. 002 60
—0. 02464

0.45424
0. 851 30
0.26040
0. 02327

—0. 022 46
—0.00770
—0. 007 36

radial functions F~ . Next,

A = ——~~' f i p+p i P d~r
k'- . 8 8 l

k„ . [ 8k„ 8k„

Notice that A,' causes [5g(k)]~a, to be proportional to
[5g(k)]v, Eq. (29), and that these contributions are
of opposite sign and tend to largely cancel

The last two terms in Eq. (23) can be combined
and reduced to a surface integral, ' namely,

if-dS ~ [Ptfr(FxV ),P+(wg)t(rxV ),P].
In the spherical approximation the 0. term in fr

gives no first-order contribution. Thus, the first-
order contribution is given by the mixing of the
zero-order and first-order parts of the wave func-
tion. Again this contribution has a part whose
Fermi-surface average is zero which is taken out.
The remaining contribution can be written in the
form

. a g L(L+1) LA(L —1, L)+B(L—1, L) (L+1)A(L+1,L) —B(L+1,L)
0f s2 2 (2L+ 1)1/2 (2L 1)1/z (2L+ 3)'"

where

(34)

~p 8FL, '~ —Fo BF
A(L +1,L) = 2 CrvrCr, Fr, (35)

B(L +1,L) = 2k —(Crv&Frwr) —(CrFz)+2k —(CryrFr~r) —(CrFr) ———(Cry fFr, ,r Cr Fr)P ~ 8 o 8 1 8 o 8 i k 8 o

k 8p ' ' 8k 8k ' ' 8p r 8k

8 1'
o 8F~ & 8FLi ~ 2 o—k —

~ Cr, „Fr,„Cr, +CrFrCryf rvrFrwlCrFr, ~ (36)
8k ( ' ' 8p p

This completes the reduction of the g shift to a
suitable form and only the evaluation remains.

IV. DETAILED NUMERICAL ANALYSIS FOR LITHIUM

The general behavior of the numerical results
is similar for all of the alkalis, differing only in
the rate of convergence with increasing number of
terms in Eqs. (7) and (17).and the relative sizes

of the various contributions to 5g. Hence, the de-
tails for only one of them, lithium, is presented
herein. The results for the remaining alkalis are
presented in Sec. V and an over-all survey is given
in Table VII.

For lithium, the lattice parameter' at 20 'C
yields xp= 3 26cp for the radius of the Wigner-
Seitz sphere. The Seitz semiempirical potential~7
has been used for the ion-core contribution to the

TABLE III. Lithium: overlap Integrala Jo+ Ez, F~ pr dp
as functions of L(max).

TABLE IV. Lithium: values of the radial functions and
their spatial derivatives of po and the Fermi energy for
1.(ma )=6.

0.0
—0. 251 32

0. 10709
0. 165 01

—0. 246 74

0.0
—0.250 87

0.064 70
2. 898 13

—2. 80428
—0. 13947

0.0
—0.25063

0.068 83
0.791 29

—0. 35943
—0. 306 33
—0. 125 70

0.26682
0.30341
0.41650
0.48904
0.54877
0.60133
0.64902

QP

Bp

—0.07588
—0.00616

0.18411
0.39036
0.62075
0.87462
1.15056

-0.03145
0.03203
0.38815

—0.19664
—0.18385
—0.08134

gy1

ap

0.03440
0.01788
0.31157

—0.22134
—0.26662
—0.14360
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TABLE V. Lithium: k derivatives of the end-point
values of the radial functions times the coefficients Cl, (k)
at L(max) =6.

TABLE VI. Lithium: contributions to (6g)~ and 6g as
functions of L(max), all x 10 .

—0.629 76
0. 152 51
0. 30149
0. 066 27

—0. 098 92
—0. 021 23
—0. 05469

0. 043 32
—0. 212 72

0. 08761
0. 049 55

—0. 10909
—0. 029 96
—0. 096 21

—0. 14024
—0. 001 42

0. 03817
0. 028 97
0. 010 94
0. 00661

L L ek L g~ L gk L L
8 8

ek CLS +L

0. 10132
—0. 000 84

0. 028 01
0. 031 54
0. 01562
0. 011 57

(6g)'
(gg) I s

(~g)~v

(6g).,',
(64)%
6g

0.061
—0.286
—0.267

0.163
—0.462
-0.791

0.064
—0.307
—0.235

0.163
—0.236
—0.550

0.065
—0.305
—0.238

0.163
—0.260
—0.575

ceU potential. There are, of course, other pos-
sibilities but this particular function was chosen
because it is convenient, it represents a reasonable
first approximation, and it has been extensively
investigated.

Table I contains the boundary-condition check,
Eq. (11), s.nd the Fermi energy W (kr) as func-
tions of the highest L value, L(max), used in the
wave-function expansions. Both these quantities
have converged well at L(max) = 6. Table II con-
tains a similar set of values for the coefficients
C~. The three dominant coefficients have essen-
tially converged at L (max) = 5. Coupling this result
to the energy convergence gives immediately that
the conduction-electron density and hence [5g]',
Eq. (28), and [5g]", Eq. (26), converge rapidly.
Further, these terms turn out to be relatively
small and thus less care needs to be taken in their
determination, except in lithium. This is in agree-

ment with Yafet's arguments.
The overlap integrals relevant for [5g]f, Eq.

(29), are given in Table III. Again, the leading
terms converge rapidly and the total expression
is given predominatly by the first two terms, by
virtue of the CL, factor.

The additional quantities needed in evaluating
[5g]~„Eq. (31), and [5g]$2, Eg. (34), are tabu-
lated in Tables IV and V, and the final results (i.e. ,
the Fermi-si. rface averages) for the g shift in Ta-
ble VI. Since the EJ.'s are normalized in the unit
cell and the energy is rapidly convergent their val-
ues are hardly affected by changing L(max). On the
other hand the E~'s, by virtue of their dependence
on the a~'s, that is, the boundary conditions, are
much more dependent on L(max). A measure of
this dependence is given by the overlap integrals,
Table III. Fortunately, for lithium, the leading
term dominates and the net convergence is good.

Our calculated result for the Margenau term
= (Q)' +(6g)", is —0. 24 x10 and is in fair

agreement with the estimate of -0.29&&10 made

TABLE VII. W~~ary of g-shift values, all x 10 . Only later more complete theoretical values are included for
lattice parameters near room temperature. Reference 3 contains four models, NP-H, NP-NH, P-H, and P-NH, listed in
in order below. The first is most comparable to the present calculation.

Metal

Lithium

Sodium

Potassium

Rubidium

Cesium

-10+ 2
-8+ 2
—6+2
—8+2

-41+ 5
-47+ 26
—25+ 1

-33+ 1
-39+ 1

-700 + 200
107+ 20
32+ 10

(23) (1954)
(21) (1955)
(20) (1960)
(22) (1966)

(25) (1964)
(30) (1965)
(26) (1966)

(1) (1966)
(2) (1966)

(4) (1956)
(1) (1966)
(2) (1966)

Experimental values,
reference, and date

—0.02+ 0.02 (29) (1963)
—0.61+ 0.02 (18) (1968)

Theoretical values,
reference, and date

0 ~ 44, —0.25& —0.42s 0 ~ 23
—0.54
-0.575

—7.0, —6.0, —5.9, —4.6
—5.0
-7.84

-26, -23, -14, -6
31~ 2

-110, —78, —10, +74
-150

-260, -110, +580, +770
—526

(3) (1964)
(5) (1969)
present

(3) (1964)
(6) (1970)
present

(3) (1964)
present

(3) (1964)
present

(3) (1964)
present
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TABLE VIII. Sodium: contributions to (6g) and 6g as
functions of L(max), all x 10 .

TABLE X. Rubidium: contributions to (6g)~ and 5g as
functions of L(max), all x 10 .

L(max) 4

(&g)'

(4g)"

+g)~v

(~g)sg

(~g)s,

0.12

-0.49

-4.58

4.21

—11.32

—12.06

0.11
—0.46

—4.28

4.32

—5.88

—6.19

0.12

—0.47

-4.48

4.45

—7.55

-7.93

0.12

—0.47

-4 47

4.45

-7.47

-7.84

(~g)'

(4g)"

(~g)s~

(15g)s2

0.2 0.2 0.2 0.2 0.2
—0.6 —0.6 —0.6 —0.6 -0.6
-39.7 -58.3 -56.9 -57.1 —57.1

35.3 55.2 53.4 53.7 53.7
—26.4 —160.7 —143.2 —146.1 —145.8
—31.2 —164.2 —147.1 —149.9 —149.6

by Overhauser and de Graafs for this term. The
sum of the remaining contributions, denoted by
@~, is -0.34x10~ and is somewhat larger than
the value —0. 25 &10 obtained by Bienenstock and
Brooks. 3 The net value, @=-0.58x10, is in
very good agreement with the experimental value
of —0. 61&&10 measured by VanderVen. ' This
result along with other investigations (e. g. , Refs.
7 and 8) imply that the above model represents a
reasonable first approximation for lithium.

V. NUMERICAL RESULTS FOR SODIUM, POTASSIUM,
RUBIDIUM, AND CESIUM

These remaining alkali metals are discussed in-
dividually below and a general survey is given in
Table VII.

Sodium. At 20 'C the lattice parameter'4 yields
a value for the Wigner-Seitz sphere radius ro
= 3.99ao. The Prokofjew' potential has been used
as the ion-core potential. The numerical results
are summarized in Table VIII and it is seen that
convergence has been achieved by L(max) = 5. The
analysis of the various terms is the same as that
for lithium. The final value of 5g is marginally
higher than that calculated in Ref. 3 (-7.0 x 10~)
and is considerably higher than the value in Ref. 6
(- 5. Ox 10 4). First, one can conclude that the
arguments made against the use of the Prokof jew
potential in this calculation are not valid. Second,

one sees that, when the present wave functions,
which are anticipated to be reasonably realistic,
are used, the surface terms are not negligible and
give a net contribution of -3.0x10~ in a total of
—7.8&&10 . This total value is in excellent agree-
ment with all the experimental determinations~
(- 6 + 2) x 10~, (- 8 + 2) x 10~, (- 10+ 2) x 10 4.

Potassium. At 20 'C the Wigner-Seitz sphere
radius is 4.95ao. '~ In this instance the semiempir-
ical Taylor potential has been used as the ion-
core potential. The results, listed in Table IX,
are similar to the lithium values and convergence
is achieved by L(max) = 6. The net value of @
= - 31 && 10 4 is marginally higher than the corre-
sponding value of —26x10 of Ref. 3 and lies be-
tween the two observed values of (-41+5)x10~, s'

and (-25 + 1)x 10~.I
Rubidium. At 20 'C the Wigner-Seitz sphere

radius is ro= 5. 30ao. Here we have used the po-
tential calculated by Callaway and Morgan ~ as the
ion-core potential. The results are summarized
in Table X and one sees that the results have con-
verged by L(max}=7. The net value of 5g= —150
0&10 is somewhat higher than the comparable val-
ue of -110x10 given in Ref. 3. These theoretical
values are in marked disagreement with those re-
ported's recently, that is, (-33+10}x10~and
(-39+1)x10~.

Cesium. The tabulated value' at -10 'C was

TABLE IX. Potassium: contributions to (gg)+ and 5g as
functions of L(max), all x 10 .

L(max)

TABLE XI. Cesium: contributions to (df} and dg as
functions of L(max), all x 10 .

(6g)' 0.14 0.14 0.14 0.14 (ag)' 0.2 0.2 0.2 0.2 0.2
(gg) I I

+g)~v

(~g)sg

«g)s2

—0.49

—11.42

10.67

—10.81

—11.91

—0.50

—14.57

13.77

-32.01

—33.17

-0.50

—14.32

13.50

-29.59

—30.77

—0.50

—14.36

13.55

-30.00

—31.17

(ng)"

(&g)v

(&g)si

(~g)»

—0.7 —0.8 —0.8
4.0 -68.9 -66.1

—0.8
—66.7

—0.8
-66.7

2 ~ 7 64.2 59.8 60.8 60.8

182.2 —638.2 —500.8 —521.5 —520.0

183.0 —643.5 —507.7 —528.0 —526.5
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used with ra= 5. 72ao and the potential derived by
Callaway and Haare~e as the ion-core potential.
The numerical results are displayed in Table XI
and one has convergence of 5g by L(max) = 7 at
the value of —527x10 4. This is considerably
higher than the comparable value of —260x10
from Ref. 3 and is also in marked disagreement
with the observed values's of (+ 107+ 20) x 10~ and
(+32+10)x10 . It is interesting to note that the
calculated value is in reasonable agreement with
an earlier observed4 value of (- 700+ 200) x 10 4.

VI. CONCLUSIONS

We have used the spherical-wave-expansion pro-
cedure in the spherical-cell approximation to de-
termine the one-electron wave function and then to
evaluate the g shift in the alkali metals. This
method is particularly amenable to the use of mod-
ern computing facilities and convergence of the
numerical work can be determined and is ensured
in the above calculations.

In all instances, the model of a single conduction
electron moving in a simple local cellular potential
consisting of an ion-core potential plus the Hartree
field of the other conduction electrons, assumed
to be uniformly distributed, is used. Although the
calculations have been carried out at or near room
temperature, the volume dependence of this cal-

culation in going to near absolute zero has been
checked and found to be less than 5%. This is not
a significant effect. Our results agree in general
behavior and order of magnitude to a previous cal-
culation (Ref. 3, model NP-H), using one model
comparable to this model.

In lithium, sodium, and potassium the values
obtained herein agree favorably with the observedt
values and with previous estimates. Coupled with
previous calculations~ the model appears to be a
reasonable first approximation for these metals
and the method adequate in evaluating a number of
their properties.

In rubidium and cesium the calculated results
are still in marked disagreement with observation.
There is now no doubt that one must look at the
physical model to find the answer. Although the
exact value of 5gwill depend on the actual cellular po-
tential used, of which there are a variety, the au-
thors feel that the rapid increase in 5g with atomic
number is a characteristic of the use of a local po-
tential and that one will not succeed with this model.
Whether a model having an angular-momentum-
dependent or nonlocal potential will be adequate,
or whether one of the corrections, core-polarization
effects or further relativistic effects, suggested by
Bienenstock and Brooks~ is necessary can be an-
swered only by further work.
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