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Expressions are obt~ed for the ~rib~rmonic contributions to the zero-point energy of order g', for a
crystal in which every atom is on a site of inversion symmetry. The Ludwig approximation has been

used to estimate the anharmonic contributions for a nearest-neighbor central-force model of rare-gas

crystals. It is found that the g' contribution decreases the zero-point energy by about 19%%uo in case of
Ne and by less than 0.7' in case of Ar, Kr, and Xe.

I. INTRODUCTION

In most of the solids the anharmonic contribution
to the zero-yoint energy is insignificant and can
be ignored for aH practical purposes. However,
in crystals where the zero-point motion of an atom
about its equilibrium position is a large fraction of
of the near-neighbor distance, the conventional
harmonic approximation breaks down and it be-
comes essential to consider the effects of anhar-
monicity on the zero-point energy.

The zero-point energy is the value of the free
energy at absolute zero. The traditional approach
to evaluate the anharmonic contributions is to use
the perturbation theory. This leads to an anhar-
monic contribution to the free energy which is an
infinite series in the perturbing potential. The
perturbation itself is an infinite series expansion
of the potential energy of the crystal. If we use
an ordering scheme suggested by Van Hove and
introduce an ordering parameter g, the Hamilto-
nian may be written as

where Ho is the harmonic part. The lowest-order
anharmonic contributions to the free energy are
found to be of order q . The evaluation of the rP

contributions has been described by Maradudin
et al. 's The expressions for the g~ contributions
to the free energy were derived by Shukla and
Cowley using the diagrammatic technique of the
perturbation theory. Recently, Aggarwal and
Pathak used these expressions in the high-tern-
perature limit to estimate the T contribution to
the specific heat of solids and to assess the ac-
curacy of the Ludwig approximation in evaluating
the Brillouin-zone sums that occur in the various
anharrnonic contributions. While the g contribu-
tion to the zero-point energy has been considered'
earlier, 's' no estimate of the g contribution for
any crystal has so far been made. It is the pur-
pose of this paper to derive and to estimate the g'
contributions to the zero-point energy of the rare-
gas crystals.

In Sec. II, the expressions for the free energy
obtained by Shukla and Cowley' are used to derive
the g4 contributions to the zero-point energy of
crystals in which every atom is on a site of inver-
sion symmetry. In Sec. III the Ludwig approxi-
mation is used to evaluate the Brillouin-zone sums
for a nearest-neighbor central-force model of a
face-centered-cubic lattice. The numerical re-
sults with a Lennard-Jones potential for the inert-
gas crystals are given in Sec. IV and discussed
in Sec. V.

H. EXPRESSIONS FOR THE ANHARh4ONIC CONTRIBUTIONS TO THE ZERO-POINT ENERGY

The free energy at absolute zero gives the zero-point energy directly. The expressions for the anhar-
monic contributions to the free energy as derived by Shukla and Cowley~ are very lengthy and, therefore,
will not be reproduced in this paper. If we substitute T = 0 in E|ls. (2)-(27) of their paper, we obtain the
various anharmonic contributions to the zero-point energy to order q by lengthy but straightforward
algebra, :
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F, and Fe in Eq. (3g) and (3h) are functions of the normal-mode frequencies and are given by
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The coefficients V(1, 2, . . ., n) are related to the
coefficients (f)(1P 2P. . . , Pf) by

V(1, 2, . . . , Pf) = (ff/2)""(H'-"Ps/n! )

((5(1, 2, . .., n)d. (qf+&hf+ ~ ~ ~ +q„)
(&d &d

' ' '
&d )

(5)
where P(1, 2, . . . , n) is the Fourier transform of
the nth-order derivative of the crystal potential
and i stands for q, j,. In Eqs. (2) and (3), E" '

means the contribution from the direct term (H&),
and E" ' "denotes the contribution from the
cross term (H&)P(HS)'. E&$2'41 P, for example, is
the contribution to the zero-point energy arising
from the cubic anharmonicity in the second order
and the quartic anharmonicity in the first order.

E& ' and E& ' in Eqs. (2) are the ft contribu-
tions to the zero-point energy and have previously
been derived by Maradudin et aL E'4 ' and E' 2'

are the same as the second and the third terms,

I

respectively, in Eq. (3.14) of their paper. Equa-
tions (3) give the f}4 contributions. It may be
pointed out that Eqs. (2) and (3) are quite general
and are valid for all crystals in which every atom
is on a site of inversion symmetry. In Sec. III
we shall simplify the Eqs. (2) and (3) by using
the Ludwig approximation for a nearest-neighbor
central-force model of a face-centered-cubic
lattice.

III. EVALUATION OF THE ANHARMONIC
CONTRIBUTIONS TO THE ZERO-POINT ENERGY

The expressions for the zero-point energy given
by Eqs. (2) and (3) contain sums over two to six
wave vectors and the same number of polarization
indices. The summations have to be carried out
over the first Brillouin zone. This clearly in-
volves considerable computer time. However, if
we use the Ludwig approximation, the Brillouin-
zone sums can be done analytically. This has been



ZERO-POINT ENERGY OF BARF -GAS CRYSTALS TO ORDER g

Nearest-neighbor
distance (A) M (10-"g) 10 ie erg)

TABLE I. Properties of the inert-gas crystals.
E&sfisf& ~(g )$4 &&if&4, &v&/[4 &f f&]4

1
(4)'

(lod)
Ne
Ar
Kr
Xe

3.156
3.746
3.991
4. 333

33. 51
66.28

139.1
217.9

72. 1
236
325
458

2. 704
3.304
3.534
3.847

E&ssi41& N(ff )2 [4,&lfi&]24 &iv&/[4, &ii&]S
(4)'

(loe)
@&22~41& ~of&d)s [4&&fff&'s &fv&g& &ff»S

95(4)'

discussed in some detail by Aggarwal and Pathak. '
In the Ludwig approximation each &o(qj) appearing
in the sums is replaced by co and taken outside the
summation sign. (d is defined by

Z &d'(qj) .
qj

In order to evaluate each of the anharmonic con-
tributions we now consider a central-force model
of a face-centered-cubic lattice with nearest-
neighbor interactions in the leading-term approxi-
mation. In this approximation

s"y
ex~/ ' ' ' ~s

where &f&'"' is the &1th derivative of the potential
Q with respect to the scalar distance r, evaluated
at the nearest-neighbor distance r0. For the mod-
el we have assumed it can be easily shown that

~2 44 &if &/M (s)

In the Ludwig approximation all the ~-dependent
factors in Eqs. (3) and (3) are taken out of the
summation sign. The remaining sums are the
same as have already been evaluated analytically
by Aggarwal and Pathak. ' If we use the values of
the Brillouin-zone sums from their paper, the an-
harmonic contributions to the zero-point energy
to order g4 are:

(10f)

~(g~)s[y&«f&]4/[4, &ff&]s (10 )

E&24& ~(ff )s[4, &fif &]4/[4 &fi&]s
4 (4)11 (loh)

IV. NUMERICAL RESULTS

All the inert gases except He crystallize into
the face-centered-cubic structures. In order to
have a numerical estimate of the anharmonic con-
tribution to the zero-point energy of Ne, Ar, Kr,
and Xe, the interaction between two atoms is as-
sumed to be given by the Lennard-Jones potential

&t&(r) = 4e [(v/r) —(o/r)'],

While the g~ contributions have been obtained
earlier by Flinn and Maradudin, 7 no exact compu-
tation of the g4 contributions has been made so far.
If we compare Eqs. (9) of the present paper with
Eq. (5. 1) given by Flinn and Maradudin, it is seen
that the Ludwig approximation overestimates the
magnitudes of E&ss& and E'41' by about l. 3% and
7%, respectively. It is hoped that the uncertainty
in the q contributions due to the Ludwig approxi-
mation is less than 10')&&. In Sec. IV the above re-
sults will be used to obtain a numerical estimate
of the anharmonic contribution to the zero-point
energy of rare-gas crystals.

E &"& - -*~(g )'[4""&]'/[4 ""]'
@&41& K~(g )sy&fv&/[y&ff&]2

+&21& *~(I )24 &vf &/[4 &ii&]s

~(ff~)'[4 ""'l'/[4 ""]'

E&42& N(g )s[4& &fv&]s/[4& &ff & ]4
(4)'

(9a)

(Qb)

(1Oa)

(lob)

(1Oc)

where 0 measures the spatial scale of the interac-
tion and & measures its strength. The values of
the parameters 0 and & as recommended by Hor-
ton are given in Table I. It is evident that the
zero-point energy will depend on the choice of the
potential. Recently, it has been mentioned by
Zucker and Doran that calculations of the har-
monic zero-point energy with other pair potentials
show a variation of less than 10%. They have al-

TABLE G. Derivatives of the Lennard-Jones potential.

Ne
Ar
Kr
Xe

y(ii )

(102 erg/cm )

2.249
9.919

13.01
16.43

p(iii )

(10 erg/cm )

—1.912
—5.843
-7.050
—8. 081

@(iv)

(10" erg/cm4)

1.140
2. 790
3.146
3.311

y(v)
(102~ erg/cm5)

—0. 644
—1.302
—1.374
—1.329

y(vi )

(10 erg/cm )

0. 368
0.620
0.613
0. 546

Q)
2

(1024 rad'/sec2)

26. 85
59. 87
37.41
30, 16
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TABLE III. Anharmonic contributions to the zero-
point energy for a Lennard-Jones potential in units of
cal/mole.

E (32)

E (41)

E (61 )

E (42)

E$42)
b

E (31~ Si )

E(32,41 )

E (32,41 )
b

E(34)
a

E (34)

Ne

—5. 399
45. 42
14.85

-43.69
-3.459

—11.05
19.73
4. 597

—2. 413
—0. 463

Ar

—1.310
12.75
0. 970

—2. 303
—0. 182
—0. 600

0, 900
0.210

—0. 095
—0. 018

Kr

—0. 528
5.218
0.210

—0. 488
—0. 039
—0. 128

0. 188
0, 044

—0, 020
—0. 004

Xe

—0.278
2.778
0. 067

—0. 154
—0. 012
-0.040

0. 059
0. 014

—0. 006
-0.001

so shown that the three-body forces increase the
zero-point energy of the inert-gas crystals by
about 1-2%. The choice of the Lennard-Jones po-
tential, therefore, is justified for the present
calculation.

The derivatives of the potential P'"', as calcu-
lated from Eq. (11), are given in Table II. The
last column of Table II depicts the values of (d

as calculated from Eq. (8). If we substitute the
values of Q'"' and &u in Eqs. (8) and (10), the an-
harmonic contributions to the zero-point energy
to order q4 are immediately obtained. These con-
tributions for the inert-gas crystals are given in
Table III. It may be emphasized that the numbers
in Table III are based on the Ludwig approxima-
tion. As mentioned in Sec. III, the Ludwig ap-
proximation overestimates the magnitudes of E''
and E' ' by about l. 3% and 7%, respectively. It
is hoped that the numbers given in Table III would
serve as a check on any exact computation of the

contributions to the zero-point energy.
In order to see the importance of the anharmonic

contributions we now calculate the harmonic zero-
point energy which is given by

E„-&Nhp, » (12)

where p, & is the first moment of the frequency dis-
tribution. Domb and Salter showed that p, , could
be written quite simply as p&=Cp,', where p, 2
is the second moment and C is a constant almost
independent of the frequency distribution. For the
face-centered-cubic lattice Domb and Isenberg"
found C =0.9642. p.z itself is computed in terms
of the interaction potential. From Eqs. (6) and
(8), therefore, the harmonic zero-point energy of
the present model is

E = i.44urt[4y""'/I]"'
Substituting the values of Q(") in the above gela-
tion E„is calculated and given in the first column
of Table IV. The second and the third columns of
the table depict the total anharmonic contributions

TABLE IV. Comparison of the anharmonic contribu-
tions to the zero-point energy in units of cal/mole.

Ne
Ar
Kr
Xe

E„
113.8
169.9
134.3
120, 6

E(n )

40, 02
11.44
4. 69
2. 50

E(l )

-21.89
—1.12
—0. 24
—0. 07

131.9
180.2
138.8
123.0

154
187
145
123

In this paper expressions have been obtained for
the anharmonic contributions of order g4 to the
zero-point energy of crystals in which each atom
is on a site of inversion symmetry. An estimate
of the anharmonic contributions to order q for the
inert-gas crystals has been made. It is seen from
Table IV that E(q ) increases the zero-point energy
of Ar, Kr, and Xe from about 2-6/g. However, the
g contribution to the zero-point energy of Ne is
quite substantial and is about 35% of E&. The p
contribution, on the other hand, decreases the
zero-point energy and is significant only in the
case of Ne. It is less than 0.7% of E„for Ar, Kr,
and Xe. It is evident from Table IV that the pre-
dominant contribution to the zero-point energy is
E„which has been calculated from Eq. (13) and is,
therefore, model dependent. Nevertheless, as
has been pointed out by Zucker and Doran, E„ is
uncertain by less than 10% For Ne, .therefore,
the anharmonic contribution to order q4, which is
about 16% of E„, improves the agreement with the
experimental value. Since the anharmonic contri-
bution to the zero-point energy of Ar, Kr, and Xe
is small, any discrepancy between the calculated
and the experimental values may be attributed;to
the uncertainties in the calculation of E„and E„.

As has already been pointed out in Sec. IV, the
Ludwig approximation overestimates the magnitude
of the q contribution by about 7%. It is expected
that the magnitude of the q' contribution is also
overestimated by about the same amount. Since
E(q~) is relatively quite small except in the case of
Ne, where it is about 19% of E„, the Ludwig ap-
proximation may be considered to give reasonable
results for the anharmonic contribution to the
zero-point energy.

ACKNOWLEDGMENTS

I would like to thank Dr. K. N. Pathak for some
helpful discussions and Professor J. D. Verma
for his encouragement.

of order g~ and g4, respectively. The total zero-
point energy calculated to order g' is given in the
fourth column. The experimental values' E„,have
also been listed in the last column of Table IV for
the sake of comparison.

V. DISCUSSION
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