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A phenomenological model for the study of the lattice dynamics of hcp metals has been developed by

adding an approximate electron-ion-interaction term to a five-neighbor central pair potential. Application

of the model to the four hcp solids Mg, Sc, Zr, and Ho leads to dispersion curves which generally

present a good agreement with the corresponding experimental curves.

I. INTRODUCTION

Dispersion curves of a large number of hcp
metals have been determined in recent years by the
neutron-spectroscopic method. These curves pro-
vide the basic information for an understanding of
the dynamics of the hcp lattice. The models gen-
erally employed for theoretical explanations of
these curves are tensor-force (TF) model, the

axially symmetric (AS) model, the modified axially
symmetric (MAS) model, and a mixed-force (MF)
model based on axially symmetric interactions and

tensor forces acting among various neighbors.
Such models employ a large number of parameters
and agreement with experimental curves, achieved

by means of a least-squares fitting procedure, is
often excellent. However, the fact that these
models do not incorporate the metallic character
of the solids makes them unsatisfactory from the
theoretical point of view.

A relatively recent work on the lattice dynamics
of the hcp system is that presented by King and
Cutler and is based on a model pseudopotential
calculation. This work must be considered theo-
retically satisfactory, but the results of this study

also show large deviations from experimental dis-
persion curves.

A serious question concerning theoretical models
of lattice dynamics has been recently raised by
Szigeti and co-workers. 's These authors have
shown from general considerations that the param-
eters of a theoretical model can be continuously
varied over large ranges without affecting the order
of agreement between the theory and the experi-
ment. It has been pointed out that a unique set of
values of the model parameters can in principle
be determined if we also possess additional results
on measurements of eigenvectors or those ob-

tained by substitution of isotopes. In view of this
work, the agreement with dispersion data can not
be considered as enough proof of the validity of a
theoretical model. However, until measurements
on eigenvectors are available, the dispersion data
will continue to remain the most dependable ex-
perimental results for theoretical workers in the
field of lattice dynamics. In order to decide upon
the superiority of one theoretical model over
another, we can appeal to the principle of simplic-
ity and the plausibility of the basic assumptions.

The main points of deviation from the lattice
dynamics of cubic meta1s in the case of the hcp
system are (i) the lower symmetry of this system
and (ii) the range to which the ion-ion interactions
are significant. The TF and AS models satisfy the
symmetry conditions but have to employ force con-
stants out to eighth neighbors for the best agreement
with experimental dispersion curves. In view of
the screening effect of the conduction electrons,
it seems unlikely that the ion-ion interactions are
significant out to such distant neighbors. In the
work presented here we have tried to investigate
this point phenomenologically using a force model
that includes the effect of conduction electrons
along the lines used by Sharma and Joshi9 for cubic
metals. The resulting electron-ion interaction
does not satisfy the requirements of symmetry in
the reciprocal space but can be considered satis-
factory as far as numerical results are concerned.
The ion-ion interactions have been derived from
pair potentials. Such a representation of the ion-
ion interactions has been discussed by Lahteenkor-
va, but to reduce the number of parameters of
his theory, so that they could be evaluated mainly
from the expressions for the five elastic constants,
he has used additional constraints and set some of
the potential parameters equal to zero, resulting
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in a somewhat strange potential. We have avoided
such artificial constraints by using an adequate
number of vibration frequencies in addition to elas-
tic constants in evaluating the model parameters.
The resulting model can be considered as a modi-
fied axially symmetric model and has been used to
study the lattice dynamics of a number of hcp met-
als for which experimental dispersion curves are
available. The computed dispersion curves are
found to agree closely with the experimental ones.
In this paper we are reporting results on Mg, Sc,
Zr, and Ho.

II. THEORY

Let us denote the position of the (l, «)th atom by
the vector r(l, K) and its Cartesian components by
«(l, «), a=1, 2, 3. l is the integer triplet (l„ l2,

l$) and K = 1, 2 is the basis index. The position of
the (l', «')th atom relative to the (l, «)th will then be

r(ll', K«')= r(l ', «') —r(l, K),
and the corresponding Cartesian coordinates are

«(ll, KK ) = x (l, K ) —«(l, K)

If 4 is the total-potential-energy function of the
lattice, the frequencies of the normal modes of
vibration in the harmonic approximation will be
given by

~
D 2(k; ««') —m(o 5 25~ ~

=0,

where m is the atomic mass, k (k= 2«/X) the wave
vector, 5 B and 5~ the Kronecker 5 symbols, and

82@ $t~r (&l slttt'&

a«(l K)s«(l' «')

The subscript 0 after the large parentheses indicates
that the expression inside has to be evaluated for
the equilibrium configuration.

If 4a is built up of pairpotentials $(l' —l, ««'),
we can put

s'(j4(l' —l, «' )
aa, .(ll', aa' (aa) (ll', aa' ( )a

l 2a01s,a'

xel2 6&&')«) ~ (2)

The coupling coefficients D,2 (k; «') can be
broken up in parts corresponding to the different
contributions to P. In the case of metals, (j4 can
be separated into two parts, one representing the
ion-ion interaction (j(t and the other the ion-elec-
tron-ion interaction Pea i.e. ,

4=4'+0' .
We assume the ion-ion interactions to extend up

to fifth neighbors and denote the pair potential
coupling the origin atom with a jth neighbor by

D«&(k; KK ) =-Z Zas
neighbors

~A * (j)a (a)
)

al ))) (4)r aS r2f

The contribution of the ion-electron-ion interac-
tion to the coupling coefficients can be calculated
by classical considerations to a good approxima-
tion. One of the methods is that given by Sharma
and Joshi. ~ This theory assumes that the adiabatic
contribution of the conduction electrons to the ionic
Hamiltonian is equal to the average strain energy
of the electron gas arising due to the passage of
lattice waves through it. To estimate this energy,
the strain is averaged over the Wigner-Seitz
sphere which approximates to the atomic polyhe-
dron in cubic solids. In the hcp system the atomic
polyhedron can be replaced by a suitable spheroid.
The expression for the average strain over a
spheroidal cell was first derived by Sharan and

Bajpal. $~ These authors, however, made an alge-
braic error in the derivation which was later cor-
rected by Verma and Upadhyaya, .$2 The correct
expressions for the electron-ion coupling coeffi-
cients thus obtained are given below:

D(42 (kaKK )=K~k~k2G 0 a
K=K

—0 K+K (5)

where E, is the bulk modulus of the electron gas,
0 = —4'l( 3 a2 c is the volume of the atomic polyhedron,
and the function 6 (Verma and Upadhyaya' ) is

3(sin Vk —X'k cos X'k)
(s2 k 2 + u2 k2 4. u2 @2)$/2

aq = a2, a3 being the semiaxes of the atomic spheroid
and A,

' the largest projection along k of the position
vector of an infinitesimal element oi the electron
gas.

The lattice equilibrium is usually assumed to be
determined by the ion-ion potential only. This as-
sumption amounts to ignoring the pressure of the
electron gas and introduces an error which is per-
haps of minor importance. The equilibrium dis-
tances are functions of the two lattice parameters
a and c. Therefore, the derivation of the equilib-
rium condition needs an auxiliary condition to con-
nect the differentials of a and c. We have obtained

Thus the total ionic potential is split into five
terms corresponding to the neighbors up to the
fifth. Substitution of this potential in E(l. (2) ex-
presses the coupling coefficients in terms of first
and second r derivatives of Q~. Let us put

d 2yl
~ =AI and 2 =Bqa j=1,2, 3, 4, 5 . (3)

&f
Then
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this auxiliary condition by assuming the equilib-
rium volume of the unit cell to be stationary which
requires

dc 2c
da a

Minimization of Q' with the constraint ('I) leads to
the equilibrium condition

2 c 8 c 4 c
+ Q ——~ +Qf ——~ —— Q4'3 g '3 g Sg'

&'i4 c')
+2a, i

——
i
=0, (8)s( 3 g-i

which is si.milar to the one obtained by Collins~
and can also be obtained as a necessary condition
for equalizing the two expressions of the elastic
constant C«obtained by solving Eq. (1) in the long-
wavelength limit approached from the two sym-
metry directions [0001] and [0110]. In Eq. (8) we

have used the symbol a~ for A~/r, .
Equation (1}breaks into second-order deter-

minantal equations in the symmetry directions
[0001] and [0110] and can be easily solved to ob-
tain expressions for the vibration frequencies in
analytical forms. These expressions take stiQ
simpler forms for the zone-center and the zone-
boundary points along the two principal symmetry
directions. The expressions fox the elastic con-
stants are obtained by equating the 3 && 3 acoustic-
mode dynamical matrix to the elastic matrix of the
solid exactly as described by de Wames et gE. 3

The expressions for the elastic constants thus ob-
tained are given below, together with the expres-
sions for some of the vibration frequencies cor-
responding to the zone-center and zone-boundary
points in the symmetry directions. The subscripts
LO and TO with the frequencies for the zone center
l indicate, respectively, the longitudinal and
transverse frequencies of the [0001] direction:

Css —— —{Sas+as+ 4as+14as)+ SPs+ Ps+4Ps+ 14 Ps-'S 4 (Ps 2Ps+ v Ps)
f+ If,

'

2c 3 6 as+ as+2as +3 Ps+ +2

j
——(3n +ns+4a +14ns)+ —(Spg+ ps+4ps+14ps)+ 6

MS ( 4 1 (Ps 2Ps+ v Ps) +K, , {I)2c ( 3 6 ns+ as+ 2ns +3 + +2Ps

C„=(v Sc/6g') [6(ns+as+2ns)+I- (c'/g') (ps+4 ps+v ps)+8(as+ ps)]+K,

~C=(MS /cg)( as+as+2nsf+a) (+v Se/2g')(P, +2P, +2P,),
Css+ C44= (M3c/g ) (Ps+ Ps+ 2Ps) + K~

m(gsLo(I') = 2[6(ns+ ns+ 2as) +I-(e'/gs) (P, +-,' Ps+ fP,)],
m~r o(1') = 6[2(ns+ as+ 2ns)+ Ps+ Ps+2Ps],

m(dLs{A) = 6(ns+ as+ 2ns}+s (c /g ) (ps+4 ps+7 ps)+4(ns+ p4)+K~Q k~ 0

ma)', „,(kf) =4(2as+ as+ Sns+2ns)+ 3(e'/g') (Ps+ :Ps+/ Ps)-,

m(pro, (M) = (8qnn+s+2a, )+6(e /n )(Ps+ —',P4),

(12)

(14)

(16)

(16)

(18)

where k is the maximum value of k in the [0001] direction. For convenience we have used the substitu-
tions

A~ Ss —As/rs &s —As/&s As Bs —As/rs
1+Sc /4g ' 1+Sc /162' '

&s 1+Se/28g

These equations form a complete set for the de-
termination of the eleven parameters a~, P~(j= 1,
2, 3, 4, 5), and K, of the theory. These parameters
can be substituted into Eqs. (4) and (5) to obtain
the coupling coefficients for many different values
of k along the symmetry directions [0001] and
[0110]. SolutIon of Eq. {1)leads to the frequencies

~ which can be plotted against wave number 4 to
give the dispersion curves.

III. RESULTS AND DISCUSSIONS

The theory described in Sec. H has been used to
derive the dispersion curves of a number of hex-
agonal metals. We are reporting here the results
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TABLE I. Input data: elastic constants in units of 10
dyn cm+ and vibration frequencies in 1012 sec+.

TABLE II. A, umic force constants in units of 10' dyn
cm-' and bulk modulus Z, in 10"dyncm-'.

Property

nQ, )
cQ)
m {amu)

&n
&44

vLo{r)
VTo{r)
VLA
VTP, (M}
VTO(M)

Magnesium

3.2094
5.2105

24. 312

O. 5943
0.2560
0.6164
0.1642
0.2140

3e

3 75
S.2'
4 15
6.12e

Scandium

3.3090
5.2680

44. 956

0.993
o.4sv'
1.Oes'
0.277b
O. 2S4'

6.91
4.o4'
4 74f
3.9V'

e.23'

Zirconium

3.2331
5.1491

91.23

1.435c
O. V2S'
1 649c
0.3207
o.ss4'

4.sss'
2.611g
5.643g
2.698g
4.812g

Holmium

3.5773
5.6158

164.93

0.7611'
0.2484d
0.7764"
0.2571d
o.2oeo'

3.4"
1.S4"
2.se"
1.96"

04h

G1

0's

Q4

Cs

Pf
P2

Ps
P4

Pg

Ze

0. 01386
0. 015 92

—0. 035 15
Q. 000 5Q

0.001 59

0. 998 77
0. 356 82
0.021 32

—O. 023 18
0, 01370
0.022 88

Parameter Magnesium Scandium

0. 125 75
0. 13198

—0. 126 62
—0. 051 32
—0. 037 92

1.862 00
0.607 01

—0. 01020
0. 327 04
0. 172 90

—0, 214 55

Zirconium

0. 34773
0. 31840

—0. 387 02
0. 02716
0.00989

1.08019
0.49966

—0. 093 31
—0. 246 79
—0.05345

0.31152

Holmium

0. 102 87
0. 186 87

—0.061 36
—0. 00061

0.031 93

l. 08Q 19
0.499 66

—0.093 31
—0.246 79
—0.05345

0, 23552

'Slutsky and Garland, Ref. 16.
Fisher and Dever, Ref. 17.
Fisher and Ranken, Ref. 18.
Lahteenkorva, Ref. 10.

'Iyengar et ai. , Ref. 2.
Wakabayashi et a/. , Ref. 13.

~Bemdek et a/. , Ref. 14.
"Nicklow et al. , Ref. 5.

for Mg, Sc, Zr, and Ho. The input data and the
corresponding values of the parameters are given
in Tables I and H. Phonon frequencies were cal-
culated for a number of wave vectors in the sym-
metry directions [0001] and [0110]. These fre-
quencies were then plotted against wave number A

to obtain the disyersion curves for the elements
Mg, Sc, Zr, and Ho, mhich are shown, respective-
ly, in Fig. 1-4 by solid lines. The theoretical
curves so obtained have been compared with the

experimental points of Kyengar etgl. , 2 Wakabay-
ashi etal. , is N'icklow etal. , and Bezdek egal. 4

The input data and hence the calculated dispersion
curves correspond to room temperature. The
dashed curves shown in the figures have been de-
termined by the use of seven-neighbor central-
force-constant model with the electron ion-inter-
action used in the present study. The calculations
based on five-neighbor central pair potentials
show a significant improvement over the seven-
neighbor calculations and generally yresent a very
good agreement with the corresponding experimental
data. In particular, along the [0001] symmetry
direction there is almost an exact coincidence be-
tween theoretical and experimental curves. Some
deviations are, however, seen in the [0110]direc
tion which are largest near the zone boundary.
While in the case of Mg and Sc these deviations are

[olio] [oooo

6

V

O

Q8

FIG. 1. Dispersion curves of
Mg: solid curves according to five-
neighbor central-pair-potential cal-
culation; dashed curves according
to seven-neighbor central-force-
constant model; L,&,O, , experi-
mental points of Iyengar et al.
{Ref. 2).

0.2 0.4 0.6 0.8 G2 0~
&/~„

0.6 0.8
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[0110]

FIG, 2. Dispersion curves of Sc:
solid curves according to five-neigh-
bor central-pair-potential calcula-
tion; dashed curves according to
seven-neighbor central-forcemon-
stant model; 4,+,O, , experi-
mental points of %akabayashi ef el.
(Ref. 13).

0.2 02

insignificant, they increase to V% for Zr and 10$
for Ho. A least-squares-fitting program can be
used to reduce the diffexences between the theoret-
ical and experimental curves, leading yerhaps to
exact agreement. The order of agreement obtained
by us generally compares very well with those ob-
tained by other workers. Therefore, our model
with only ten independent parameters, as against

13 or more used in other current models, should
receive attention of theoretical workers studying
lattice dynamics of hcp metals.

A look at Egs. (12) and (15) shows that C44 and
~~~' contain identical combinations of the force con-
stants ~z and P& but for a term in ~4 which appears
in C~ and not in ~»(I'). It appears, therefore,
Chat in absence of a fourth-neighbor ion-ion inter-

FIG. 3. Dispersion curves of Zr:
solid curves according to five-neigh-
bor central-pair-potential calcula-
tion; dashed curves according to
seven-neighbor central-force-con-
stant model; A, A,Q, , experi-
mental points of Bezdek eg gg. (Ref.
&4).

02 04
k/&~

0$ 08 &0 0 0$ 0.4 g O.g &0
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gp— [OQof OOOO 1]

3.0

C
C)

1.0

FIG. 4. Dispersion curves of Ho:
solid curves according to five-neigh-
bor central ~r-potential calcula-
tion; dashed curves according to
seven-neighbor central-forcemon-
stant model; &,&,O,~, 8xperimen-
tal points of ¹icklow et al. (Ref. 5).

0 02 Q4 06 08 1'0 0 02 04 06 08

I"~as

$.0

action, C~ and w~(I') could be related through an
identity containing the lattice parameters and den-
sity of the solid. Such an identity is not satisfied
by the values of C~ and ~»(F) of the hcp metals in
general. Obviously, inclusion of fourth-neighbor
ion-ion interaction is important in the present
scheme and the same is true of the tensor-force
models. It appears that the ion-ion interaction in

hcp metals must extend at least up to the fourth
neighbors. In case this interaction is represented
by central forces implying first derivatives ~z of
the potentials Q& equal to zero, the identity in C«
and r~To{F}is restored and can be brokenonly if the
ion-ion interactions are extended to seventh neigh-
bors. This suggests that the central pair poten-

tials give a better representation of ion-ion inter
actions than the central forces in conventional for
force-constant models.

The main reason for the small differences be-
tween theory and experiment seen in the figures
seems to be the inexactness in the electron-ion in-
teraction term. We may expect that a better elec-
tron-ion-interaction formulation, for example the
use of a suitable model pseudopotential, with the five-
neighbor central pair potential will present a good
description of the dynamics of hcp lattices in general.

We are thankful to the Director, Computer Cen-
ter, Delhi School of Economics, University of
Delhi, Delhi-7 for allowing us the use of their
IBM 36O;computer.
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