PHYSICAL REVIEW B VOLUME 8,

NUMBER 12

15 DECEMBER 1973

Electronic Spectra of Trigonal and Disordered Phases of Tellurium and Selenium.
I. Theory

B. Kramer
Institut fiir Physik, Universitit Dortmund, Germany

K. Maschke
Abteilung fiir Physik, Universitdt Marburg, Germany

L. D. Laude
Surface Physics Division, European Space Research Organisation, Noordwijk, Holland
(Received 20 February 1973)

The electronic density of states of trigonal and amorphous tellurium and selenium are calculated in
the energy region of the two-highest-valence-band triplets and the two-lowest-conduction-band triplets.
The calculations are performed using the pseudopotential scheme. The structural model for the
amorphous phases is based on the assumption that the average short-range order is the same as in the
trigonal crystals. The main results are that (i) the density of states of the amorphous phases of both
materials is essentially structureless in the energy region of the second-conduction-band triplet; (ii) some
fine structure is maintained in the two valence bands and the first conduction band. These can be
associated with parts of the density of states contributed from a region of the Brillouin zone along the
k, axis. The results are compared to those obtained by using a tight-binding approximation. The
comparison with experimental data will be performed in an accompanying paper.

I. INTRODUCTION

Most of the information available on the electron-
ic structure of the trigonal form of Te and Se con-
cerns the p bands and the forbidden band gap.!?
The electronic configurations of these two elemental
semiconductors are 5sZp* and 4s%p*, respectively.
Two p bands (labeled p, and p,) are located in the
upper part of the valence band. The third p band
(p3) delineates the bottom of the conduction band.
A gap separates p; from a second conduction band
(SCB), which is either d like (in Te) or s like (in
Se) in character. In the case of Te, p, and p, are
centered 3.0 and 1.0 eV below the top of the va-
lence band at point H, respectively. For this ma-
terial, the p,-p; gap is direct (at H) and of the or-
der of 0.3 eV; the width of p; is approximately
equal to 2 eV. In Se, all p bands are nearly twice
as broad as in Te: p, and p, are centered 4.5 and
1.5 eV, respectively, below the valence-band edge
at H, and the width of p; is some 4-4.5 eV. The
main difference at this stage between the Se and Te
band structures lies in the forbidden band gap. In
Se, this gap (1 eV) is indirect between points H
(®,) and A (p;), the direct gap between p, and p, at
point H being equal to approximately 1.8 eV. Op-
tical-absorption measurements®™® have been pri-
marily concerned with transitions between these
three p bands, and different band structures!®2!
have been tested to fit these experimental data,
especially in the photon energy ranges 0-4 eV (for
Te) and 0-5 eV (for Se), where p;-p; and p,-p,
transitions can only occur. However, these mea-
surements, while giving information on transitions
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between states near some critical points, do not
help to locate independently these states on an ab-
solute energy scale. The use of high-photon ener-
gies to allow excitation from core levels should in
principle lead to direct information on the conduc-
tion-band states. However, as Sonntag ef al.?
have shown for the case of Te, the highly localized
nature of the excitation leads to some uncertainty
in interpretation. Photoemission has the advantage
of assigning spectral features to structure in the
valence- or conduction-band density of states, rel-
ative to the vacuum level of the material. 324

In this study the electronic structure of both the
trigonal and the amorphous phases of tellurium
and selenium are investigated in the energy region
of the two-highest-valence-band triplets and the
second-conduction-band triplet, experimentally and
theoretically. The experimental investigation was
performed by using photoemissionh techniques.
Their description is presented in detail in the fol -
lowing paper, % together with experimental results
for both trigonal Se and Te and their amorphous
modifications. The interpretation of the experi-
mental results is performed in terms of the elec-
tronic density of states (DOS). Special emphasis
will be placed on a comparison between the proper-
ties of the amorphous and the crystalline phases.

The theoretical investigation presented in the
present paper is based on the pseudopotential band-
structure theory. Pseudopotential calculations of
the band structures of trigonal Se and Te were per-
formed by R. Sandrock!® and K. Maschke, ! re-
spectively. These band structures form the basis
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of the present DOS calculations. In order to give

a detailed assignment of the observed photoemis-
sion spectral features, it turned out to be necessary
to consider the partial contributions to the total
DOS from different regions of the Brillouin zone.
To calculate the electronic density of states of the
amorphous phases, we used a generalized pseudo-
potential formalism adapted to systems having no
long-range order but still short-range order. The
structural model used for the amorphous phases is
described in Sec. II. The generalized pseudopo-
tential method for systems with several atoms in
the “short-range order cell” is sketched in Sec.

IOI. The main result is that the density of states
can be written in terms of a complex-energy-band
structure quite analogous to the crystalline case.
Originally, this concept was developed for disor-
dered systems corresponding to crystals with only
one atom per unit cell.* Inthe same reference, £
application was made to an electron moving in a
weak potential with small deviations from the crys-
talline spatial periodicity. In Refs. 42 and 43 the
complex-band-structure concept was used to cal-
culate the imaginary part of the dielectric constant
of some materials. (Ref. 42: Se, Ref. 43: Ge,

Si and IMI-IV compounds). The agreement with €,
spectra, calculated from experimental data, turned
out to be quite satisfying. This encouraged us to
calculate the density of states of such complicated
materials as Se and Te, and to try a comparison
with high-resolution photoemission data. Sec. IV
contains details of the DOS computation for the
crystalline and the amorphous phases. From these
calculations, structure in the conduction-band DOS
of the amorphous modifications of both materials is
expected to weaken markedly, as well as some fea-
tures of the valence-band DOS, as compared to the
crystalline phases. These results are confirmed
by the photoemission data of the crystalline and
amorphous Te and Se films reported in Paper II.
Moreover, considering the structural model under-
lying the calculation of the electronic energy spec-
tra of the amorphous phases, it will be possible to
draw conclusions about the atomic configuration of
the amorphous films.

II. THE MODEL

The most simple approach to the calculation of
the electronic properties of solids at zero tempera-
ture is to consider one electron moving in a super-
position of N local atom-core potentials at sites
51 to EN:

N
V(F;Bl---5~)=f?v6—5,). ()
=1
To solve the Schrodinger equation of the system,

one needs (i) information about the form of the core
potential »(r) and (ii) the knowledge of the atomic
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positions P, - - - Py .

It is impossible to determine the core potential
from the properties of the microscopic constituents
of a solid. To avoid a self-consistent calculation,
one possibility is to use some kind of realistic ad
hoc potential allowing for a solution of the Schro-
dinger equation. An example of this kind of core
potential is the muffin-tin potential in the Korringa-
Kohn-Rostoker (KKR) method for calculating ener-
gy -band structures of crystals.??" A second pos-
sibility is to use an empirical and, in general, non-
local, energy-dependent model potential, which has
been chosen to fit some well-known experimental
data. Using this “atomic” pseudopotential, one can
predict still other properties of the system. More-
over, considering another system containing the
same atoms in a different configuration, one may
approach the electronic energy spectrum by using
the same “atomic” pseudopotential. These empiri-
cal model potentials are well known in band-struc-
ture calculations of crystalline materials, where
the atomic arrangement is known.?'2® For the de-
scription of the electronic states within a finite en-
ergy range, for instance near the energy gap, the
model potential can be approximated by a local and
energy-independent potential. Its Fourier trans-
form is slowly varying and of finite range in k
space. It is this kind of local, energy-independent
atomic model potential, that we shall use in the de-
termination of the electronic properties of disor-
dered solids. As an example, Fig. 1 shows the
pseudopotential of tellurium as obtained from a
comparison of optical data with band-structure re-
sults. 16

Fortunately, considering the structural proper-
ties of solids, the situation is not quite so difficult
as in the case of the atomic potential. Principally,
the atomic structure of a solid system can be in-
vestigated by using x-ray or neutron-diffraction

methods. In the case of a crystal, where the atoms
02
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FIG. 1. Fourier-transformed atomic potential of Te
(form factor). AH: pseudopotential calculated by Animalu
and Heine (Ref. 5). CB: pseudopotential used by Cohen
and Bergstresser (Ref. 5). Dashed line: form factor
used in the calculations of this paper.



8 ELECTRONIC SPECTRA OF TRIGONAL AND...I...

are situated at the sites of a periodic lattice, the
atomic arrangement is characterized by the posi-
tion vectors of atoms in the unit cell 3,... a,, and
the basis vectors b, - - - B, of the Bravais lattice.
These can be determined by analyzing Laue dia-
grams. The case of a disordered system is more
complicated because x-ray scattering gives only
information about the radial two-atom distribu-
tion.2® This is due to the lack of long-range order,
The radial two-atom distribution P(r) gives the
number of atoms in a spherical shell of radius »
and thickness one, i.e., this function yields the
numbers and distances of first-, second-, third-,
etc., nearest neighbors to any fixed atom. It is
obvious that one can have the same coordination
numbers using different microscopic structural
models. The distinction between these different
microscopic models may be achieved only with addi-
tional information about the lengths and angles of
the bonds connecting one atom to its neighbors. It
is reasonable to assume, that in an amorphous
phase the mean values of bond angles and lengths
are approximately the same as in the crystalline
phase. This implies, that, on the average, the
amorphous system exhibits the same short-range
order as the crystalline system. Disorder, i.e.,
the lack of long-range order, is introduced by
small statistical variations of bond lengths and an-
gles about their mean values. Additional difficul-
ties may arise when a material exists in various
crystalline modifications characterized by nearly
the same arrangement of first-nearest neighbors,
but a different configuration of second-, third-,
etc., nearest neighbors. Therefore, a character-
ization of the disordered phases of such materials
would require a detailed analysis of small-angle
diffraction data and additional information from
other experiments, such as NMR and Raman
studies. In addition, the occurrence of different
disordered modifications, depending on preparation
conditions, cannot be excluded. 30~

The problem is to formulate quantitatively the
above qualitative statements concerning the struc-
tural properties of disordered solids. For a crys-
tal at zero temperature, the radial two-atom dis-
tribution function can be calculated from the prob-
ability density function:

2 8(F =R, -2,+3) ()

®Rp,dq,3)

by averaging it over all directions of T and multi-
plying by 4772 ﬁ,, are the lattice vectors. For a
disordered structure with the same short-range or-
der as in the crystal, we assume

BEH=> 2

P PN )

fu@ R, +3, -3, (3)
(Rvdj-a,)%0

where f, (F; R, +3, - 3,) are localized at R, +3, — 2
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with a width MR, +3, -3,). The localization of
f.(T) is necessary to ensure the presence of short-
range order. To relax long-range order, Mﬁ,ﬁi,
-13,) has to increase with increasing | R,+3, -3, |.
For practical reasons we choose f,(T) to be Gauss-
ian-like, i.e.,

pE(T)=6(F)+m™
(Rp,+3,-33)%0

1\’ G -/, -5, +5)°
X [ —— T TR TR

(ﬂm’) exp( alr? ) - @
For a <1, the half-widths of p¢ (¥) is about a | B,
+3, -3, 1. For a-0, we have p¥(F)-p3(F). We
may define the radius of a sphere of short-range
order by

Ky=a,/2a , (5

with a, the distance between next-nearest neighbors
in the crystal. When increasing the disorder pa-
rameter o, the region of short-range order de-
creases. Omitting the 6 function and averaging
Eq. (4) over all directions of T, we obtain the radi-
al two-atom distribution:

P(r) =43 r)=mg71/2

1
y —=
®+3,-3%0 O IRp+a; —agl

x [exp(— (F- IRy +3; -3 |)2)

o2y 2

X

(F+|§,.+§,-5,,n2)]' ©)

- exp (— =

The only natural form of tellurium is trigonal. In
that atomic configuration (Fig. 2), Te atoms are
arranged along parallel helical chains located at
the center and corners of a two-dimensional hex-
agonal network. These chains are weakly bound to
each other via van der Waals-like forces, while
the character of the interatomic bonding within a
chain is covalent. The space group of trigonal Te
is D}(P3,21) or D3(P3,21), depending on the direc-
tion of the screw axis along the chains. The lattice
parameters are given in Table I, together with the
interatomic distances between first-, second-,
third-, and fourth-nearest neighbors. Among the
eight third-nearest neighbors, six of them belong
to adjacent chains, the corresponding interatomic
distance being equal to the lattice parameter a,
which is defined as the distance between the axes
of two adjacent chains. In tellurium, this distance
happens to nearly equal the distance between two
second-nearest neighbors belonging to the same
chain.

Two crystalline forms of selenium are known:
trigonal and (¢ or B) monoclinic. The latter will
not be considered in this work, in spite of the fact
that it may be important for the explanation of the
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FIG. 2. Structure of trigonal tellurium and selenium.
(a) Configuration of chains being situated at the center
and the corners of a hexagon. (b) Top view of a chain.

short-range order in disordered Se.**** The lat-
tice parameters and interatomic distances of tri-
gonal Se are given in Table I. The main difference
between the trigonal lattices of Se and Te concerns
the third-nearest neighbors. The interatomic djs-
tance between the two second-nearest neighbors in
the same chain in Se is smaller than the distance
between two adjacent chains, so that there exist
only fwo third-nearest neighbors. This peculiarity
reflects the fact that the interchain distance is rela-
tively larger in Se than in Te and is responsible for
the more molecular character of the chain config-
uration of trigonal Se, compared to trigonal Te.%-38
For the structure of amorphous Te % and Se, we
use the trigonal configuration as a starting point.
We calculated the radial atomic distribution for dif-
ferent values of o, i.e., different stages of disor-
der. The results are shown in Fig. 3(a) for tellu-
rium and in Fig. 3(b) for selenium. For Se, we
plotted also the atomic distribution obtained from
x-ray diffraction.?* 1t is clear, that it is not
possible to reproduce correctly the experimental
curve obtained for amorphous Se using the trigonal
approach without changing the lattice parameters.
The experimental distance between second-nearest
neighbors in disordered Se is slightly larger than
in trigonal Se. One would get a reasonable fit to
the experimental curve for a=0.07 by increasing
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the interchain distance a. This would allow a better
fit to the position of the third-nearest neighbors.

In the case of Te a very recent experimental at-
om -distribution curve, obtained by small-angle
electron diffraction on films deposited and studied
at low temperature, is available.?® Comparing the
experimental curves in Ref. 39 with the calculated
curves in Fig. 3(a), one remarks, thatthe disagree-
ment between the experimental and calculated
curves for second-, third-, etc., neighbors is
larger than in the case of Se, indicative of a very
large degree of disorder in such films. In that
case, to get a better fit, one should probably not
start from the trigonal Te crystal to describe the
structure of these disordered films. However, for
less disordered films, one may use the model atom
distribution presented above, which describes es-
sentially a randomly disturbed crystal, and calcu-
late the density of states in such a configuration.
Then, tracing the various density-of-states features
with the disorder parameter o, one may try (i) to
find out those features which are mainly determined
by the configuration of the nearest neighbors, and
(ii) to associate them with some well identified
spectral features occurring in disordered Te films.

There is one interesting point which can be ob-
served by tracing the atom distribution curves with
a. For high values of o (a >0.13), the two peaks
in the calculated atom distributions belonging to
the two first- and the four second-nearest neighbors
merge into one broad peak containing six atoms.
The atomic distribution is then quite similar to the
one we would obtain starting from a simple cubic
Te crystal with six first- and twelve second-near-
est neighbors. This point will be discussed in the
following paper. 2

IIIl. COMPLEX BAND-STRUCTURE EQUATIONS

In this section we will briefly sketch the gener-
alized pseudopotential method used for the calcula-
tion of the density of states of the amorphous
phases. Details can be found in Refs. 40-43. The
density of states is given by

TABLE I. Lattice parameters (Refs. 36 and 37) and
first-, second-, third-, and fourth-nearest-neighbors
(Ref. 38) distances in trigonal Te (Ref. 36) and Se (Ref.
37). The number of neighbors is given in parenthesis:
(+) denotes neighbors belonging to the same chain and (*)
denotes neighbors belonging to adjacent chains.

trigonal Te trigonal Se
a (A) 4.4572 4.3862
c (A) 5.929 49536
2R (A) 2.348 1.968
bond angle (°) 1032+ 0.1 103.1: 0.2
r{ 1st near. neighb. | (A) 2835 (2+) 2373 (2t)
r [ 2nd near. neighb. | (A) 3.495 (4*) 3.436 (4°)
v | 3rd near. neighb. | (A) 4.457 (21 + 6%) 3717 (21)
r {4th near. neighb. | (A) 4.8921 (4%) 4.3662 (8*)
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FIG. 3. (a) Radial atomic distribution function of Te for various disorder parameters @, Full line: a=0.09; dashed

line: @ =0,11; dashed-dotted line: @ =0,13. The figures and arrows denote the numbers and positions of the first-,

second-, third-, etc., nearest neighbors of an atom at »=0,

Heavy arrows denote neighbors in adjacent chains.

Dashed arrows denote neighbors within the same chain.
(b) Radial atomic distribution function of Se for various disorder

parameters &, Dotted line: a =0, 07; dashed line: a =0, 09; dashed-dotted line: @ =0,11; full line: experiment, Ref.

29, The meaning of the arrows is the same as for Se.

n(E)= - 1 Tr{ImG(E")}, ()

where G(E") is the propagator of the electron mov-
ing in the potential V(T;p, - - - dy) of the atom cores.
G(E") can be expressed an an infinite series:

G(E")= Go(E") + Go(E*) VG, (E")
+ Go(E’) VGo(E’) VGo(E*) +oee | (8)

Go(E*)= (E* - Hy)™ is the propagator of the free elec-
tron. V depends on the position of the atoms. In
general, it is impossible to know the exact atom
positions. Therefore, we have to average the DOS
over all possible configurations, hence, to average
G(E"). In principle, the probability of finding a
configuration p, - - - py is given by our structural
model. Performing the averaging process and
summation of the series Eq. (8) requires, however,
the calculation of multiple scattering terms, i.e.,
terms where an electron is scattered several times
at a cluster of several atoms.*™ These “mole-
cule” terms make it impossible to sum the series
without further approximations.

The main assumption involved in the summation
of the series is that the n-atom correlation func-
tion belonging to a term of nth order in Eq. (8) can
be written as a product of two-atom correlation
functions*!+*é;

m

D,.(B1"' 5n)= E

lqeeelpn=1

X+ XDy(py =p3+ay, —ala)

Dz(Bx =Pz + 511 - alz)

xDz(Bn-l _Bn"'sl"_l _51") ’ (9)

where &, + - - ,, are the sites of atoms in the cluster,
the multiple scattering contribution of which is
treated correctly by this approach. The Fourier
transformed z-atom correlation function is of the
form:

C, (& -K,,K, -K,, -+, K,y K

lgeeelp=1
Xhy (K-Kp) oo by (K-K,)0(K-K'), (10)

where the terms &, 2(f)) are the Fourier-trans-
formed two-atom correlation functions. Assuming
the two-atom correlation function D, of Eq. (9) to
be localized near the crystalline lattice points, we
have their Fourier transform #;;.(p) localized near
the reciprocal lattice points I'Ev. It is convenient to
choose #;;: (p) to be a sum of Gaussians:

R 1 . R % 1 3/2
h",(p)z 5 exp[ip(al —ay )][ (T[aKp)

By, & - Ky)

v=0
(ﬁ-i&v)z) 3 ( 1 )3/2
X - -_
exp ( 2Kz )" ,,=NED.1 TaKy,
(ﬁ‘ﬁvf)]
X - =Y}, 11
exp( “ngo (11)

(Here_.ﬂ is the volume of the unit cell). With a <1
and | Ky, | < (1/a)(27/a) (a is the diameter of the
unit cell) we can take e!3@-40) x ot ®v&i-3)  phep
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we obtain from Eq. (10) for n=2 the Fourier trans-
formed two-atom distribution:

§ -~ . 3/2
C,(p)= L 2 [ﬁ exp[iK,(@; -a;)] (nalK.,>

m 10

v=0
(5-1?,)2) J - .
X e — - ’
exp( 7K +"=Nzo*1 explik, @&, - )]
1 3/2 ( (E _Kv)z )}
X - —— .
(‘naKNo) exp a?K% 12)

Fourier transformation for Eq. (4) would yield
nearly the same expression. The replacement of
expli p(@; - a;.)] by exp[iK,@&; -3,.)] is equivalent to
taking into account the multiple-scattering proper-
ties of the atom cluster a, - - - a,, only approximate-
ly. This is obvious from the fact that the only 6
function appearing in Eq. (4) is at r=0. Trans-
formation of the correct expression Eq. (11) into
T space yields additional & function at r=3a; —a,,
i.e., the multiple-scattering contribution of the
cluster a,--- a, is treated exactly.

By writing the electron propagator of Eq. (8) in
k representation and averaging it over all config-
urations using the correlation functions of Eq. (10),
one can sum the series geometrically, assuming
the atomic potential to be slowly varying in k
space.** The result is a configurational-averaged
(c.a.) electron propagator given by

<G(EyE;51" . 5N)>c.a.=g(E,E)

_det| ¢ (K, E)-w | ©
T detl 9K, E)-w]
(13)

where M = [¢"1(k, E) - w] denotes the matrix

Mml’ =[¢;1(k.1 E)am’ _wm{] ’ (14)
and [¢ (K, E) -w]® is the matrix M,,, with nn’
#0. The function ¢,(K, E) is given by*!+*

¢, E)= (a_lx,,)wf gexp (_ (E+"§K_"§)z )

m o
A
E'-¢® 2alK,| |k+K,!

X{e"% [1+9tzy)] - e™3[1+wiiz,)]},
(15)

X

with
2y,,=(VE% |E+§,, |)/°‘ | -’Knl )

and ¥(z)=[gdy e™? is the well-known error func-
tion. wpy =(K, | W | K, ) are the plane-wave ma-
trix elements of the potential of the atom cluster
3, -+ a,, known from band calculation for the crys-
talline case.
Wy = 24 €Xpl—i(K, =Ky ) 2] Ve (16)
=1

(v being the atomic potential). The density of states
and the dielectric constant can be written as a sum
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over the poles of g(k, E) obtained by solving

det | ¢pp(K, E) 8ppr =Wy | =0 . an

Actual calculations require this determinant to have
a finite dimension, so that Lowdin corrections® to
the potential have to be taken into account:

u-)m' (kv E) = Wone +E wnv1¢v1wv11{
vy

+ E wnv1¢vlwv1v2¢v2wv2n' ’ (18)
Y1%2

Vi, Vg*++=N--+ o, N being the dimension of the de-
terminant. The effective potential of Eq. (18) can
be obtained by subdividing the infinite K, sums ap-
pearing in the series of g(k, E) into two parts:
Smgr s =2 o+ ee +3 v+ and partial summation of
the series. For N=1 we have, from Eq. (17),

E — k% —iby(k, E)=0 , (19)

where g, is essentially the self-energy of the sys-
tem. For a=0 we have

oal&, E)=[E - &, K] =Gk, E) , (20)

and Eq. (17) is reduced to the well-known pseudo-
potential equation for the energy band structure of
a crystal yielding real energies E,(K) for real k
vectors. In that case, the self energy wy, is real.
For a #0 the ¢,(K, E) have finite imaginary parts
near E= (K +K,)?. Therefore the roots €,(K) of Eq.
(12) are located in the complex energy plane if k
has been chosen to be real. The self-energy is
here complex. For a <1 one can assume €,(K)

= €M(E+§") for If,, with nonvanishing residues of
g(K,E). Then, the DOS can be written

__1 3 1
n(E)= - 7 ? azd kIm(m) . (21)
If the real parts of €,(K) equal E,(K), the crystalline
band structure, and if the imaginary part of €,(k)

is approximately independent of K, Eq. (21) repre-
sents the lifetime-broadened “crystalline” DOS.

IV. COMPUTATION OF ELECTRONIC ENERGY SPECTRA
A. Computational Details

1. Crystalline Case

Details of the selenium DOS calculations were
presented elsewhere®3! and are essentially identi-
cal to the ones used in this work for Te. This sec-
tion is therefore mainly restricted to the Te prob-
lem. In order to get reascnable pseudopotential
form factors, the procedure adopted here is similar
to Sandrock’s!® approach when performing his cal-
culations on trigonal selenium. The actual telluri-
um form factors are interpolated and extrapolated
from those given by Cohen and Bergstresser®® for
their ZnTe band-structure calculations. A good
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FIG. 4.
irreducible wedge of the Brillouin zone.

(a) Brillouin zone of trigonal Te and Se; (b)

fit to the experimental gap of 0.3 eV at point H has
been obtained by slightly shifting the resulting form
factors towards those obtained by Animalu and
Heine® (Fig. 1) for Te [see also Ref. 16].

In Fig. 4 the Brillouin zone of trigonal Te is
shown together with its irreducible wedge AMH-
AMH. Because of symmetry properties, the band-
structure calculation can be restricted to this part
of the Brillouin zone. The irreducible wedge has
been divided into 48 subzones, as shown in Fig.
4(b). For the crystalline case!® eigenvalues were
calculated in the center of the corresponding cubes
using the following secular equation:

det [ [&+K,)? - E] 8y +v(K, -K,)

+Z; ‘U(K,. —Ky)v(k"r ——IE,,:)

o =0
14 E_(k+K1)2

, (22)

which is easily derived from Eq. (17), together
with the first two terms of the right-hand side of
Eq. (18) for a=0. As seen in Eq. (22), plane
waves corresponding to K, and K, have been taken
into account exactly, while plane waves correspond-
ing to f&, have been taken into account by first-or-
der Lowdin perturbation theory.* The K,’s and
K, ’s are restricted to a sphere by the conditions

K+K,)<E, and (K+K,)P=<E,,

whereas the K,’s are restricted to a shell by the
condition

E,<E&+K/\<E, .

To obtain a reasonable convergence, the values
adopted for E, and E, were set to be 3.5 and 5.4
Ry, respectively. Using these values, 70 to 80
plane waves were taken into account exactly, and
a further 70 to 80 plane waves were included by
first-order Lowdin perturbation theory. To avoid
computational difficulties, the energy E occurring
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in the denominator of the perturbation term in Eq.
(22) has been replaced by a constant E =0. 45 Ry,
which lies within the gap. This is at least suffi-
cient for the valence and the conduction bands
around the fundamental gap. The higher conduc-
tion bands turned out to be very insensitive to the
choice of E.

For calculation of the crystalline density of
states a Monto Carlo method was used. Hitherto,
in Eq. (21) the integration in kK space has been re-
placed by a summation over N, random k vectors:

Np
n(E) = n(m AE) ~ 171“2:’ T 8EE, &) -E), (23)

with
mAE<E=< (m+1) AE and AE= gl Ry,
and
6*E(E,([;) -E)=1 for | E,[K)-E | = 3(aE),
=0 elsewhere .

n(E) is then obtained as a histogram function, the
mesh of the histograms being defined by AE. N, is
the number of random K points within the irreduci-
ble wedge. With N,=20000, the convergence has
turned out to be rather good. The eigenvalues for
this large number of K points were interpolated
from the results obtained for the 48 points within
the irreducible wedge [Fig. 4(b)]. The upper two
p-valence bands and the two-lower-conduction-
band triplets were taken explicitly into account.

2. Amorphous Case

The complex poles of the averaged Green’s func-
tion for the amorphous case were calculated accord-
ing to Eq. (17). Because of the very-high-dimen-
sional secular determinants it was necessary to
replace the correct first-order Lowdin perturba-
tion term, as given in Eq. (18), by the crystalline
one [see Eq. (22)]. With this approximation, only
the main diagonal elements of Eq. (22) have to be
recalculated. The zeros of the determinant are
calculated for the two p-valence bands and the low-
er two conduction bands in I, A, H, and K. The
calculations were done for several values of « in
order to investigate the band structure variations
when increasing disorder. The amorphous density
of states [see Eq. (21)] can be written

n"'(E)=EE1r'1I dE'n""'(E',E,m)

m R
xIm{[E' - E -iT% ()]} . (24)

1Y (E, k;, m) is the contribution to the crystalline
DOS arising from the band » and from a region of
the Brillouin zone (K;), where the imaginary parts
of energy I'*(kK) are only slightly » dependent

and can be approximated by a constant. For the
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actual calculations the Brillouin zone (BZ) was di-
vided into three regions. The region about the A
axis was defined to be the cylinder of radius 7/3a
around the A axis. It contains about {; of the BZ
volume. Further, the neighborhood of point A hav-
ing approximately the same volume was defined by
cutting out spheres of radius 7/2c around the H
points. The rest of the BZ was taken as the third
region.

The imaginary parts I's(K;) for these three re-
gions were calculated as follows: The arithmetic
average of the imaginary parts at points I" and A
was taken for the A-axis region. For the H neigh-
borhood we used the values at H, and for the rest
of the BZ we took the arithmetic average of the val-
ues at all the four points I', A, H, and K.

In the Te case we had to take into account a rela-
tive shift of the real parts of the energy with re-
spect to the valence band edge for the p, valence
band triplet near A, which, for a=0.13, is about
0.3 eV to higher energies. This was done by shifting
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the A-axis contribution to the DOS from these bands
by the same amount.

In the case of amorphous Se the DOS calculation
was performed quite similarly. There are two dif-
ferences, however. First, when calculating the
complex Se band structure we used an approxima-
tion for ¢ (K, E) from which no reliable information
about the shifts of real parts of energy*? can be ob-
tained. Therefore, no shift of the real parts of en-
ergy was taken into account in this case. Secondly,
the bottom of the second conduction band is not con-
tributed by the regions near A and H but by the re-
gion of the BZ around I' - K (Fig. 6). Therefore,
we subdivided the DOS into two parts: one (from
6.3 to 6.9 eV) that is contributed by the middle
part of the BZ containing the axis T - K, 5! and the
other (above 6.9 eV) contributed by all the BZ.

For the I' - K DOS contribution below 6.9 eV, the
average imaginary parts of energy are relatively
small compared to those of the rest of the band (see
Fig. 6 and Tables II and IIT).

TABLE II. (a) Complex poles Em(l:) of the configurational-averaged Green’s function of Te for various values of the

disorder parameter @, €,(k) are calculated as the roots of Eq. (17).

ed at the real-ener

For a =0 (crystalline case) the poles E; are situat-

axis. For =0 E and T denote the real part and imaginary part of energy, respectively. E,, E,

T are given in Ry. k=(0,0,0), E=(0,0,‘1), k= (1,0,1), and k= (3,1, 0) correspond with Brillouin-zone points ', A, H, and
K, respectively. (b) Complex poles €,(k) of the configurational-averaged Green’s function of Se from Ref. 40.
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TABLE III. Averaged imaginary parts of energy, I‘:(i,) (in Ry), used in the calculation of the averaged DOS of (a) Te
and (b) Se. p; and p, are the two valence-band triplets (see Figs. 7 and 8), p; is the lowest conduction-band triplet and
SCB the second conduction-band triplet. H,Adenote the k-space regions near the Brillouin-zone point H and near the
axis '=A=~A, BZ- (H+A) is the rest of the Brillouin zone.
of SCB spreads from 6.2 to 6.9 eV (compare also the Se band structure in Fig. 6, region K ~T).

(For details see text.) In the case of Se (b) the lower edge

T Se
(@) ° (b)
Py [ Py sca Py [ [ scB
H 00075  0.005 0008 008 H 0.000 001 003
a =011 A 00005  0.001 0003 008 a =007 a 0.000 0000 0015
8z B8Z 0.005 0015 0025
Z, 0008 0.008 0.0045 0.08 oz
lower edge 0015
rest of the 0.045
band
H 0.015 0.009 0012 0125 H 0.005 0.03
@ =013 & 0.002 0.004 0008 0.125 a =010 a 0.000 0.01
BZ 8Z
! . ! 1 0.01 0.04
ey 000 0.01 0008 0125 ey
lower edge 0.045 0.04
rest of the 0.07 0.08
band
B. Results

The resulting band structure for crystalline Te

is shown in Fig. 5. An €, calculation based on this
band structure, !¢ is in good agreement with the ex-
perimental curves. Therefore, one may conclude

TR
P
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3 2
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T o
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YRR
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FIG. 5. Band structure of Te,

width of this band.

a

1

that the over-all band structure is correct, the up-
per conduction band alone being shifted 1-1.5 eV
to higher energies when compared with the photo-
emission data reported in Paper II. This inaccu-
racy of the band structure is due to the fact that
the upper conduction band is not as well described

Liomtiposspoommreomcscoposed

(a) @ =0: crystalline case, Ref. 16; (b) ®=0.13: as calculated from Eq. (17). Full
lines denote the real part of energy. The width of the shaded region is twice the imaginary part of energy. The second
conduction-band triplet is indicated as a shaded region because the imaginary parts of energy are comparable with the
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by the same local pseudopotential as the p bands
around the fundamental gap.

The band structure for amorphous Te obtained
with ¢ =0.13 is also shown in Fig. 5. Because of
the large imaginary parts for the upper three con-
duction bands, there is no sense in drawing a band
structure in that case. Therefore only the position
of these bands is shown by the shaded area. The
complex energies for different a’s are listed in
Table II(a). As mentioned above, near the A axis
the real parts of the energy of the lower valence-
band triplet are shifted about 0.3 eV to higher en-
ergies with respect to the crystalline band struc-
ture, whereas there is no considerable shift along
the other axis. The gap between the real parts of
energy at H turns out to be about 0.2 eV larger than
in the crystalline case. This trend is in agreement
with experimental result.’* As mentioned earlier,
the imaginary parts of the energy are very large
for the second conduction band. For the upper two
valence bands and the lower conduction band the
imaginary parts are very small along the A axis,
compared to other regions of the BZ.

For completeness, we show also the band struc-
tures of crystalline and amorphous Se in Fig. 6.
The crystalline band structure (« =0) has been cal-
culated with the same convergency stage as in the
€; calculation of Ref. 15, but differs slightly from
the band structure published by Sandrock in that
paper for which he used a better convergency stage.
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The complex band structure obtained for o =0.075
has been calculated in Ref. 42 by using an approxi-
mative expression for ¢,(, E). Some numerical
results for €3(K)=E%(K)+iI'%(K) in Se are given in
Table II(b). Figure 7 shows the crystalline and
amorphous tellurium DOS together with the partial
contributions from the A-axis neighborhood and
from the region near H. The average imaginary
parts of energy I'%(K;) used in the calculations for
a #0 are listed in Table III. Comparison of the
crystalline and amorphous DOS shows that the main
features of the valence-band DOS and of the first
conduction band are well preserved up to ¢ =0.11.
The remaining fine structure in the energy region
of these three p bands is due to the A contribution,
which is only slightly broadened by increasing the
disorder parameter «. It is interesting to note
that the shift to higher energy of the A contribution
to the p, band that occurs when increasing o, gives
rise to an increase of the total DOS between 1.4 and
2.0 eV [Fig. 7(a)], i.e., in the lower section of p,.
Simultaneously, the high-energy region of p, is
depleted because of increasing imaginary parts of
energy near H. The DOS of the second conduction
band is completely smoothed out owing to large
imaginary parts of energy for reasonable values
of the disorder parameter.

Figure 8 shows the DOS of crystalline and amor-
phous Se calculated by using the average imaginary
parts of energy listed in Table III. The DOS of Se
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| e 2

1
>
I
x
=

b

FIG. 6. Band structure of Se. (a) @ =0 crystalline case (see also Ref, 15); (b) @ =0, 075 (see also Ref. 4). Explana-

tion of the figure is the same as for Te.
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FIG. 7. Density of states of Te for different stages
of disorder, i.e., different values of . The density of
states contributed by the total Brillouin zone is shown
as a heavy line (heavy histogram in the DOS for & =0).
The DOS contributed by the region near the A axis (see
text) is shown as a thin line, The dashed partial con-
tribution is the DOS contributed by the region near point
H (see text). The DOS contributed by the rest of the
BZ (=total BZ region near A region near H) is shown as
a shadowed line. The average imaginary parts of energy
used in the calculations for o # 0 are listed in Table III.
The arrows denote the positions of structures in DOS
(total DOS or one of the contributions) as resulting from
the experiment (see Paper II). The photoelectric
threshold Er is assumed to be at the bottom of the second
conduction band (5. 8 eV).

exhibits the same over-all behavior upon disorder
as that of Te. Again, the A contribution gives rise
to fine structures in the p bands up to o =0.10.
The only essential difference with Te is that there
remains still a small bump in the second conduc-
tion band up to @ =0.10, owing to small imaginary
parts of energy near the band edge as compared to
the rest of the band [see also Fig. 6 and Table
m(b)].

V. CONCLUSIONS

The electronic band structures and densities of
states of crystalline and amorphous Te and Se have
been calculated. In the crystalline cases, the re-
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sults are valid within the limitations of the energy-
independent local atomic-model potential and the
convergency uncertainties. The crystalline energy
spectra are already tested by calculating the re-
spective €, spectra and comparing them with opti-
cal-absorption results.®'1® It will be shown in the
following paper, that we can also interpret the
crystalline photoemission data by using these re-
sults.

For the amorphous cases the situation is some-
what different. Besides the model-potential ap-
proximation, we made three additional assump-
tions:

(i) We took the n-atom correlation functionD ,to
be a product of two-atom correlation functions [Eq.
(9)]. This implies a neglect of multiple scattering
associated with more than one atom. However,
these multiple scatterings are taken into account
approximately by assuming the two-atom correlation
function to be angular dependent and to consist of
a sum of relatively sharp peaks.*® These assump-
tions are not strictly justified, but might be taken
to be reasonable when restricting our considera-
tions to the density of states well within the bands.

DENSITY OF STATES(ARB.UNIT)

T T T T T

Al 41

L I A a 1. 1 e pzl 4. I | lpa SCB

8 -7-6-5-4-3-2-1 01 23 2 56 7 89
ENERGY(eV)

FIG. 8. The density of states of Se for different
stages of disorder. The explanation of the figure is the
same as for Te. Again, the photoelectric threshold is
assumed to be at the bottom of the second conduction
band (6.2 eV),
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(ii) The Fourier-transformed atomic potential
v(q) was taken to be constant near q - K, when per-
forming the Kk integrations in the infinite series of
the averaged Green’s function.*' This may be justi-
fied for small values of the disorder parameter «
and should not effect our results up to a=0. 10.

(iii) The short-range order present in the amor-
phous phases was taken to be the same as in the
trigonal phases. This is justified when considering
the experimental two-atom distribution function of
Se, where the mean distance between next-nearest
neighbors in the amorphous phase is seen to be the
same as in the crystal. However, for the second-,
third-, ete , nearest neighbors there are deviations
from the trigonal distance. These deviations can
be explained by assuming the amorphous Se phase
to consist partly of Seg rings. 3 Therefore, we
may only expect the gross features of the amorphous
DOS to be reproduced satisfactorily by our ap-
proach. In the case of Te, only one quantitative
structural measurement on the amorphous phase is
available. From this, one may conclude that only
the nearest neighbors are described correctly by
our model. The comparison of the calculated DOS
with the results of the photoemission experiments
described in the following paper® will allow us to
test whether our structural model is reasonable or
not.

One of the main results of the present DOS cal-
culations is that in both materials the over-all shape
of the three p bands is almost identical in the crys-
talline and the amorphous phases, whereas the sec-
ond conduction band DOS is smeared out almost
completely. This gives rise to the conclusion that
the shapes, positions, and widths of the three p
bands are mainly determined by short-range order
effects, i.e., the arrangement of one atom with its
nearest and perhaps next-nearest neighbors. Most
of the fine structure that is preserved in the valence
bands when increasing disorder is related to the
A contribution to the DOS. Therefore, one may
conclude, that this partial DOS is connected with
the next-nearest-neighbor configuration.

It is interesting to compare our DOS results in
the case of Te with the results obtained by Hart-
mann and Mahanti, 5 who used a tight-binding ap-
proximation taking into account the correlation be-
tween the nearest and next-nearest neighbors with-
in the same chain. In this approach, the positions
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of the nearest neighbors are taken to be fixed and
to correspond exactly to the trigonal configuration,
whereas the bond parameters from the nearest to
the next-nearest neighbors are varied. The re-
sulting DOS of the three p bands agrees only qual-
itatively with the result of our calculation. The p,
band exhibits three relatively sharp peaks that do
not appear in the p, band of Fig. 7, this paper, for
a=0.11 and & =0.13. The p, and p, bands in*® con-
sist of only one broad peak with a small shoulder
on the high-energy edge, whereas in Fig. 7 both
bands exhibit two peaks even for relatively large
values of . It is probable, that the three sharp
peaks in the p, band are correlated with the fact
that the next-nearest-neighbors configuration is
taken to be exactly that of the trigonal crystal, in
contrast with the actual structural model (Fig. 3),
where disorder effects even the first-nearest neigh-
bors. It would be interesting to have a DOS calcu-
lation for trigonal Te based on the same approach
as in Ref. 55. This would allow us to study the
disorder behavior of the three p bands in tight-
binding approach, and to compare it to our results
in Fig. 7.

Recently, a calculation of the density of states
of amorphous Se was performed using a molecular-
orbital approach.%® Two different structural mod-
els were used in these calculations: The density of
states obtained with the trigonal (chain) model
agrees qualitatively with our result for =0.10 in
Fig. 8 in the energy region of the p, and the upper
part of the p; band. The density of states calculated
by using a monoclinic (ring) model differs in peak
positions and strengths. A comparison of the mo-
lecular-orbital results with photoemission data
(energy distribution curves-EDC)*®*57 shows that
only the chain model allows for a reasonable fit to
the experimental results. Therefore we expect
that we will be able to also interpret the high-reso-
lution photoemission data of the following paper by
using our trigonal structural model.

ACKNOWLEDGMENTS

The authors gratefully acknowledge helpful dis-
cussions with Professor J. Treusch. Two of us
(K. M. and B. K.) are indebted to the Deutsche
Forschungsgemeinschaft for financial support dur-
ing the course of this work.

'P. Grosse, Springer Tracts Mod. Phys. 48, 66 (1969).

2J. Stuke, in Proceedings of the International Symposium on Se
and Te, Montreal, 1967, edited by C. Cooper (Pergamon
Oxford, England, 1969), p. 3; see also Chaps. II and IV.

3G. Lucovsky, R. C. Keezer, and E. Burstein, Solid State
Commun. 5, 439 (1967).

S. Tutihasi, G. G. Roberts, R. C. Keezer, and R. E. Drews,

Phys. Rev. 177, 1143 (1969).

SR. Geick, M. Schroder, and J. Stuke, Phys. Status Solidi
24, 99 (1967).

$G. G. Roberts, S. Tutihasi, and R. C. Keezer, Phys. Rev.
166, 637 (1968).

"R. Fischer, Phys. Status Solidi 31, K139 (1969).

%J. Stuke and H. Keller, Phys. Status Solidi 7, 189 (1964).



8 ELECTRONIC SPECTRA OF

E. Mohler, J. Stuke, and G. Zimmerer, Phys. Status Solidi
22, K49 (1967).

1°W. Henrion, Phys. Status Solidi 20, K145 (1967).

'S, Tutihasi and I. Chen, Phys. Rev. 158, 623 (1967).

2G. Weiser and J. Stuke, in Proceedings of the International

Conference on the Physics of Semiconductors, edited by S. M.

Ryvkin (Nauka, Moscow, 1968), p. 38.

JA. G. Leiga, J. Opt. Soc. Am. 58, 880 (1968).

4], Treusch and R. Sandrock, Phys. Status Solidi 16, 487
(1966).

5R. Sandrock, Phys. Rev. 169, 642 (1968).

16K. Maschke, Phys. Status Solidi 47, 511 (1971).

M. Hulin, Ann. Phys. (Paris) 8, 647 (1963).

1SM. Hulin, J. Phys. Chem. Solids 27, 441 (1966).

M. Picard and M. Hulin, Phys. Status Solidi 23, 363 (1967).

200, Betbeder-Matibet and M. Hulin, Phys. Status Solidi
36, 573 (1969).

2T, Doi, K. Nakao, and H. Kamimura, J. Phys. Soc. Jap.
28, 36 (1970); J. Phys. Soc. Jap. 28, 822 (1970); J. Phys.
Soc. Jap. 30, 1400 (1971).

2B, Sonntag, T. Tuomi, and G. Zimmerer, Phys. Status Solidi
B 58, 101 (1973).

BE. O. Kane, Phys. Rev. 175, 1039 (1968).

24U. Gerhard, Adv. Sol. State Phys. 10, 175 (1970).

L. D. Laude, B. Kramer, and K. Maschke, following paper,
Phys. Rev. B 8, 5794 (1973).

2J. Treusch, Adv. Sol. State Phys. 7, 18 (1967).

27U. Rossler and J. Treusch, Rep. Prog. Phys. 35, 883 (1972).

BR. Sandrock, Adv. Sol. State Phys. 10, 283 (1970).

BH. Krebs, Adv. Sol. State Phys. 9, 1 (1969).

%R. Kaplov, T. A. Rowe, and B. L. Averbach, Phys. Rev.
168, 1068 (1968).

3H. Richter and G. Breitling, Z. Naturforsch. A 26, 1699
1971).

2G. Lucovsky, Mater. Res. Bull. 4, 505 (1969).

3G. Lucovsky, in Ref. 2, p. 255.

*A. Axmann, W. Gissler, and T. Springer, in Ref. 2, p. 299.

3M. H. Brodsky, R. J. Gambino, J. E. Smith, Jr., and Y.
Yakoby, Phys. Status Solidi B 52, 609 (1972).

TRIGONAL AND...I... 5793

%H. E. Swanson and E. Tatge, NBS Report No. 2202, 1951
(U.S. GPO, Washington, D.C., 1951).

H. E. Swanson, W. T. Gilfrich, and G. M. Ugrinic, NBS
Circular No. 539 (U.S. GPO, Washington, D.C., 1955),
Vol. V.

3P, Cherin and P. Unger, Acta Crystallogr. 23, 670 (1967).

3T. Ichikawa, J. Phys. Soc. Jap. 33, 1729 (1972); Phys. Status
Solidi 56, 707 (1973).

“B. Kramer, K. Maschke, P. Thomas, and J. Treusch, Phys.
Rev. Lett. 25, 1020 (1970).

“1B. Kramer, Phys. Status Solidi 41, 649 (1970).

‘2B, Kramer, Phys. Status Solidi 41, 725 (1970).

“3B. Kramer, Phys. Status Solidi 47, 501 (1971); see also B.
Kramer, K. Maschke, and P. Thomas, Phys. Status Solidi
48, 635 (1971); Phys. Status Solidi 49, 525 (1972); J.
Non-Cryst. Solids 8-10, 659 (1972).

“K. M. Watson, Phys. Rev. 105, 1388 (1957).

“SF. Yonezawa and T. Matsubara, Prog. Theor. Phys. 35, 357
(1966).

“F. Yonezawa and T. Matsubara, Prog. Theor. Phys. 35, 759
(1966).

“Ip, Lloyd, Proc. Phys. Soc. Lond. 90, 217 (1967).

‘K. Maschke and P. Thomas, Phys. Status Solidi 39, 453
(1970).

“P. 0. Lowdin, J. Chem. Phys. 19, 1396 (1951).

K. Maschke and P. Thomas, Phys. Status Solidi 41, 743
(1970).

SIL. D. Laude, B. Fitton, B. Kramer, and K. Maschke, Phys.
Rev. Lett. 27, 1053 (1971).

M. H. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789
(1966).

3A. O. E. Animalu and V. Heine, Philos. Mag. 12, 1249
(1965); A. O. E. Animalu, Cavendish Laboratory Report
(unpublished).

343, Stuke, Adv. Sol. State Phys. 9, 46 (1969).

W. H. Hartmann and S. D. Mahanti, J. Non-Cryst. Solids
8-10, 633 (1972).

1. Chen, Phys. Rev. B 7, 3672 (1973).

7P, Nielsen, Phys. Rev. 6, 3739 (1972).



TTY¥TII LTI T

0T N A ey O (R L L 0 I |

T T T T T

YT T V8 N M O T LA B 1

=013

DENSITY OF STATES (ARB. UNIT)

TT T T T T T T T 17T
TS N I T T o W 1Y O |

SCB

L | 1 | | | !

31 1
b 5 T Z 3 4 56 7 8 § 00
ENERGY (eV)

FIG, 7. Density of states of Te for different stages
of disorder, i,e., different values of @, The density of
states contributed by the total Brillouin zone is shown
as a heavy line (heavy histogram in the DOS for o =0),
The DOS contributed by the region near the A axis (see
text) is shown as a thin line, The dashed partial con-
tribution is the DOS contributed by the region near point
H (see text), The DOS contributed by the rest of the
BZ (=total BZ region near A region near H) is shown as
a shadowed line, The average imaginary parts of energy
used in the calculations for o # 0 are listed in Table III.
The arrows denote the positions of structures in DOS
(total DOS or one of the contributions) as resulting from
the experiment (see Paper II), The photoelectric
threshold Ep is assumed to be at the bottom of the second
conduction band (5.8 eV).
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FIG. 8. The density of states of Se for different
stages of disorder. The explanation of the figure is the
same as for Te. Again, the photoelectric threshold is
assumed to be at the bottom of the second conduction
band (6.2 eV).



