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%e present sets of special points in the Brillouin zone from which the average over the Brillouin zone of a
periodic function of wave vector (e.g., energy, charge density, dipole matrix elements, etc.) can be
determined in a simple and accurate way once the values of the function at these points are specified. %e
discuss a method for generating the special-point sets and apply it to the case of crystals with cubic and

hexagonal Bravais lattices.

I. INTRODUCTION

Many calculations in crystals involve the av-
eraging over the Brillouin zone of a perigdic func-
tion of wave vector. Such calculations are often
long and complicated and in principle require a
knowledge of the value of the function at each k
yoint in the Brillouin zone. In practice the func-
tional values are known or determined over a set
of points in the zone and the values at other points
are found by using various types of approximation
and interpolation methods. To obtain sufficient
accuracy in these calculations it is necessary, in
general, to know the functional values over a large
set of points.

In this paper we present a systematic way of
choosing sets of points in the Brillouin zone which
makes possible simpler and more accurate cal-
culations of averages over the Brillouin zone of
periodic functions of wave vector. With these
points one may avoid the use of interpolation in the
calculation of averages.

This paper is organized in the following way. In
Sec. II we discuss the conditions to be satisfied by
the special-point sets, and the method for obtain-
ing these sets. A number of special-point sets for
crystals with cubic or hexagonal Bravais lattices
are derived in Sec. III. The accuracy of the spe-
cial-point scheme is discussed briefly in Sec. IV.

II. GENERATION OF SPECIAL POINTS

Special points in the Brillouin zone from which
average values (i. e. , averaged over the Brillouin
zone) of various quantities, such as the charge
density 3 or energy, can be calculated have re-
cently been proposed, and the conditions to be
satisfied by these points have been specified. '
Up to now no systematic way of satisfying an ar-
bitrary number of these conditions has been sug-
gested. In this section we restate these conditions
and develop a method of generating successive sets
of points which will satisfy as many of these con-
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From g(k) we can construct a function f(k) which
has the complete symmetry of the lattice, i.e. ,

where the T,'s range over all the operations of
the lattice point group T and where n& is the num-
ber of elements in T. We can express f(k) in the
form

f(k)=f0+ ~ f A (k)
m~i

where

A (k)= Z e'" ", ~=1, 2, . . .
III C~

(4)

The sum in (4) is over equivalent lattice vectors
5 related to ea.ch other through the operations of
T. The lattice vectors are ordered so that 0

Equation (4) associates each A (k)
with a particular "shell" of lattice vectors. The
A„(R) are real functions which can be written out
in terms of sums and products of cosines and they
satisfy the following relations:

A (k) d k = 0, m = 1, 2, . . .
(2w

(6)

f A (k)A„(kid k=N„((
BE

(6)

A.(k+5) = A„(i),

ditions as one may, require for a given accuracy.
This method is a generalization of the one we have
previously used in charge-density calculations.

We restrict ourselves to smoothly varying
periodic functions of wave vector (with periodicity
5, where/ is any reciprocal-lattice vector). As-
suming g(k) to be such a function we can expand it
in a Fourier series:
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A (Tk)=A (k), (8)

f , f=f(k)d k . (10)

Using (3) and (5) we find f =fo. The average over
the Brillouin zone of g(k) in (1) is obviously also
equal to fo. We now present a method for obtain-
ing the approximate value of the integral in (10)
by performing a sum over a finite number of op-
timally chosen k points. The approximation can
be made as accurate as desired.

The exact value of the integral in (10) would be
obtained immediately if there were a point ko
which satisfied

A (ko)=0, m= 1, 2, .. . , N

for N=~. Then using (3) we would immediately
have f =fo =f(k }. Such a point does not in fact
exist. The expansion coefficients f normally
drop rapidly in magnitude as rn becomes large so
that we actually require (11) to be satisfied for a
finite value of N. Baldereschi~ has obtained for
the cubic crystals the point Ao, which satisfies
(11)for N= 2 or Ã= 3 depending on the lattice sym-
metry. This point, called the "mean-value
point" by Baldereschi, gives surprisingly good
results when used to calculate the average elec-
tron charge density '~ and energy in a number of
diamond and zinc-blende crystals. We have
previouslyo used three points (called "represen-
tative k points" in Ref. 2) which satisfy (11)for
the first seven nearest neighbors of an fcc-lattice-
structure crystal in charge-density calculations.
We show in Sec. III a better scheme which in-
volves the use of only two points.

To satisfy (11)for large values of N, a many-
point scheme becomes necessary. We impose the
following conditions on the points k~ and their
weighting factors e,:

o.,A (k,.) = 0, m = 1, . . ., N
g-1

(12)

n, =1
g=1

(13)

A (k}A„(k)=Z a&(m, n)A&(k), (~)
f

In these expressions 0 is the volume of the prim-
itive cell, N„ is the number of lattice vectors in
shell n, 5 is any reciprocal-lattice vector, T is
any element of the lattice point group, and the
a, (n, m)'s are integers which can be determined
for a specific choice of n and m. We define

Ao(k) = 1

so that a~(m, n) is defined for j, m, n ~ 0. By the
average over the Brillouin zone, f, of f we mean

With these conditions on k, and o, one can easily
show by using (3), (12}, and (13) that the average
over the Brillouin zone, fo, of f(k) is

fo= ~ ~~f~&&) —+ + o.gfmA~(k;),
f=1

(14a)

where the prime on the sum over m indicates that
those m for which A (k) satisfies (12) are ex-
cluded from the sum. The first f to appear in
( 4a) is f„,&. Since the expansion coefficients f
normally drop rapidly in magnitude when m be-
comes large, by making N in (12) large enough we
should have to a good approximation

n

fo= Z n&f(kg)
graf

(14b)

k] = kg+ T] k2, (15)

with

n& = const.

and with T, ranging over all the operations of the
lattice point group. The new points k; obtained
in this way can be used in a similar process to
generate larger sets of points which will satisfy
(12) for larger values of N. In each such process
each one of the original points gives rise to a
number of new points. These points can always
be transformed to equivalent points lying in the
irreducible part of the BriQouin because the
A (k)'s satisfy (7) and (8). When this is done the
resulting points do not all necessarily have iden-
tical weighting factors. This arises from the
fact that several of the original points may have
been transformed into a single point of the ir-
reducible zone.

When ko in (15) is a symmetry point the set of

Equation (14b) presents a simple way of calcu-
lating the average over the Brillouin zone of a
periodic function f(k). All we need are the values
of f(k) for certain k points. We define the special
points to be those which satisfy (12) by using a
minimum number of points for a given value of
N. The special points and their corresponding
weighting factors are derived for the cubic and
hexagonal Bravais-lattice crystals in Sec. III.
In the following we discuss how one can generate
sets of points that satisfy (12) for N as large as
one may require.

Suppose that the points 'K, and Ro satisfy A (Q = 0
for certain values of m denoted by (NP (for R,) and
(Nof (for Ko). From these two points we can gen-
erate a new set of points that will satisfy (12) for
m in either (N,j or goI. One can easily show (see
the Appendix) that the new points k, are related to
R, a dk, by
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points Tkz does not contain too many elements.
However, when this is not the case the number of
points generated from an appbcation of (15) can
increase rapidly (e.g. , by a factor of 48 in the
cubic crystals). By a proper choice of k& and k8
this can be avoided. We will now apply (15) to
generate the special-point sets for the cubic and
hexagonal Bravais-lattice structures.

kl (8& 8t 8)~ +1 y Bt8y8 y
&8= ki
a8= h'

ae='ki

be found with a higher degree of accuracy. The
coordinates and relative weights of these points
are

III. SPECIAL POINTS

A. Face-Centered-Cubic Bravais Lattice

=1.&v ='Ri

&8= ki

k8 (8~ 8~ 8)t +8 ki
10 ~8) St 8 6 +10 $K ~

This Bravais lattice includes the diamond,
zinc-blende, and rocksalt crystal structures. A
good choice for a starting point k= (k, k„k,) is
k& = (—,', —,', 0) (units of 2w/a, where a is the lattice
constant). Another possible starting point is the
point (-,', —,', —,'). These points are better than other
possible starting points because they appear to
lead to the smallest possible point sets. With
the choice of k8= (—,', —,', 0) or (-,', —,', —,') Eq. (11) is
satisfied for the infinite set of nearest-neighbor
shells represented by the lattice vectors ff
= (R|,R8, R8) (units of a) whenever at least one

R, is a half-integer. Equation (11) is therefore
satisfied for m=1, 3, 5, 7, etc. We will choose
our second point so that (11) is satisfied for the
even m's. The point k8= (-,', —,', —,') satisfies (11)for
m=2, 4, 6, etc. The set of points Tkz consists
of eight different elements. Combining k1
= (8, 8, 0) or (8, 8, 8) with k8 as in (15) we should
get eight points. We find, however, that for
either choice of k1 these eight points are related
by the symmetry operations of T to only two dis-
tinct points of the irreducible zone. Six of these
points correspond to k8 =(+~, —,', —,') and the other
two to k8= (-,', —,', —,'). The normalized weighting fac-
tors for k1 and kz are therefore n1 = —„' and @3=-,',
respectively. This leads to the simplest possible
two-point scheme for the approximate determina-
tion of f8 in the fcc Bravais-lattice crystals; i.e. ,
we have from (14b)

fo = 8[2f(ki)+f(k8)] .
The accuracy of these two points in determining
f0 is at least as good as the three-point scheme
we have previously used. These two points satis-
fy (12) for an infinite number of m, but not for all
m. The first failure occurs for m = 8, corre-
sponding to the eighth-largest nearest-neighbor
shell represented by the lattice vector 5= (2, 0, 0)
(units of a). Other failures occur for 5= (2, 2, 0),
(2, 2, 2}, (4, 0, 0), etc. The point k=(-'„-'„-,') satis-
fies (11)for the lattice vectors (2. 0, 0), (2, 2, 0),
and (2, 2, 2). The points k~ and k8 can be used with
this point as in (15) to generate a set of ten points
from which the average over the zone of f(k) can

a, =n, /Q n, .
f

(16)

As an example of the use of (16) consider the two
special points k~ =($, —,', —,') and kz= (-,', —,', —,') dis-
cussed above. We see that there are 24 different
wave vectors related to k1 through the operations
of T and eight different wave vectors related to
kl. We have therefore n1 = 24 and n3= 8 and using
(16) we get

84+1 84+ 8

These ten points satisfy (12}for all m except
those which correspond to nearest-neighbor
shells represented by lattice vectors of the form
5= (4n&, 4n8, 4n8), where the n, 's are integers.
The first failure occurs for m=37, corresponding
to the lattice vector (4, 0, 0). Other failures occur
for 5= (4, 4, 0), (4, 4, 4), etc. Thus, for the first
150 different nearest neighbors, these ten points
satisfy (12) except for the three lattice vectors
(4, 0, 0}, (4, 4, 0) and (4, 4, 4). If desired, the ac-
curacy of these special points can be further in-
creased by using the point k = (I.„18,18), which
satisfies (11}for the three lattice vectors (4, 0, 0),
(4, 4, 0}and (4, 4, 4). The ten points combined
with k as in (15) give rise to a grid of 60 points in
the Brillouin zone. For these 60 points (12) is
satisfied except for lattice vectors of the form
5= (8nz, 8n8, Sn8) (n, 's being integers). The first
error for these points occurs for 5= (8, 0, 0),
corresponding to m = 150. For over the first
500 nearest neighbors these 60 points satisfy (12)
except for 5=(8, 0, 0), (8, 8, 0) and (8, 8, 8}. The
extension tcrhigher point sets can be carried out
by using the k points m (I/2", 1/2", I/2"), n
= 1, 2, ... . In each such extension the magnitude
of the smallest lattice vector for which (12}is
not satisfied is doubled.

The weighing factor 0., of each special point k,
is easily determined by the following general rule.
Let n, be the number of different (i.e. , not re-
lated by a reciprocal-lattice vector) wave vectors
obtained when k, is acted upon by every element
of T. Then a, is proportional to n, and the nor-
malized weighing factors are given by
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8
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The weighting factor a, is also proportional to the
volume of % space occupied by 'k&.

The special point k = (0. 6223, 0. 2953, 0} (22/a}
proposed by Baldereschi' satisfies (12) for m = 1,
2 and gives a minimum for m=3. This is the
best single point for the calculation of averages
in crystals with the fcc Bravais lattice when the
expansion coefficients are significant only for the
first few nearest-neighbor shells.

B. Body-Centered-Cubic Bravais Lattice

The points (-,', 0, 0), (-,', —,', 0), and (-,', —,', —,') (units
of 22/a, where g is the lattice constant) are
equally suitable as starting points. All three
points lead to identical special-point sets.
Choosing k1 to be any one of these points {11)is
satisfied for all lattice vectors ft = —,'(R1, R2, RB)
(units of ta) whenever R1, Rz and Rs are all odd
(for the bcc lattice structures R1, R2, Rs are
simultaneously odd or even). The point kB
= (-,', —,', —,') can be used with k1 to generate, as in
(15), a new set of points. These points corre-
spond to only two distinct points of the irreducible
zone. They are

k1-(. —. —.) u1-. k -(-. —. —.) &2-8

where the n, 's are the weighting factors. These
two points satisfy (12) except for the shells rep-
resented by lattice vectors of the form 5
= (2811, 2n2, 2sa), where the n, 's are integers. The
first error occurs for 5 = (2, 0, 0), which is the
sixth-largest lattice vector. Other errors occur
for 5= (2, 2, 0) and (2, 2, 2). The two points k1
and k2 above have the same coordinates as the two
points found for the fcc Bravais lattice. The
weighting factors are different because of differ-
ences in symmetry. To go beyond the two-point
scheme we can use k= (—,', —,', —,'), which satisfies
(11}for the lattice vectors (2, 0, 0), (2, 2, 0), and
(2, 2, 2). This point can therefore be used with
k1 and ka to obtain the higher set of special points.
%hen this is done we find the following eight points:

=-,' (1/2", 1/2", 1/2"), n=1, 2t. .. . The weighting
factor of each special point can be determined
from (16).

The special point k=(I-, 8, —,') (22/t2) suggested
by Baldereschi satisfies (12) for m= 1, 2 and min-
imizes (12) for m=3. This is the best single
point for the calculation of averages in crystals
with the bcc Bravais lattice.

C. Simple-Cubic Bravais Lattice

The best starting point is k1 = (—,', —,', —,') (units of
22/a, where a is the lattice constant), which is
identical with the special point obtained by
Baldereschi. This point satisfies (11) for all
lattice vectors f3= (R1, R2, Rs) whenever at least
one of the components R, is odd. To satisfy (11)
for lattice vectors with even R, we use the point
ka= (—,', —,', —,') to generate a new set of points as in
(15). We find the following four points:

1 (Bt at 8)t +1 8 i k2 {Bt 8t 8)» +2 8i

(Bt 8t 8)t +2 8 t ka (Bt 8t 8)t +8 8

These four points satisfy (12) except for the shells
represented by lattice vectors of the form 5
= (4n„4n2, 4na), where the n, 's are integers.
The first error occurs for 5=(4, 0, 0), which
corresponds to the fourteenth-largest shell.

Higher point sets can be obtained in a similar
way by using the points (1, = —,

' (1/2", 1/2", 1/2")
for n = 1, 2, ... . The weighting factors for points
in the larger special-point sets can be obtained
from (16).

D. Hexagonal Bravais Lattice

The system of crystals with a hexagonal Bravais
lattice includes the wurtzite and the hexagonal-
close-packed crystal structures.

To describe the special-point sets we pick the
origin of coordinates such that the primitive trans-
lation vectors in real and reciprocal space are
given by

R1 8 a X+ 8 ~3 ay" t Ra = —,
' aX ——,

' V' 3 aj, Ra = CZ,

G, = (2v/a)(i+ 8 v'3 y), Ga-—(2v/a)(x ——,
' l3 y},

k1=(at at a)t
1 1

121 ki k2 (Bt st 8)» &2 'ki G, =(2w/c) 2 .

St 8y 8

3 3 3 =1 ~
&2 fB t ka (st Bt 8)t +8 TBi

+5 Sy ay8y8 y +5

uV-4 ka-(8 8 s)t Caa-kt

where the 0.,'s are the relative weighting factors.
These points satisfy (12) except for lattice vec-
tors of the form 5= (4881, 4812, 4882). The first er-
ror occurs for 5= (4, 0, 0), which corresponds to
m = 28 in (12). Larger point sets can be con-
structed in a similar way by using the points k

We will represent a special point }1=(2tt/a){k„
k„(a/c)k, ) of the Brillouin zone by R = (k„, v'3 k„,
k, ) to avoid the repetition of the various factors.

A good starting point is K= (—,', —,', —,'), which satis-
fies (11) for the first nearest neighbors in the 2
direction and in the z = 0 plane. The best choice
for a second point is K = ($, 0, 0). When K and
K are combined according to (15) and the result-
ing points are taken to the irreducible part of the
Brillouin zone we find the following three points:
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K(=($»0» —,')» Ka=($»0» «)» Ka=(s» s» «} . s=ZZ a(A (k()f (17)

The weighting factor for each point is —,'. These
three points satisfy (12) for the first-eight near-
est-neighbor "shells. " (In ordering the nearest-
neighbor shells we are assuming a c/(a ratio close
to —', v 6; the exact value of this ratio is, however,
immaterial in the scheme for generating the spe-
cial points. ) The first failure occurs for the six-
fold ring of nearest neighbors represented by
5=3%,. To satisfy (12) for this ring we use the
point K = (P, P, 0) with the three points above tio

generate the following six points:

(i i/)
Ka = (~s,4,4),
Ks=(4, ~s, 4),

1
1 9y

J..
S Qy

as= If»

Ka=($ s ~)
K =(4,4,4),
Ks= (isA, ~}

as= 4»

as=4 ~

How accurate is the special-point scheme in de-
cermining the average over the Brillouin zone, fo,
of a periodic function f(k)? How does the accu-
racy change with successive approximations when
the number of points are i.ncreased'P In this sec-
tion we examine the accuracy of the special-point
scheme using two complementary approaches
which will prove useful.

The error c in the vahxe of fo using the point
schemes described in Sec. III can be obtained
from (14a) and (14b) and is equal to

For the first 30 nearest neighbors these six
points satisfy (12) except when I Rl = 2c. The point
K=(0, 0,—,') satisfies (12) for this lattice vector
and when combined with the above six points re-
sults in the following set of 12 points:

K(=8 4 s} a(= ki Ka=8 s 4) aa ki
Ka=(is, k s), aa=k' «=(isis, 4) as=k'
Ks=(s s s) as= k Ks=('k '(I' 'k) as= k
K, =('' ) a =-t. K =(''4)

For these 12 points the first failure to satisfy
(12) occurs for m corresponding to I R I

= 4c.
Succeeding failures occur for I RI =27((, I Rl
=27()a+16c, IRIa=61cP, etc. Larger sets of
points can be constructed to remove these failures
by using the points K=(0, 0, 1/2"'a), (2/3 a, 0, 0),
and (1/3"'a, 1/3"'a, 0), ((~ 1. The weighting factors
for the larger point sets can be obtained from (16).

It should be noted again that the coordinates of
the special points k= (2v/(()(k„, k„, (a/c)k, ) of the
Brillouin zone are related to the coordinates of K
= (E„,E„,E,) by k, = E„, k, = s ~3 E„, k« = E« .
IV. ACCURACY OF AVERAGES OBTAINED FROM THE

SPECIAL-POiNT SCHEME

When (12) is not satisfied, the special points have
the property that

Za(A (k()=S N, S =+I (16)

with N defined as in (6). Using this in (17) we find

&=Z SNf (19}

To obtain an estimate of this error we need the be-
havior of f . Using (3) and (6) we find

f„=— Jf(lt)A„(»)«k.

Assuming f (k) to be a smoothly varying function
we can expand it in a Taylor series and perform
the integral over the Brillouin zone to obtain the
asymptotic behavior of f . We will consider here
only the case of the cubic crystals. The smallest
vectors R associated with those f which appear
in (19) are then of the form (R, 0, 0), (R, R, 0),
(R, R, R). For these lattice vectors we find, on
carrying out the integration for the case of the fcc
lattice structure, that f drops at least as fast as
(1/N }(I/IN„I ) for large Ig I. This implies that

(20)

The error therefore decreases rapidly as (12) is
satisfied for larger N (and hence larger I R I). In
going from one set of special points to the next
higher set of points the magnitude of the smallest
R 's occurring in (20) is increased by a factor of 2.
%e therefore expect the error & to get reduced by
a factor of nearly 8 for each successive approxi-
mation. Thi~ result can also be obtained in a dif-
ferent way.

Let D be the difference in the value of the aver-
age fs obtained from two consecutive approxima-
tions. Let E((s) be the value of f(k) at one of the
originalpoints k, and let F,'~' for j=1, ~ ~ ~, 8 be
the values of f (k) at the eight points obtained from
k, in going to the higher-order approximation.
These eight points actually lie on the corners of a
cube centered at the original point k, for the case
of the cubic crystals. The value of D is

D=Z, F' ' —EF'i'}-
Sg.s

where the ~,'s are the weighting factors for the
original points k, . Assuming f(k) to be a smooth-
ly varying function that can be expanded in a Tay-
lor series about each point k„we find in going to
third order in the expansion

D = a (&k/2) Z a(V aj'(k(), (21)
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where Ak is the length of the cube about each point
k, . %e found previously that the magnitude of the
error g is reduced by a factor of about 8 in each
successive approximation. Since D is the differ-
ence in the errors of two successive approxima-
tions, if we ignore the smaller error, which is
about 10% of the larger one, then we can take D

Therefore to minimize & we will try to mini-
mize D.

A reduction in the value of D can occur if we are
interested in sums of averages. For example, the
sum of the average energies of several bands can
usually be more accurately determined than the
average energy of each band individually. This is
because the different bands do not have the same
curvature everywhere; inparticular, the lowest
band normally has a different sense of curvature
than the next few higher bands. This causes can-
cellations in (21) when taking sums of averages
for these bands. The same effect appears in
charge-density calculations based on a small num-
ber of points. ~

The difference in the value of fo obtained from
two nonconsecutive approximations can also be
expressed in the form of (21) with (hk)~ replaced
by some mean value (Ak) . This implies that if
the Taylor expansion of f(k) to third order were
sufficient then the "best" single point ko would
satisfy

Vg(ko) =0 .
Since the functional dependence of f(k) on k is not
known, in general, this equation cannot be used to
determine%0. The best thing to do to minimize D
is therefore to restrict ko to satisfy the condition
(11) for N as large as possible. This has been
done by Baldereschi' for the cubic crystals.

%'e can also derive a different expression for D.
By using (3) and (4) we find that

~', f(k) =-Z(a/»}'lR. l'f~. (k), (22)

where the lattice vectors are of the form aR and
k is measured in units of 2w/a.

Using (12) and (18) we get

(23)

APPENDIX

Ne want to show that if

A (k)= Z e""=0
1%!nC ~

is satisfied by k& for m = m& and by k~ for m = m3
then the set consisting of the n~ points obtained
from

(Al)

k) = kg + T]k~

for i = 1, . . . n satisfy

(A2)

Za, A (k, )=0 (A3)

with a, =1/nr =const. for m = m& and for m = m~.
The sum in (Al) i.s over equivalent lattice vectors
related to each other by the operations T, of the
lattice point group T, which has n& elements.

From our choice of k, and k3 we know that

A (ki)A (kq)=0 (A4)

is satisfied for m = mz and for m = m~. Using (Al)
this can be expressed as

where IR I is the smallest lattice vector for
which (12) is not satisfied. Since the magnitude of
this lattice vector increases by a factor of 2 in
each successive approximation and (Ak) decreases
by a factor of 2, D decreases by a factor of about
8 in each successive approximation. It is interest-
ing to note that the number of special points in-
creases by a factor of nearly 8 for each consecu-
tive approximation as the number of special points
becomes large.

In conventional calculations of averages a reduc-
tion in the value of D takes place mainly through
a reduction in the size of bk as more points are
used. The "effective" I R I' occurring in (24) is
much smaller in these calculations than is the
case when a set of special points containing a com-
parable number of points are employed. For a
given accuracy one therefore needs a smaller num-
ber of points if one chooses the grid of points in
the Brillouin zone to coincide with the special
points.

The use of the special points can be extended to
the construction of interpolation formulas.

where the summation is only over those m for
which (12) is not satisfied. In each set of succes-
sive approximations, (12) is satisfied for a larger
set of m values and the number of terms in D de-
creases. Furthermore the length of the cubes (Ak)
about each point is reduced by a factor of 2 in each
successive approximation. The asymptotic behav-
ior of f was found to be of the form (1/N }(1/
IR I~). Substitution in (23) therefore gives

D =(»)'/
I ft.l, (24}

~f PY)~% ~ffp % p (AS)

This equation is equivalent to

Qe&&a rifi l-0~ ~
~

i%1-C
(As}

The dot product k3 (T~R) is equal to (T,k~) R,
where T, = T, '. 1III'e can therefore rewrite (6) in
the form
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(A7}

ZA (k)+ 7',k~) = 0 .
l

(Aa}

e4(fg+T pip) % 0
g i%lie

Using the definition (Al) of A (k) in Eq. (A7) is
seen to be identical to

Using (A2) this can be expressed as

ZA (k, ) =0 .
l

Equation (AQ), except for a constant multiplicative
factor, is equivalent to (A3), which we wanted to
show.
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