
PHYSICAL RE VIEW B VOLUME 8, NUMBER 12 15 DECEMBER 1973

Mobility, Noise Temperature, and Diffusivity of Hot Holes in Gersrtstrnum

J. P. Nougier and M. Rolland
Laboratoire de Physique des Solides, Cent~e d'Etudes d'Electronique des Solides, Universite des Sciences et Techniques du Languedoc,

34060 MontIpellier Cedex. France
(Received 10 November 1972; revised manuscript received 13 April 1973)

Measurements are performed on p-type germanium at several temperatures between 77 and 300'K.
Mobility is plotted vs electric field up to 10 kV cm '. Saturation is reached at low temperatures.

Critical field E, and saturation velocity vs are deduced. E, varies as T"' and vs lies between

8 X 10 and 9 X 10 cm sec '. An explanation is given to the fact that p,(E)/~ is found to increase

with carrier density. The longitudinal noise temperature T„~fE) is measured vs ele:tric field up to 3
ftvcm ' at difFerent lattice temperatures T in the range 112-300'K. T„~)E)—T varies as E" at
low field. A flat appeiars around E = E,. Transverse noise temperature T„~(E) is lower than T„„(E).
Longitudinal D, (E) and transverse Di(E) are deduced. D~)E) is smaller than the Ohmic diffusivity

Do and reaches 0.15DO at 112'K and 2 kV cm . A simple and original iterative method is given for
solving the spatially invariant Boltnnann equation in the hot carrier range. Distribution function and

transport coe%cients are obtained for transitory regime and steady state for p-type g~ghflium. The
distribution function is never a displaced Maxwellian even at low fields. Comparison with experiment
shows that the scattering mechanisms comgvlonly taken into account cannot explain the drift velocity
saturation observed experhnentally. Multiphonon proomes would probably reduce this discrepancy. The
relaxation time ~ involved in difRsionwoefficient formulas is found to depend on electric field. A
formal expression is given for v.

I. EXPERIMENTAL

Many results in the hot-carrier range deal with
conductivity ("first-order" transport coefficient)
and have been reported in review papers. Sys-
tematic investigations have been published for
silicon. Second-order transport coefficients, such
as noise and diffusion coefficients, have been rare-
ly studied. We report in this paper some results
obtained on mobility, noise temperature, and dif-
fusion coefficients in p- type germanium. Three
samples have been studied:

tions are assumed to be negligible. Figure 1 shows
for sample No. 2 variations versus electric field
of

Eo(E)/oii = v, (E)/ft „
where v, (E) is the drift velocity. A good agreement
is found at low field with previous results published
at 77 and 300 K.™2However, at high field and
low temperature, Fig. 1 clearly exhibits drift-
velocity saturation, at 10 kV cm ' for temperature
as high as 143 'K. These results bring confirma-
tion of those obtained by Zucker'~ and are in dis-

Sample No. 1: p295 oK = 40 0 cm,

Ng —Ng) = 7. 5 x 10 cm

Sample No. 2: p295 oK = 11.2 0 Cm,

Sample No. 3: p295oK=1 0 cm,

Pf~ —+~ —3. 5 x 10 cm

A. Conductivity

X„-Z~= 2. 6x10"cm-',

3
E

8
~t

Electric field was applied in (110) direction using
2- p.sec pulses at a repetition rate of 1 pulse per
10 sec. Measurements were made with a pulse
bridge. Ohmic contacts were obtained by liquid
epitaxy. '

Relative conductivity o(E, T)/oc(T) has been
studied up to 10 kv cm ' at different lattice tem-
peratures T between 77 and 300'K. o(E, T)/o, (T)
is identical to the relative mobility ft(E, T)/ftc(T)
since the carrier density remains unchanged when

applying an electric field: interband induced transi-

E (Vcm

FIG. 1. Ratio of drift velocity vz to Ohmic mobility

~ vs electric field E for sample No. 2.
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r (K)

Eo (Vcm ) 300

112

610

143

980

173

1350

TABLE I. Measured values of critical field E, and
conductivity fr~. Saturation velocities v~ have been de-
duced from ~ data of Brown and Bray (Ref. 12).
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0.48

8.9x10

0.52

9.Ox 106
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8.9x log

0.55

8.9x10
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agreement with earlier measurements, among
them those of Mendelson and Bray~ where the E
law observed at high field was probably due to
progressively injecting contacts since conductivity
was higher there than in the present work at high
field. Saturation has not yet been observed on p-
type silicon.

The critical field E, defined as

O
LLJ 5-

T {4K)

E.=~s/) o (1.2) FIG. 2. Characteristic field E,=vz/~ vs lattice tem-
perature T for sample No. 2.

is reported on Table I. The critical conductivity
o, is defined as

o, =o(E,). (1.3)

TABLE II. Extrapolated values of cr /pro and E .

cr /cro

E~ (Pcm )

v& (cmsec )

203

0.555

1800

8.6x 106

233

0.56

2300

8.3x 10

300

0.567

4100

8.Ox 108

o,/co varies slowly with temperature, so that values
obtained in Table I can be extrapolated up to
300 K. Results of this extrapolation are given in
Table II, as are the corresponding E, values de-
duced from v, and from curves in Fig. 1. They are
in good agreement with extrapolations of curves
shown in Fig. 1. Variation of E, vs T is given in
Fig. 2 and shows a T'93 dependence.

Saturation velocities can be obtained by using
Eq. (1.2). As go strongly depends on impurity
concentration, p, o values obtained by Brown and
Bray' on similarly doped samples have been used.
Results reported in Tables I and II show that y~
varies slowly with temperature and lies between
8x10 and Sx10 cm sec . Similar results have
been obtained on silicon.

It must be noted that noninjecting contacts lead
to a good variation but wrong values of p(E)/po if
contact resistance is not negligible. '

The influence of impurity scattering is shown in
Fig. 3, where p(E)/po has been plotted versus T
at a constant electric field E= 2 kv cm ' for sample
Nos. 1 and 2. Figure 3 shows that p(E)/po is
higher for the more impure sample, in agreement

Equations (1.4) and (1.6) show that

) "'»/uo '&) "'(E)/) o" (1.6)

This also explains that the saturation velocity is
almost carrier-density independent.

B. Diffusion Noise Temperature

The results published until now concerning
noise- temperature measurements deal with n-type
germanium) GRAs, g- type silicon~ Rnd p-
type germanium. 9'

Noise temperatures reported here have been
measured at 500 MHz. High-electric-field pulses
of 20 p.sec duration were applied to the sample
along (110) crystallographic direction. The noise
voltage was amplified, then quadratically detected
Rnd integrated. When the impedance of the sample
was matched to the amplifier the output signal was
proportional to the input noise power Ioo(T„+ T„),
where T„and T„are the noise temperatures of the

with previous experimental results. " This can
be explained as follows: where the electric field
is null, the carriers of sample No. 2 are more
scattered than those of sample No. 1 and the Ohmic
mobilities of the samples are different:

Po ~4o (1.4)

this is in agreement with previous experimental
data. ' Now, when a sufficiently high electric
field is applied, impurity scattering and carrier-
carrier scattering are inefficient, and inelastic
optical phonon scattering is preeminent and governs
mobility; hence

g"'(E) = p"'(E). (1.6)
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lattice temperatures T in the range 112-300 K.
Measurements could not be performed at lower
lattice temperatures because contact noise becomes
important. ' Figure 4 shows, for sample No. 1,
excess longitudinal noise temperature T„„(E)—T
plotted versus E. It can be seen that at low field
(but E & E,/10), T„„(E}—T varies as E"at every
lattice temperature, and not as E as could be ex-
pected from a development in a power series of E.

It must be noted that at lower lattice tempera-
tures, a flat appears in a range of electric field
around E„ and that T„„(E)—T increases again at
a higher field. This can be considered as a begin-
ning of experimental confirmation of theory de-
veloped in Refs. 21 and 5, following which one can
predict

FIG. 3. Variation vs lattice temperature T of relative
mobility p(E)/~ at E= 2 kV cm ~ for sample Nos. 1 and 2.
+, sample No. n' 1; 0, sample No. 2.

T„„(E) D„E
where —~ 10,E

sample and of the amplifier, and k~ is the Boltz-
mann constant. T„and the proportionality factor
were determined using a standard noise generator.
Details concerning the experimental set up are
given in Ref. 5. Temperatures corrections were
necessary because of sample heating.

Longitudinal equivalent noise temperature T„„(E)
along (110) direction has been studied for different

where D„and Do are longitudinal and Ohmic diffu-
sion coefficients. In practice, Eq. (1.7) leads to
a quadratic dependence of T„„(E)vs E for E not
exceeding 10E, too much. Unfortunately, the elec-
tric field reached was not high enough to exhibit
such a variation.

Longitudinal T„I(E)—T and transverse T„,(E) —T
excess noise temperatures are compared at 300 'K
in Fig. 5 for sample No. 3. Longitudinal excess
noise is the same as for sample No. 1. It can be
seen that the transverse noise temperature is low-
er than the longitudinal one in agreement with the
theory developed in Ref. 21.
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T 112 K

p T 143 K

~ T 173~K

~ T~213 K

253 K

T ~ 295OK
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E(Vcm-')
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2xS
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5 1Q

E( Vcrn )

FIG. 4. Longitudinal excess noise temperature T„ii (E)
—T vs E at different lattice temperatures T for sample
No. 1.

FIG. 5. Comparison between longitudinal T„„(E)—T
and transverse Tf1j.(E) —T excess noise temperatures at
300'K for sample No. 3. 0, Tfg)(E) —T; +y TffJ(E)
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C. Diffusion Coefficients

Although important, diffusion- coefficient mea-
surements for semiconductors in an external elec-
tric field are as rare as noise-temperature mea-
surements. However, various techniques can be
used and some results have been reported for n-
and p-type germanium, ' n- and p-type sili-
con, ~+ and GaAs. I

Transverse D,(E) and longitudinal D„(E) diffusion
coefficients in isotropic semiconductors are re-
lated to diffusion noise temperatures and mobilities

y21, 88 &S

D,(E) T„.(E) t (E)
Dp T pp

D„(E) r„„(E) d v, (E)
Dp T dE pp

(l. 8)

(1.9)

Relations for semiconductors with anisotropic high
mobility are much more complicated. The
validity of Eqs. (l. 8) and (1.9) may be assumed
for p-type germanium. Figure 6 shows variations
of DI(E)/Do for sample No. 1 at different lattice
temperatures. It can be seen that D„(E)/Do is al-
ways inferior to unity in the ranges of electric
field and temperatures studied. D„(E)/Do reaches
0. 15 at 112 Kand 2 kV cm '.

D,(E)/D, and D„(E)/Da are compared at 300'K
in Fig. V.

II. THEORETICAL

Theoretical studies of electrical-transport co-
efficients for hot carriers are usually performed
by solving the Boltzmann transport equation. Pow-
erful numerical methods have recently been de-
veloped, using Monte Carlo techniques as well

DL(E)

09

O

LLI

0.8-
Dll (E)-'

Oo

O.T I

0,5
I

E (kVcm )

FIG. 7. Comparison between D&i(E)/Do and Dg(E)/Dp
at 300'K for sample No. 1.

A, Numerical Resolution of the Boltzmann Equation

1. Method

A semiconductor in thermodynamic equilibrium
at temperature T at time t - 0 is acted on at t & 0
by a constant homogeneous field force F. The
carrier distribution function f(fr, F, t) is then solu-
tion of the homogeneous Boltzmann equation

F Vf(kFt)
gt

as iterative techniques. "-4' An original iterative
method will be presented (Sec. II A). It will be
applied to p-type germanium, within the hypothesis
commonly made for this material. Transitory
and stationary distribution functions will be studied
(Sec. II B) as well as the corresponding electrical
transport coefficients (Sec. II C). Diffusivity will
be studied in a separate section (Sec. II D). The-
oretical results will be compared to experimental
ones of the present work.

0.2 I

Og

0~ 0.6-

0 5 T 143ok

+, theory X'(k)

3
I e ~ ~
I e

theory 'K(g, E) -- ~e ~ ~~
I I I

1 1S 2 E (ky cm-')

+ Cf (R, F, t) = $f (k, F, t),

where C is the collision operator

Df (k, F, t) = E[f(k', F, t) P(k' —k)]

f(k, F, t)
~(k

(2. 1)

(2. 2)

2

where P(k -k') is the transition probability per
unit time from state k to state k', and v(k) is the
relaxation time defined as

0
LLI 04

Q

4 [~(k)]-' = ZP(k —k') . (2. 3)

Q T ~112 K
0

Q5 2 E(kVcrn )

FIG. 6. Experimental D„(E)/Do vs E at different lattice
temperatures T for sample No. 1, compared with theo-
retical results obtained at 300'K using a relaxation time
yQ) defined by Eq. (2.3) or y{k, E) defined by Eq. (2.29). f(k, 0, t=o)=f,(~), (2.4)

Summation over states k' can be transformed into
integral in (k] space. The validity of Eqs. (2. 1)-
(2.3) will not be discussed here (for this see Refs.
46-49, for instance). The initial condition is given
by
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(2. 5)

This gives B~f(k, 0, t)/Bt ~
by application of operator

P to the just-calculated function Bf(f, F, t)/Bt.
Hence, successive derivatives of f(R, k, t) with re-
spect to t can be calculated. This gives the distri-
bution function at time t+ ht if one supposes that f
is developable in a power series of at,

(k y ) g (btP B"f(k, k, t)
, t+ t (2. 6)

Since f(k, F, t= 0) is known by Eq. (2.4), one can
calculate f(f, F, t) at times ht, 2r t, . . . , that is
the evolution with time of the distribution function
and hence of all the mean values associated to it.
If p(k) is some function of state k, one gets

P (t ) = (Q (k})=Z P (k)f(k, F, t) . (2. 7)

After a time t„, the stationary state is reached.
In theory it can be obtained directly if t is set to
be equal to zero and Bt= t„ in Eq. (2. 6).

In practice, only a finite number of derivatives
can be calculated:

(4t)" B"f(k, F, t)
„.o n! Bt" (2. 8)

Therefore, ht must be much smaller than t„and
a number of iterations are necesary to reach the
stationary state.

This method can also be applied for solving non-
homogeneous integrodifferential equations of the
type

(2. 8)

where f~(k, F, t) is some known function. This al-
lows, for instance, solving perturbed Boltzmann
equations.

The case of time-dependent field force F(t) can
be solved by using the same technique. Then in
partial derivation of Eq. (2.1), with respect to
the time, appears the known function —(I/8)
& [dF(t)/dt] ~ VQ(f, F, t) in addition to the second
member of Eq. (2. 5).

In principle, no limitation appears with regard
to energy-band shapes.

where fo(&) is the carrier thermodynamic-equilib-
rium distribution function.

Equations (2. 1) and (2. 2) assume that operator
P does not depend on time and acts only in {k}
space. Let us suppose that f(k, F, t) is known at
some instant t. Then application of operator P~
gives Bf(k, F, t)/Bt at this time. Derivation of equa-
tion (2. 1) with respect to the time leads to

2. Effective Calculation for p-Type Gerrnaniurn

The method just described has been applied to
p-type germanium in a high electric field E. Hence

F=qE. (2. 10)

The usual assumptions concerning this material
have been made, namely, (i) one kind of combined
heavy and light holes; (ii) spherical parabolic en-
ergy-band surface centered at k = 0; (iii) interactions
of the carriers with both acoustical and nonpolar-
optical phonons; (iv) effective deformation poten-
tials; and (v) phonons in thermodynamic equilib-
rium.

Spherical coordinates have been chosen with
polar axis along E. A combined heavy- and light-
hole effective mass m = 0.36mo leads to

Dpg = 4. 34 eV, =0= 0. 886 x 10' eV cm

where Dp„and =0 are the effective acoustic defor-
mation potential and optical deformation field.

{k}space was divided into 320 or 480 meshes:
16 steps for 8 varying from 0 to w (68 =~ v); 20
or 30 steps for k (dk = 10 m ); k varying from 0
to 2 x10 or 3x 10' m '. Between 20 and 150 itera-
tions were necessary to reach stationarity, t„
varying with T and E. If to„ is the time necessary
for drift velocity to reach its maximum value
(to„~ t„), Lt is generally taken to be equal to ~~ t~
or ~ t0„. t„ lies between 2. 5X10 and 1.5&&10

sec according the T and E domain. Derivatives
with respect to k and 8 were calculated by approxi-
mating f by a sixth-order polynomial at each point
except near the edge of the {k]domain.

Five derivatives were used at each time step
[p = 5 in Eq. (2. 8)]. Calculations were performed
on an IBM 360.40. About 50000 bytes were used.
Twenty-three seconds were necessary to perform
one iteration. The computing time necessary to
reach stationarity was between 10 and 60 min.
Further details are given in Ref. 5.

B. Distribution Function

Evolution with time between 0 and t„of the dis-
tribution function along electric field, namely,

f (kg, k~ = 0, E, t) =f (k, 8 =,E, t) (2. 12)
0

is shown at 300 K and 20kV cm ' in Fig. 8. k,
is the wave vector associated with stationary drift
velocity v~; it can be seen that the distribution
function spreads in {k}space and is driven along
electric field while its maximum decreases. Sim-
ilar results had been obtained. ~~'~~

Stationary distribution functions along electric
field are shown at 300 and 77 K in Fig. 9. A
curve obtained at 20 kV cm ' and 300 K shows the
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FIG. 10. Ratio g2(e)/go(&) vs energy q.
I s ~ a I

5 10
E(Vcm )mental slope is —1. This discrepancy is substan-

tiated by the fact that v,/pp becomes superior to
experimental E, = v, /p epven at high temperatures.
Comparisons between theory and experiment are
reported in Table III for equivalent fields, namely,
E=5E„at 77, 173, and 300 K. It can be seen
that theoretical values of v, (E = 5E,)/p p are superior
to the corresponding experimental values of E,
at 173 and 300'K, and hardly reach -', E, at 77 K.
This brings evidence that discrepancy between
theory and experiment increases with increasing
temperature and electric field.

Now impurity scattering is negligible at high
temperatures. We shall show in the following that
assuming multiple-phonon scattering may reduce
discrepancy between theory and experiment. In
multiple-phonon scattering a carrier of energy
greater than 2c„can emit more than one optical

phonon. So this mechanism allows a greater en-
ergy relaxation of the carriers, that is, diminishes
the volume of the domain in (k) space where the
distribut:on function is not negligible. It can then
be expected that multiple-phonon scattering lowers
all mean values, among them the drift velocity.
The proportion of carriers per unit volume having
energy comprised between ~ and a+ dc, namely,
n(e) de/K, can be easily evaluated. N is the num-
ber of carriers per unit crystal volume

n(p)/N curves are shown in Fig. 13. Integration of
Eq. (2. 17) over p between 2e„and infinity gives
the proportion of carriers enabling multiple-phonon
processes. Some results are reported in Table
IV, and show, for example, that for E=5E, the
proportion of carriers able to emit two phonons is
less than 7% at 77 'K and reaches 85% at 300 K.
Therefore, neglecting multiphonon processes leads
to an error that increases with temperature and
with electric field intensity. So this scattering
mechanism appears as an a px'iori possibility of
reducing discrepancy between theory and experi-
ment as regards drift-velocity saturation. How-

1,5-

20&V cm"
V

O
10kV cm ~

SkV cm

0,5
TABLE III. Comparison between experimental E4=v~/

~ and theoretical v~(5 E4)/po.
gkV cm

1kV cm ~

0.5kV cm ~
r (K) 173 300

E4 +'cm )
Experimental

v&(5 E )/~ (Vcm )

Theoretical

300 1350 4100

t (10
195 1400 4600

FIG. 11. Time evolution of drift velocity at 300 K.

FIG. 12. Ratio vz(E)/~ vs E; comparison between theo-
retical and experimental results for sample No. 2.
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a/z
2
I

TABLE IV. Theoretical proportions of carriers in
vrhich energy is superior to 2E~ at 77 and 300 oK for some
electric field intensities.

10-
E (kVcm )

T= 300 'K
T=77 K

0.2

p y3 ~ ~ ~

p

~ ~ o Q g4
0.02 0. 0'7

5 10 20

0.32 0.59 0.85
Q 35 ~ ~ ~ ~ ~ ~

I

O
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r s/

I

l~

0 50 100
f (meV)

g2 f
a.(z)= . .J de aa'(dies), ,4m'm'

o o

xy(k, 8, E)k' sin 8, (a. as)

where v, (t) is the component along the o, direction
of a carrier instantaneous velocity. Eq uation
(2. 20) yields, ~' in stationary regime at usual
frequencies,

FIG. 13. Relative carriers density per unit energy
n(e)/N vs energy

ever, this discrepancy may be also due to the fail-
ure of some of the hypothesis checked in Sec. II
A 2.

Z. Mean Energy

The mean energy is given by

I
e(t)=, (f8 dky(k, 8, E, t)wtRoo

x k sine. (a. Is)

In transitory regime, e(t) was never found to over-
shoot its stationary value. Boot- mean- square
velocity v~, can be derived from energy using the
relation

v = ((v )) = (ae/m) (a. I9)

Figure 14 shows theoretical variations of stationary
v, /v, , vs E at 77, 173, and 300 K, compared with
experimental results of Bray and Pinson. Agree-
ment is good beyond 0. 5 kV cm ', discrepancy be-
low is perhaps due to impurity scattering, since
experiments were performed on doped samples
(Nv —N„= 5. 7xIO ~ cm 3).

a„(z)-,~ j de)( aa (), e, z)
0 0

cos8- v„ f (k, 8, E)k sin8 .I k

(2. 22)

D,(E) and D„(E) are transverse and longitudinal
diffusion coefficients measured experimentally.
7 (k, k) = w(k, 8, E) is the relaxation time.

Z. Formal Expression for Relaxation Time

Relaxation time r(kF) ,can be defined as being
the time necessary for a system in a field force 0
to come back to its stationary state after a small
perturbation.

Hence, let us suppose that at time t & 0, the sys-
tem is acted upon by a field force F+ 50 and is de-
fined by its stationary distribution function f(k, 5'

+50). If, at time t=0, the perturbation 5F is re-
moved, the instantaneous distribution function is
f(f, k, t) and evolves towards

y(k, F) = iim/(k, k, t) . (2. 23)

y7DK

D. Diffusivity

1. Definitions and Expressions

Very sparse theoretical results for diffusion co-
efficients 4'"'4~ I have been obtained till now, in
spite of numerous solutions of the Boltzmann equa-
tion mentioned in Sec. I.

Element D ~(E}of diffusivity tensor D (E}is de-
fined53 as

+ OA-
R

D
02

D.5

E (kVcm )

774K

1734K

1.5

D,(E, v) = f cosavvt'
0

x([v, (t) —v~, ][vz(t+ t') —v~()]) dt', (2.20)

FIG. 14. Ratio of drift velocity vz to root-mean-square
velocity y~, vs electric field at different temperatures
and comparison with experimental results (Ref. 25).
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7'((t, P) is then defined as

(
sy(f, P, f)

c-0

f(k0+ ,5F) f(k-(()
),

ldf(l-0 ~(~~ ~)

Now f(f, F, t) is the solution of the time-dependent
Boltzmann equations

+ —P Og(kk, , f) = Cf(k, F, f),
(2. aS)

0

0'
0.5-

+

o

I

200
T ('K)

f(k, P, t=0)=f(k, F+5F); (2. 26)

and f(k, F+ 5F) is the solution of

(I/ff)(P+ 5t) ~ 0 f(f, F+5F)= f(k, F+ 50) .
(2. 27)

Equation (2. 25) gives, at t = 0, taking into account
(2. 26) and (2. 2V),

= —5P O, y(k, F+ F). (2. 28}
t~o

Finally, Eqs. (2. 24) and (2. 28) lead to

—55K VFf(f, F)
T(k& 0) = llm (2. 29)

It can be easily shown that

lim ~(k, F)=7(@,
I@ I 0

where v(R) is given by Eq. (2. 3).

3. Numerical Results

(2. 30)

Longitudinal and transverse diffusion coeffi-
cients were computed using formulas (2. 21) and

(2. 22). ~(k, P) was calculated following Eq.
(2. 29); 5$' 0zf(k, F) was approximated by

5F ~ 0 f(k, F)= f(k, 8, E+5E) f(0, e,—E),
(2. 31)

where 5E was taken equal to +E.
Figure 6 shows the comparison bebveen theoret-

ical DI(E)/Do and experimental results for sample
No. 1 at 300 'K. Computation was performed using

v(k, F) defined by Eq. (2.29) as well as the com-
monly used ' v(Q given by Eq. (2. 3). Figure 16
shows comparison between experimental and the-
oretical results obtained at 1 kV cm ' for different
lattice temperatures. Figures 6 and 15 prove
that the relaxation time actually depends on elec-
tric field and is given by formula (2.29). Unfor-
tunately, singularity 0/0 occurs for a set of k
values for which 5k ~ 0,f(k, F) =Oin Eq. (2. 29);
this singularity could not be removed by the authors
and can be shown5 to introduce drastic errors in
the computation of D„(E) at high fields and of

D,(E) at low and intermediate fields, so that the-
oretical and experimental results of D,(E) could
not be usefully compared.

FIG. 15. Comparison between theoretical and experi-
mental D&~(E)/Do at E=1 kVcm for different lattice tem-
peratures T. +, Experiment (sample No. 1); O, theory
with v = v(k, E) defined by Eq. (2. 29); , theory with

T = T {k) defined by Eq. (2.3).

III. CONCLUSION

A new and simple iterative method was elaborated
for numerically solving the spatially invariant
Boltzmann equation in the hot carrier range. No

limitation appears with regard to energy-band
shapes or scattering mechanisms. This method
was applied to p-type germanium within the hypo-
thesis commonly made for this material.

Evolution with time of the distribution function
was found to be in agreement with other theoretical
results obtained by different methods. The sta-
tionary distribution function f(k, E) was never found

to be a displaced Maxwellian, even at low field.
It was shown that gz(a) could not be neglected at in-
termediate field, in agreement with other experi-
mental work, and that anisotropy of f(f, h) dimin-
ishes at high field.

A set of experimental conductivity curves ob-
tained with the same sample up to 10 kV cm at
different temperatures lying between 77 and 300 'K
brought evidence that drift velocity reaches satur-
ation at high field. Critical field E, and saturation
velocity v~ were, for the first in p-type germa-
nium, plotted versus temperature; E, was found to
vary as T~ ~; t(z remains almost constant. p(E)/
p, o was found to increase with carrier density and
this variation could be explained. A careful com-
parison between theoretical and experimental re-
sults of the present work brings evidence that the
fit is good at low field and that a strong discrepancy
occurs at high field and high temperature, which
proves the failure of some of the hypotheses con-
cerning the relaxation processes of the carriers in
p-type germanium. It was shown that assuming
multiphonon scattering could reduce the observed
discrepancy.

Experimental noise temperature and diffusivity
versus electric field were obtained for the first
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time for a set of temperatures below 300 K on the
same sample. Unfortunately, measurements could
not be performed below 112 'K. Experimental
curves show that excess noise temperature varies
as E's at weak field, variation becoming more
complicated at higher fieM according to. Com-
parison between experimental and theoretical re-
sults proved that the relaxation time v(k, E) in-
volved in diffusion coefficients actually depend on
electric field and, that the expression (2. 29) given
for r(k, E) is correct. It must be noted that the

relmmtion-time hypothesis is merely an approxi-
mation, since correlations between observables in-
volve operators and not scalars; however, such
an approximation may be useful as long as a more
elaborate expression for velocity correlation is not
obtained.
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