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Simple Tight-Binding Calculation of the Transverse Effective Charges in III-V, II-VI, and
IV-IV Compound Semiconductors
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(Received 17 April 1973)

A simple tight-binding model is used for a derivation of transverse effective charges in III-V, II-VI, and
IV-IV compounds. Introduction of Phillips's spectroscopic parameters into the model provides a very good
agreement with experiment. Such a procedure is then justified by detailed comparison with the resonance
integrals and the intra-atomic integrals deduced from term values, showing that a very crude tight-binding
treatment can yield quantitative values in these systems.

I. INTRODUCTION

An interesting question which arises in the study
of III-V and II-VI compounds concerns the validity
of the concept of atomic charges and then the eval-
uation of the charge transfer from one atom to the
other. Theoretical studies of the electronic charge
di.stribution in those systems have been done main-
ly using pseudopotential theory. ' The results are
usually expressed as electron density maps which
in general show a quit+ strong accumulation of
charge near the more electronegative element.
Such an approach is however not suited to an eval-
uation of atomic charges, a concept which is best
defined in the linear-combination-of -atomic-orbit-
als (LCAO) approximation.

The interest of a definition of atomic charges lies
in the fact that it is a physically appealing concept
which can lead to very simple models as in the case
of the alkali halides for instance. A first evalua-
tion of these charges has been attempted by Coul-
son, Redei, and Stocker in a very simple tight-
bi.nding model. They concluded that there was a
transfer of about 0.5 electron towards the more
electronegative element. However, they obtained
an average energy gap much too small compared
to Phillips's spectroscopic one. '

Our aim in this work is then to show that a tight-
binding model can be at the same time in agree-
ment with Phillips's parameters and leadto charges
which are in good agreement with experiment.
However, one does not measure static charges di-
rectly, but from infrared lattice-reflection spectra
one can deduce a transverse effective charge which
can be defined theoretically. This one has already
been evaluated by Bennett and Maradudins from
pseudopotential theory. The agreement with ex-
periment was good for III-V compounds but quite
poor for the II-VI compounds, where they con-
cluded that a tight-binding treatment could be more
appropriate.

Before evaluating these charges we shall first
recall the formalism used by Coulson et al. based
on the assumption that bonds between nearest

neighbors do not interact. In the framework of
this simple molecular model we are then able to
evaluate quite simply the transverse effective
charges and express themas afunctionof Phillips's
ionicity Il. To calculate them numerically wefirst
take Phillips's values for E and obtain a very good
agreement with experiment in all cases. Finally
we show that if one correctly determines the tight-
binding parameters from free-atom term values,
one obtains results in close agreement with those
of Phillips. %'e believe that this demonstrates the
ability of a simple tight-binding model to yield
quantitative results and also that it is a strong
argument in favor of the static charge transfer we
predict which is important, amounting to about 1.2
electron towards the more electronegative ele-
ment.

II. FORMAL EVALUATION OF THE CHARGES

%'e consider tetrahedrally coordinated crystals
of the A"B "type where N is equal to 4, 6, or 6.
In these crystals, each A atom is surrounded by
four B atoms and vice versa, and the molecular
orbitals for each bond AB are built out of atomic
sp hybrid orbitals p„and p~ pointing towards each
other (Fig. I). In the molecular approximation,
only the following matrix elements of the Hamilto-
nian H are taken into account

ot, =&s, IaIv, &,

P=(&~I&I +a) .

FIG. 1. Atomic sp hybrid orbitals used to define the
matrix elements.
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q„=N 8/(I -+X'), qs=-q„. (4)

The secular equation leads to bonding and anti-
bonding levels E„and E„ the values of which are
given by

E.= 2(a. + as}+$(a. —as}'+&1'" (6)

Defining the ionicity parameter by

f= (1 —x'}/(I + x')

we obtain

~„and 0~ are the intra-atomic terms and P is the
resonance integral. We shall neglect (q„IHl 9„)
and (q s 1 HI qs) (Fig. 1).

We may then write the bonding orbital

4 = [1/(1+X')'~'](q'„+ Xq's),

and the antibonding one

X
= [1/(1+X')'~'](aq'„—q s),

neglecting the overlap between p„and p~. A frac-
tion 1/(1+ X') of an electron described by 4 belongs
to atom A, and a fraction A'/(I+X2) to atom B. As
there are two electrons per bond and four bonds
per atom, the net charges associated with A and B
are, respectively,

the transverse effective charge tensor are given
by '

M„,-(I, k) = 6.„s(k), (14)

where c(k) reduces to +ef, respectively, for A and
B atoms, and eg is the transverse effective charge.

From Eq. (13), in the absence of a macroscopic
electric field, one can write the crystal dipole mo-
ment to first order in the atomic displacements as

M„ = Z M„,.(k)u. (l, k) .
l, ke

(16)

We shall assume for simplicity a displacement
pattern such that only the A atoms move in a [111]
direction by the same quantity u„ independent of
the cell index l.

Denoting the component of the dipole moment
along this direction by Mo, one easily finds from
Eq. (14) that

the derivative being evaluated in the absence of the
macroscopic electric field and for zero atomic dis-
placements.

In the zinc-blende structure, one can show~ that

f = (as —a.)/[(as a.}'+—4P']"', Mo = Nezuz, (16)

and we may write

qz =N-4(1+f) . (8)

E =E+Cg h (9}

Assuming that E~ represents the distance between
the bonding and antibonding levels E„and E, , one
obtains

One can formally compare this model with Phil-
lips's spectroscopic one. 5 In the latter, the elec-
tronic dielectric constant is determined in a simple
one-gap approximation for the electronic band
structure. The average gay E may be separated
into homopolar and heteroyolar parts, E„and C,
these three parameters following the relation

where N is the number of unit cells in the crystal.
From this eg can be determined as

1 eMp
8g =Ne ~ (17)

The advantage of Eqs. (16) and (17) is that the sys-
tem retains its translational symmetry. This fact
allows for a great simplification in the calculation
of ef. In the molecular approximation described
above one has only four different types of bonds.
One of them, AB, (Fig. 2) is along the displacement
u„while the others AB» AB» and AB3 are equiva-
lent with respect to u„. It is then clear that the
total dipole moment Mo will be N times the dipole
moment mo of the unit shown in Fig. 2 built from
these four bonds. This one is given by

~,'=4P'+ (as —a.)'. (1O)

So, the molecular model also leads to a homopolar
term

E„=2/ P/

and a heteroyolar one

C=ia, -a, i .

m, =Zq, H...
f

(18)

X

Let us now derive the expression for the trans-
verse effective charge el'. Denoting the i'th com-
ponent of the dipole moment of the crystal by M„,
and by uN(l, k) the ath component of the displace-
ment of the kth ion in the lth cell, the elements of

FIG. 2. Schematic representation of the chosen dis-
placement ~A'
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where R is the ~th component of g, the vector
joining the origin to the jth atom (A, B, Bq, Bz, Bz
or Fig. 2) and q& is the contribution of the four
bonds of Fig. 2 to the charge of atom j.

From Eqs. (1V) and (18) one obtains

8'
$~1 QA

where X, is the component of R~ along the [111]di-
rection defined by uA. All the quantities in Eq.
(19) are taken at zero displacement.

Charge conservation implies
S

aqA aqs g ac~
(2o)

Qg Qg ) g Qg

Furthermore as the three bonds AB, of Fig. 2 are
equivalent,

8la

(21)
Xg] -X~ =X@)—X

for every i.
Denoting as R the distance between nearest neigh-

bors, we have

8P 1 HP

8Q~ 3 R

for the AB& bond.
Now from Eq. (7) one can show that

eg = N —4 —4f [1 + —', 8(1 —f )] . (28)

This charge can be determined experimentally
from the long-wavelength longitudinal and trans-
verse optical frequencies &~ and +~, using the re-
lation

~r = 4v(er)'/~. IAo, (29)

where &„ is the optical-frequency dielectric con-
stant, p, the reduced mass of the two atoms, and
v the volume of a primitive unit cell. In Sec. III
we shall compare these values with those derived
from the mofecular model by Eq. (28).

III. NUMERICAL RESULTS AND DISCUSSION

P =-f(1-f ) .
8P

This combined with Eqs. (22), (24), and (27) leads
to the final result

and

1
X~ -X~ —R, Xa -X~ ——3R, (22) The calculation of e~& requires the knowledge of

f and 8. The first term can be readily evaluated
by noticing that f must be equal to 4F where E cor-
responds to the ionicity defined by Phillips' as

F= c'/(E„'+ c') . (so)

aqa afAA
8 8f

8' 8' 8' 8Q~
(24)

For both terms one can write

af af ap af a(~ —~„)
asA ap a+A (+B +A) a+A

(26)

We shall in the following assume that the second
term is negligible. This procedure will be justi-
fied at the end of Sec. III.

Then if we define

R 8Pe=-——
P 8R'

we obtain

(26)

8u„

for the AB bond, and

(27)

Relations similar to Eqs. (4) and (8) give us

es = (1+fAA) - -'&

qe, = (1+fAa, ) —4&,

where fAs and fAs, are the ionicity parameters de-
fined by Eq. (6) for the corresponding bonds. With
these notations

If one assumes that the molecular model repro-
duces exactly Phillips's spectroscopic model, one
evidently obtains from Eqs. (V), (11), and (12)

f=~g.
We shall come back to this transposition later to
show that in fact the intra-atomic terms ~„and
o.e give values of C in Eq. (12) inreasonable agree-
ment with those of Phillips, thereby justifying the
present procedure. For the moment we then take
for E in Eq. (28) values tabulated in the work of
Phillips' and Van Vechten. '

The only parameter which remains to be deter-
mined is a equal to —(R/P)(dP/dR). We shall esti-
mate it to be of order 2 on the basis of different
arguments.

The first one is related to the fact that 2P should
be equal to E„, the homopolar part of the average
gap in Phillips's model. From pseudopotential
theory this one should be roughly proportional to
R ~ giving a value of 2 for H. This argument is in
line with the scaling law R ~ 5 adopted by Phillips
for E„when going froW C to Sn via Si and Ge.

The second way of estimating H proceeds from
standard tight-binding theory. If one estimates 8
from Slater-type orbitals the result should be
roughly proportional to e ~ multiplied by a poly-
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TABLE I.

Nature

GaP

GaAs

'GaSb

InP

InAs

Insb

ZnSe

ZnTe

AlSb

CdTe

SiC

0.61

0.56

0.51

0.65

0. 60

0.57

0.79

0.82

0.74

0.65

0.82

0.42

l e~ I BM

2.37

2. 39

2. 51

2.44

2. 52

2. 58

3.68

3.75

3.84

2. 28

3.92

1.4

l ez l Expt'

2. 2

2.7

2. 5

1.8

2. 2

2.35

2.7

2.4

2. 3

2. 0

2. 6

2. 4

2. 2

2. 0

2 ~ 0

1.8
2.7

2. 0

2. 5

'Ionicity parameter.
Transverse effective charge: Bennett and Maradudin

(Ref. 6).
Transverse effective charge: experimental.
Transverse effective charge: this model.

nomial in R. If one only takes into account the de-
rivative of the exponential, one obtains 8= ~R
=4.75 for C, for instance, and similar values for
Si, Ge, and Sn. The polynomial will act to reduce
this value to about 2 as is the case in diamond,
where one finds 8 = l. 5 (P being deduced from the
extended Huckel theory9). (It must be realized that
the extended Huckel theory which assumes the Ham-
iltonian matrix elements H, &

to be proportional to
the overlap terms S,&, probably underestimates
the value of 8, because the kinetic energy terms
vary more rapidly than do the S&, . This explains
why we have chosen 8= 2 to take some account of
this effect. )

The results for eg determined in this way for
8=2 are presented in 'Fable I where they are com-
pared to experimental data and to the values de-
rived by Bennett and Maradudins from pseudopoten-
tial theory. We obtain the same sort of agreement
for the III-V compounds, but a much better one for
the II-VI and IV-IV systems. One can then definite-
ly conclude, as they suggested, that a tight-binding
treatment is more appropriate in those cases.

At this stage it is important to see if the inclu-
sion of f values directly deduced from Phillips's
model can be justified in our tight-binding scheme.
To demonstrate this it is necessary to show that
values for 2P are consistent with those of E„and
that e~ -O.„is of the order of C.

For this we shall recall the method used by
Coulson et al. who have done the first calculation
of the charge distribution in III-V and II-VI com-

pounds. To determine the intra-atomic terms ~„
and 0.~, they used the following linear expansions
(see Moffitt'0):

Q
A +A +A'VA

Q+a =+a++30a y

where q„and q~ are the net atomic charges. The
parameters ~ and 0. can be evaluated semiem-
pirically from free-atom values. Using the par-
ticular-values 0 and —1 for q„and 0 and +1 for
q~, it is quite easy to show that

+A +A EA y

p p
Og = Qg —Qfg y (33)

where ~ and ~' are the first and second ionization
potentials and E is the electron affinity.

The difference ~~ —~~ can then be written
Q P I

+B &A +B nA ('sA ns)qA (34)

This term depends on q„which itself depends on
as —a„ through Eqs. (7) and (3). Such a self-con-
sistent determination of 0.~ —~„was done by Coul-
son et a/. for all the III-V and II-VI compounds.
For this they used P values deduced from the ex-
perimental cohesive energies (P —l. 5 eV for C).
They also obtained for 0.~ —z„ typical values of
20 eV while 0.&+ a3 was of order —30 eV.

With such parameters they obtained a reasonable
charge transfer of about 0.5 electron from the
electropositive towards the electronegative atom
(B-A). However the main deficiency in their re-
sults is that the bonding-antibonding gap which they
obtained is always 4 to 5 times smaller than the
spectroscopic value E . This is quite easy to un-
derstand in view of the small values of P and the
strong reaction term (n„+o,e)q„which almost ex-
actly cancels 0.~ —z„.p Q

Such a discrepancy has led us to modify their
parameters quite substantially. The first impor-
tant modification come@ from the Madelung terms
due to the excess or the lack of charge on the vari-
ous sites which add electrostatic contributions to
~„and ~s. In a point-charge approximation these
simply add a quantity 2p to the reaction term 0,„
+ os in Eq. (34) where p is equal to the Madelung con-
stant divided by the interatomic distance R. Such
a term has an important value (Rp-30-30 eV) and
obviously cannot be neglected.

A second important modification comes from the
fact that Coulson et al. have used s-state ionization
potentials E, for the more electronegative atom
and p-state potentials E~ for the more electroposi-
tive, instead of using the appropriate sp3 average.
We have corrected for this by taking 4(E, + 3E~) for-
both atoms. This considerably reduces 0.~ —Ct„,I Ithe sum 0.~ + a~ remaining almost constant.

The last important effect comes from the value
of P. If one wants to obtain agreement with the
spectroscopic results, P cannot be chosen from
the cohesive energies. As was shown" it has a
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TABLE II. AII energies are in eV.

Nature

GaP

GaAs

GaSb

AlSb

InP

InAs

InSb

ZnSe

ZnTe

CdTe

B

—7.9

-7.9

-7.9

—7. 5

—6.9

-6.9

-6.9

—8.6

-7.4

—7.4

—7.4

—6. 9

R
A

—8.4

—7.8

-8.4

—7.8

—9.6
—8. 5

-8.3

—8. 2

~7g 2

pb

10

9.6
8.9

8.9

9.3

8.4

12.5

10

9.6

7.9

8. 3

Qg+Qg+ 2p

3.7
3.5

2. 9

3.4

3.7

3.3

2. 9

6.75

4. 1

3.5

2. 9

2. 5

0(a+ &x+ 2p-

0.7

0.6

0.2

0.7

0.9

0.6

0.4

0. 6

0. 5

C e
S

3.3

2. 9

2. 1

3.1
3.4
2. 7

2. 1

3.9

6. 2

5.6

4. 5

4.4

0.~ and 0.& are reaction terms of the purely intra-atomic potentials.
~p is the Madelung terms.
ez+0(&+ 2p are the reaction terms in C.
0.~+ez+2p are the reaction terms in C taking account of the 15% reduction

{see text).
C~ is the spectroscopic heteropolar term.

great influence on the charge transfer and a good
method is to deduce it from the value it takes for
the purely covalent systems.

If one corrects for these three points, the re-
sults turn out to be quite different. We first give
corrected values for a„, as (Table II) and aso —a„
(Fig. 3) by taking the appropriate sp average
(E,4+3E~) over s snd p ionization energies. The

most important thing to notice is that aso —a„(Fig.
3) is drastically reduced with respect to Coulson's
values (-20 eV) and compares quite well with the
heteropolar part C, of Phillips's spectroscopic en-
ergy gap. However as it is a& —~„must be com-
pared to C, and one has still to analyze the effect
of the reaction term (a„+ as +p}2q„.

From Table II one can see that this term is the
sum of two important quantities (-20 eV) with op-
posite sign which nearly cancel. This cancellation
increases when p is reduced by 15%. Such a re-
duction in p is in fact quite reasonable when one
takes into account charge delocalization (we have
estimated this reduction to be 15% when using
Slater orbitals with carbon parameters). One can
also expect further reduction due to the compres-
sion of the atomic wavefunction in the crystal which

in fact would tend to increase ~„+~~ with respect
to the free-atom value. It is then a quite reason-
able assumption to assume that ~„+~~ + 2p is neg-
ligible (in fact it could perhaps become slightly
negative in most cases which would increase the
agreement between as —a„and C,}. It is worth

noticing that only BN and SiC deviate from the lin-
ear law in Fig. 3 and only these cases give a more
important reaction term which tends to readjust
the value of a~ —~„with respect to C, .

A- B'V

5

~ BN

FIG. 3. ez -O,z vs C~ heteropolar part of the spectro-
scopic average gap.
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Having shown that a tight-binding determination
of C is in good agreement with Phillips' s value C,
we must nom try to see if 2P can correctly simulate
the homopolar part E„of Phillips' s gap. This re-
quires a computation which has been done for car-
bon, for instance, where 2P is found to be of
order 14 eV in quite good agreement with the spec-
troscopic value 13.6 eV. The reported value of
8. V eV for Si is somewhat higher than Phillips' s
S~ of about 5 eV, but associated with aa - aA for
A1P, for instance, would lead to almost the same
value of F than in Phillips' s work.

From this we can now conclude that our tight-
binding parameters are in good agreement with
Phillips' s values and this justif ies the use of Phil-
lips's ionicity to derive eg. There is now one im-
portant approximation mhich must still be justified,
i.e. , the neglect of (8/8u„)(~s —n„) in Eq. (25).
For this we shall detail eA and ~a .'

o ~ ~ 1 ~ 1
+A =+A++AN. CA ~ fa ~

a RA a

+a=+a+BOB 0'a ~
RB BB' A' BA

(35)

8(a, —e~) i i sq„(o +~ +2p) 'FA
A B

E +Z -Z -E
RAA B RBB B RAB' A ' RBA

(36)

p is the Madelung constant and Eq. (36) has been
obtained from the fact that

eea
Wa

+A
(37)

We have already shown that ~„+za + 2p is negli-
gible.

If now one looks at g~.(I/B». ) and gs.(1/8», ),
it is clear that a translation uA of all the A atoms
does not change these terms so that their deriva-
tive with respect to uA vanishes.

For the two remaining terms, one can expand

I/R„s. and I/Bs~. to first order in u„. From this
it is easy to obtain

(
)Sz ' 'i -z

SQA ai RABtj p ai RAB &)

where the last two terms in O'A or ~a correspond
to the electrostatic energy experienced by one elec-
tron at site A or B. R„„., RAB. , and Raa. are the
interatomic distances and use has been made of
atomic units .

From this one obtains

(
a =Z R„,, n,

8+A A' RBA' )Q A' R& 'B
(36)

We have applied a simple tight-binding method to
the determination of transverse effective charges
in III-V, II-VI, and IV-IV compound semiconduc-
tors. This molecular model leads to a very simple
definition of static and dynamic charges.

Introduction of Phillips' s spectroscopic param-
eters into this simple tight-binding model has al-
lomed us to obtain transverse effective charges in
quite good agreement with experimental data for
all systems mhere they were available. Such a
simple method then seems best adapted to this type
of problem than Bennett and Maradudin' s calcula-
tion based on pseudopotential theory which gave
poor results for II-VI and IV-IV compounds.

We have finally justified the use of Phillips' s
parameters, showing that intra-atomic matrix ele-
ments deduced from free-atom term values give an
ieteropolar part of the energy gap close to Phil-
l.ips' s one, and that resonance integrals can ac-
count satisfactorily for the corresponding homo-
polar part.

We then believe from this work that a simple
tight-binding approximation provides a useful tool
for studying these systems. It can lead to quanti-
tative results for the perfect crystal. It defines
unambiguously charge transfers and then seems
particular ly m ell adapted to the study of defects in

aQ of this family of compounds where it mill lead
to fairly simple and tractable models.

where n is the unit vector of the (111)direction.
Now one can take the sums in Eq. (36) on spheres

of equivalent atoms, and from symmetry these
vanish in the zinc -blende structure. We then come
io the conclusion that 8(es —a„)/8u„ is negligible.
This shows that one can neglect the second term in
Eq. (25) for which the only important contribution
is due to 8P/8u„

To summarize this section, we have calculated
the effective charge e&~ from our tight-binding mod-
el using Phillips's value for the ionicity and we
have then justified this procedure. We find a neg-
ative effective charge of about two to three elec-
trons on the more electronegative atom. The re-
sults are in quite good agreement with the experi-
mental values which however cannot conclude about
the sign. It is finally worthwhile noticing that our
results exhibit the same sort of agree ment w ith ex-
periment as the empirical law found by Lawaetz'3
between the Szigeti charge and the ratio C,/Ko~,
where co~ is the plasma frequency (this one has, how-

ever, been applied to a larger number of systems
while our work is concerned only with zinc -blende
and wurtzite systems).

IV. CONCLUSION



5710 M. LANNOO AND J. N. DECARPIGNY

~Equipe de recherche du Centre National de la Recherche
Scientifique.

'P. K.Vinsome and D. Richardson, J. Phys. C 4, 3177 (1971).
J. P. Walter and M. L. Cohen, Phys. Rev. B 4, 1877 (1971).

'C. V. de Alvarez, J. P. Walter, R. W. Boyd, and M. L. Cohen, J.
Phys. Chem. Solids 34, 337 (1973).

'C. A. Coulson, L B. Redei, and D. Stocker, Proc. R. Soc. Lond.
270, 352 (1962).

'J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970),

'B. L Bennett and A. A. Maradudin, Phys. Rev. B 5, 4146 (1972).
'M. Born and K. Huang, Dynamical Theory of Crystal Lattices

(Oxford U.P., Oxford, 1954).
J. A. Van Vechten, Phys. Rev. 182, 891 (1969).

'M. Emnoo, J. Phys. (Paris) 33, 1105 (1972).
' W. E. Mof6tt, Proc. R. Soc. A 196, 516 (1969).
"J.N. Decarpigny and M. Lannoo, J. Phys. (Paris) 34, 651 (1973).
"G. Leman and J. Friedel, J. Appl. Phys. Supp]. 33, 281 (1962).
"P. Lawaetz, Phys. Rev. Lett. 26, 697 (1971).


