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A study of the energy distribution curves of photoemitted electrons from the simple metals is made.
Several mechanisms responsible for producing photoemitted electrons are considered. In addition to the
usual surface-ejection mechanism, we investigate the emission produced by the imaginary optical potential.
Processes involving bulk and surface plasmons are studied. The contribution to the spectrum of low-energy
secondary electrons arising from plasmons is estimated.

I. INTRODUCTION

Following a long history of theoretical interest, '
photoemission has recently emerged as a powerful
tool for studying the properties of solids. ~ It has
been demonstrated that the energy distribution
curves (EDC's) of the photoemitted electrons are
proportional (in some range) to the joint density
of states of the solid. One regards the incident
photon as inducing a direct transition from an oc-
cupied band to an unoccupied one. Thus valuable
information concerning the band structure is ob-
tainable from photoemission studies.

However, comparison of theory with experi-
ment shows that often this picture is applicable
only to a small portion of the EDC. In the alkali
metals, for example, this model would predict
that the emitted electrons should lie in a narrow
band of energies corresponding to the conduction-
band Fermi sea displaced in energy by the photon
energy minus the work function. In fact, electrons
are observed with energies extending down to the
vacuum level. Most of the photoemitted electrons
do not even lie in the range defined by the direct
transition model, but lie at lower energies.

The discrepancy has been traced to the important
role played by many-body effects in the photoemis-
sion problem. Thus a proper treatment of the
problem should include effects due to bulk plas-
mons, surface plasmons, and electron-hole pair
production. This represents a rather formidable
task from the many-body viewpoint because of the
difficulty in carrying out the relevant integrations.
The wave functions of the electrons near the sur-
face of the crystal assume a complicated enough
form to prevent sufficient progress to be made.
For this reason a simplified approach to the many-
body problem was developed in which one could
incorporate, in an approximate way, the effects
of the above-cited elementary excitations. We
will now apply this approach to photoemission.

In the present paper we will be interested in
analyzing the EDC'sof the alkali metals for ultra-
violet-frequency photons. We take the simplest
model that has been suggested-that of a step po-

tential at the surface, and systematically add
many-body effects to the problem. Our aim is
twofold. First we wish to develop techniques for
application to more sophisticated models. ' Since
such calculations will undoubtedly be numerical in
nature, it is convenient to have an analytic model
to use as a prototype. Such a model is provided
by the one employed in this paper. Second, one
can ask just how good is this simple model physi-
caQy. As we shall see, the main features of the
EDC's are explainable and the quantitative agree-
ment is not unreasonable. The calculations are
performed for potassium.

II. DIRECT PHOTOEMISSION

The quantum process responsible for photoemis-
sion has long been understood. An incident photon
with energy Ko and with negligibly small momen-
tum is absorbed by an electron from the conduc-
tion band. In the absence of broken translational
symmetry, the process would be forbidden since
energy and momentum could not be simultaneously
conserved. However, either because of the pres-
ence of the ion-core lattice or due to the transition
between crystal and vacuum at the surface, trans-
lational invariance is broken. The electron, up-
on being promoted to an excited state above the
vacuum level, is then capable of being registered
as a photoemitted electron. The process just de-
scribed will be called direct photoemission in con-
tradistinction to processes in which the excited
electron induces secondary excitations as it leaves
the crystal. The present section will consider
only the direct process.

This article is concerned with attempting to find
a model for describing the EDC s of photoemitted
electrons from the alkali metals. Before defining
the model, it is worthwhile to discuss some elemen-
tary physical considerations. First it should be noted
that the range of an electron which has absorbed
an ultraviolet photon is not expected to exceed
5-10 A. This is due to the fact that emission of
surface plasmons, bulk plasmons, or excitation
of electron-hole pairs form fairly competitive
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V(z) = —V,e(-z), (2. 1)

where 8(z) is unity for positive x and zero for
negative x. Treating the system in the one-elec-
tron approximation, the single-particle unper-
turbed Hamiltonian may be written as

H, = ——', V + V(z) —iU(z, E) . (2. 2)

We are employing atomic units in which S=e =m
= 1. The optical potential has been denoted by
U(z, E) and takes into account real and virtual pro-
cesses involving the emission and reabsorption of
elementary excitations. In the previous paper
explicit expressions for the otpical potential have

been derived. Let II) denote the initial state of
the electron and IF) the final state:

channels with which elastic propagation of elec-
trons must contend. Second, it should be noted
that the pseudopotentials of the ion cores are ex-
pected to be rather weak, since the alkalis are, to
a good approximation, free-electron-like metals.
Both of these factors would tend to favor a situation
in which the potential rise at the surface plays an
important role in the photoen:ission process. On

the other hand, one cannot neglect the fact that an
ordered array of ion cores defines a set of Bragg
directions which must be of importance in describ-
ing the angular distribution of the photoelectrons.
One might argue, however, that if one were not
observing the angular distributions, but rather
were interested only in the gross energy distribu-
tions, that the existence of the Bragg directions
might be overlooked, since one integrates over all
angles. Thus, in the present paper, we will ne-
glect the effect of the ion cores completely. We
caution the reader, however, that if we find that
we are able to explain quantitatively the EDC's, it
points to the fact that they are insensitive to par-
ticular assumptions made about the crystal struc-
ture. Other experimental quantities, such as
angular-resolved EDC's might not share this de-
gree of agreement between theory and experiment.

The crystal is idealized as a potential well of
depth Vo and is assumed to have translational sym-
metry parallel to the surface. Thus

i
I) =e "[~(e""+Re '"")e( z)-

+De "'8(z)] . (2.e)

Here p, is the momentum of the initial state paral-
lel to the surface. The propagation vector in the
crystal is given by

k( ——[2(VO+e )] I (2. '7)

where && =EI- 2p, is the kinetic energy associated
with z motion. In the vacuum region the attenua-
tion constant is given by

component of the field perpendicular to the surface
is capable of causing photoemission. In the dipole
approximation the momentum of the photon is
ignored.

Evaluation of the matrix element of the radiation
term leads to

(F ia„il) = [aa,e,/(R, R,)]
x[V,&F

I
&(z) II)+&F IUD. IS)] . (2. 5)

Here U~ denotes the optical potential evaluated at
an energy E~ which is above the Fermi surface.
Since the electron is initially below the Fermi sur-
face where inelastic processes cannot occur, there
is no corresponding term UI. The first term in
Eq. (2. 5) is the conventional surface photoelectric
term due to the potential rise at the surface. The
second term arises from the fact that the optical
potential is also capable of producing surface pho-
toemission by virtue of its translational noninvari-
ance. Stated simply, even if there were no real
potential step at the surface but only a discontinuity
in the dielectric properties, one would still obtain
a surface photoelectric effect. The size of this
effect relative to the conventional one is not neg-
ligible, since the magnitudes of Vo and U„are
comparable. Alternatively, one can understand
the origin of the second term as arising from the
scattering associated with an absorption process.
I'he momentum transfer involved in this scatter-
ing allows simultaneous energy and momentum
conservation in the photoemission process.

An explicit formula for the initial state is found

by solving the Schrddinger equation Eq. (2. 3):

Jf, is) =z, is&,
(2 &)

k; = (- 2e;)"' (2. 8)

Two constants have been introduced and are de-
fined by

In the presence of a radiation field the total Ham-
iltonian becomes

D =ik(v2 /(i k; -K;),
R = (ik, + k;)/(ik, -K,) .

(2. 9)

(2. 10)
H =H~+ eAO E .p =H~+ nAO&gpg . (2.4)

Here a = 1/c is the fine-structure constant, A.o is
the strength of the vector potential associated with

the incident light beam, and & is its polarization.
Cognizance has been taken of the fact that only the

U, =y(E)e(-z) .
The final state is given by

(2. 11)

A suitable model for the optical potential, Uz(z),
is provided by the optical potential step:
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~
F) =e'""[ae"i'B(-z)

+(e"&'+Ae '&')B(z)] . (2. 12) q, = (2e,)"'.
This corresponds to a state which has unit outgoing
amplitude into the vacuum and which is exponen-
tially damped in the crystal. Here p,

' represents
the component of the final momentum parallel to
the surface. The propagation constants are given
by

k~ = j2[V, + ~, +fy(E~) jP",

The constants A and B are defined by

A = (q~ —k~~)/(q~+k~ ),
8=2q~/(q~+kf*) .

Evaluation of the matrix element is straightfor-
ward and leads to the expression

One notes that the ~ integrations have converged very nicely as z- —~ since Imk& &0. The emission rate
is given by

I'=2m F H„ I 8 g —8'g 8 Wg-Eg &

where

S)I =(F
~ a„~I)/4v'S"'(p, '- p,), (2. 20)

and (F I H„I I) is given by Eq. (2. 17). In the inte-
gral we take &&= &&+&. The range of integration
is given by max(- v„—g) & e, & S

In order to compare theory with experiment it
is convenient to calculate g, the number of elec-
trons yielded per incident photon. Dividing by the
incident photon flux

F = 2u& Ao/4vk&uc, (2. 21)

and taking into account the fact that the beam area
is the projection of the surface area through the
cosine of the angle of incidence 8, one obtains

g =2vl'/&unAocos& . (2. 22)

Here we have calculated the rate for emitting elec-
trons with energy S: I'(S)dS representing the
number per unit time being produced with energy
in the range 8 to 8+dS. The Fermi factors have
been introduced to keep the initial electron's ener-
gy below the Fermi level S'~, and the final elec-
tron's energy above the Fermi level. The range
of q& is over positive values only since negative

qz would mean that the electron goes into the crys-
tal rather than out of it. Similarly, the range of
k; extends over positive values because these
states lie in a nondegenerate portion of the z con-
tinuum. A factor of 2 is included to account for
the two possible spin projections in the initial
state.

The integrations over p„p„andq& may be
performed and we find

We note that Zcos8/sin 8 is independent of the an-
gle, so this quantity will be the one that is actually
computed. The formulas embodied in Egs. (2. 17),
(2. 19), (2. 20), and (2. 22) give the direct photo-
emission contribution to the EDC's.

In the direct photoemission process, electrons
are elevated from their station in the conduction
band by an energy (d. The resulting spectrum re-
flects, in a crude way, the joint density of states
of the initial and final states. The energies of the
emitted electrons range from Kr —Vp to %0+ ~p
(Wz is defined by Wz= —Vo+Sz, where Sz is the
Fermi energy). We now proceed to consider pro-
cesses which result in lower-energy electrons
being emitted.

III. PLASMON-ASSISTED PHOTOEMISSION

In this section we shall discuss processes in
which the photoemitted electron is accompanied by
an elementary excitation of the solid. These in-
clude bulk plasmons, surface plasmons, and elec-
tron-hole pairs. Other excitations, such as pho-
nons, will be neglected as they lead to only a fine-
structure perturbation relative to the above effects.
In our previous paper we developed a set of quasi-
mode excitations whose character was that of bulk
or surface plasmons at long wavelengths while at
short wavelengths it portrayed the electron-hole
excitations. Our goal will be to calculate the spec-
trum for the case where the ejected electron emits
a bulk or surface quasimode excitation. Since
these quasimode excitations are largely plasmon-
like, we term such a process "plasmon-assisted
photoemission".

The Hamiltonian to be considered now is the
same as that of Eqs. (2. 1) and (2. 4) but with terms
corresponding to the quasimode couplings and free
quasimode fields added. Thus
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H = —
H V + V(z) —i U(z

& E) + Hou

+QX'p (f» (3. 1)

where the free-quasimode Hamiltonian is

H,„=Z(u-„bt b;+5 &rf a„'a--„,. (3.2)
k

Here co& is the frequency of the bulk quasimode
(BQM) and b"„(b-„)is the corresponding annihilation
(creation) operator. The surface-(luasimode fre-
(luency (SQM) has been denoted by o"„andthe cor-
responding annihilation (creation) operator by
af (af,). The coupling to the quasimodes is given

by an electrostatic coupling to the potential wave

(2v)'
4&= Q M fb Hsi nbHz6(- z)

c fr,

x '"&' "~"+ H c

&( e. e ""'e"-""""H. e).(2w)

A
(3.3)

Perturbation theory will be employed and the ra-
diation and quasimode coupling terms will be
treated to first order in each. Higher-order ef-
fects in the quasimode fields are implicitl, y con-
tained in U, the optical potential. Thus we will
restrict our attention to final states in which there
is only one quasimode excitation.

The Feynman diagrams for the plasmon-assisted
photoemission amplitudes are given in Fig. 1(b).
These are to be contrasted with the diagram for
direct photoemission given in Fig. 1(a). We note
that the absorption of the photon can either pre-
cede or follow the emission of the quasimode ex-

xb(g E )f (-)f (e) (3.5)

One allows for lifetime broadening of the quasi-
modes by using a Lorentzian function:

~(e) = (1/v) [a/(D'+ e')], (3.8)

rather than a 5 function, where D is the decay rate
of the quasimode. The appropriate Fermi factors
have been denoted by f,' ' and fz". Since the emit-
ted electron will automatically lie above the vacu-
um level, fz(') =1. Let us separate out the z de-
pendence of the various states. Thus,

I
F) =e'""y~(z),

I
I) = e '"' p;(z), (3. '7)

M=e "j- '5R .

citation, since the intermediate electron is off the
energy shell. It can readily be shown that by sum-
ming over graphs in which the intermediate par-
ticle is either an electron or a hole, one obtains
the simple perturbation formula in which Fermi-
surface effects are neglected in the intermediate
state. ~ The matrix element for quasimode (QM)
-assisted photoemission is given by

(F I H„IN) (N I Ho„II)
E E~ -EI- (dj

(F IHeh( IN)(N IH„II)
)+ Eg —EI- co

I'

Here we employ a condensed notation in which u~
represents (d), (for BQM) or o~, (for SQM).

The rate for photoemission in which along with
the emitted electron a quasimode of wave number
0 is produced is given by

&(&, 6) =»~ I(F II II) I'~(E, +~, -E,—~)
IE

Then we have

(F Ibf II) =(2v)'8")(p,'+(t, —p, )

x(y, I3K I9, ) . (3.8)

F r, r
rrgr

(y I3R I~ ) g (f Iq In)(n IH„li)
~+

(f IH„I )( Iei&
I ')) (3.O)

Ne have taken the sum over intermediate states
by making the replacement

One observes that the matrix element conserves
only the two transverse momentum components-
a reminder of the translational noninvariance of
the problem. From E(ls. (3.4) and (3.8) one ob-
tains

FIG. 1. (a) Feynman diagram for direct photoemission
(b) Feynman diagrams for "plasmon-assisted photoemis-
sion. "

P&.

(2w)'
(3.1O)

Let us introduce an auxiliary function lu) defined
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as

u (3. 1la)

and

v=(a, e'"f'+b, e "2')e(-z)

+(cze 'f'+dze 'f'+eze "2')B(z), (3.15b)
and a function lv):

(f I H„I n ) (n I

ef-ld —2
(3.11b)

(
1 d'

zl + (d —V(z) +'lU+ —
2 u =if„y& (S. isa)

(
1 d~

zf —41 —V(z) + —

2 v =H q'p
2 ds

(S. 12b)

Then I and v can be shown to satisfy the equations

where

a, = a S,A, &2k, /(k', -k', ),
b2 ———n S,All &2Rk, /(k~~ —k2),

d, = 2ia S,A2TK, /(K, + q2),

c, = [(k, —q, )a, —(k, + q, )b,

+ (q, —iK, )d, j/(k, + q,),
&, =g+ bg+cg-d, ,

(3.16a}

(3. 16b)

(3. 16c)

(S. 16d)

(3.16e)

Then the matrix element of Elf. (3.9) can be writ-
ten simply as

&4 ISRlq «&=&fit'Iu&+&vl4'Ii&

The first objective of the calculation is thus to
obtain explicit expressions for the auxiliary func-
tions u and v. Let

k~ = [2(e;+&@+V2+iy)]

q, -=[2(e, +ld)]'f2,
(3.14)

k2 = [2(zf &d + V2)]

q, -=[2(ef - (0)]"' .
The physical branch is the one in which both the
real and imaginary parts of k& and q& are positive.
Then inserting the explicit forms for the initial
and final states given by Eqs. (2. 6) and (2. 12) into
the differential equations Elis. (3.12a) and (3.12b}
and solving gives:

u = (a,e "l'+b,e ""+c,e "& )e(-z)

a2 —2aA2S, Bkf /(k2 —kf),

c2 2aAOS Aqf /(q2 qf}'
d2 = scxA2S q /(q2 qf) ~

b2 [(kf 'q2} 2 + (qf + q2} 2

+ (q2 qf }d2j/(k2 + q2}

~2=~a+~~-c~-da.

(S. 17a)

(3.17b)

(3. 17c)

(S.17d)

(3.17e)

p = (22}2M„sink,z 8(-z),
with the coupling parameter given by

M2 = ldf /k(6W &d2)

(s. 16)

(s. 19)

Having found explicit formulas for u and v let
us now proceed to calculate the matrix element
of Ell. (3.13) for the two cases of interest-BQM
and SQM emission. For BQM emission the inter-
action is

+ (d&e l'+ e 2e '"')e(z), (3. 15a) Hence we find

&flq'Iu&=-4"M. B'{ai[(k~+k.-k;) '-(k, -k.-k,') ']
+by[(-k;+kg-kf) ' —(-kl —k, -kf) '] c,+[(- +4k'-k )f' —(-k~ —kg-kf)-']j, (3. 20a)

(i
I p Iv) =- [(22) /v6 ]M2{a[2( kf+,k-k )l-(kf -k, —k, ) +R~(kf+k, +kl) —R*(kf —k, +k, ) ]

+ b2[(-k2+kg-k, ) —(-k2 —k, —kq) +R*(-k2+k, +kl) -R*(-k2 —k, +k, ) )j . (s. 2ob)

Similarly, for SQM-assisted photoemission the
interaction is

I

with the coupling parameter given by

=(a /(32m'k, o )"' (3. 22)

4
t

(2z)zing e kglsl
J {3.u}

I

Hence we find

(f Ilf Iu&=4zN2 {Ba, [ , ki(+k, - )k]f' +Bb~[k, -i( , k+)k] f'+ , c~B[ ,k-i( k+ k)]f'
+d2A [k +K, —iqf] +d~[k +K,"+iqf] +e2A" [k —i(q~ qf)]++e~[k —i(q~ —qf)] (3.23a)



CALCULATION OF MANY-BODY EFFECTS ON ENERGY. . .

&i ~p~v) =4m'N, ,f(e /v2 )[k, +i(k —k&)j '+(a2R /v2)[k, +i(k, +k )] '+(b /vR )[k —i(k +k,)]'
+(baR~/v2 )[k, i—(k~-k, )] ~+emT~[k, +K;+iq~] +d~T~[k, +K, -iqy]

+e,T [k, +K(-xq, ]') .
The rate for quasimode-assisted photoemission is given by Eq. (3.4):

tP cjPIP . PJ q/ (2) (~& ~
g ) (g

(2 )8 (2 )8 6 PJ.- PJ. — J. 6 -EF)

(3.23 )

(3.24)

The integrations over p, and Q (the angle between k, and p, ) may be readily performed, and this reduces to

I'=(I/»') f dk dq e(» +~)~&f ~@ l~)+&~ (3.aS)
where we have let

e(~ -' -")e[2k'.X-«-e~--'k'-X)'1
[D +(8+0—(d —f ( —)f) ] [2k' —(8- eg —gkq —)f) ] (3.26)

The integral J may be expressed in terms of the
arcsine function. Thus the problem is reduced
to a two-dimension integral which is performed
numerically.

In order to evaluate the integral appearing in
Eq. (3.26) we must know the damping rates for
the quasimodes. The damping comes about, in the
present model, by the excitation of electron-hole
pairs. In Appendix A the decay rate for SQM's is
computed, and in Appendix B the decay rate for
BQM's is computed.

The contribution from plasmon-assisted proces-
ses to the EDC appear in an intermediate range
of energies lying between sr —Vo —&u, (or &o —V0
—o~,) and v+ && —&u& (or &o+ Wz —o,,). One can
think of this feature as some sort of a distorted
replica of the EDC produced by the uirect photo-
emission process, but down shifted in energy by
the frequency of the quasimode excitation. The
actual number of electrons lying in this region is
comparable to the number of direct photoemitted
electrons, pointing to the fact that plasmon-as-
sisted photoemission is by no means a small per-
turbation.

sorbed. Whereas the transverse photon carries
no momentum, however, the longitudinal one does.

If we were to give a strict quantum-mechanical
derivation of the secondary spectrum then Feyn-
man diagrams such as appear in Fig. 2(a) must
be considered. The intermediate QM must be
allowed to propagate off the energy shell and one
must antisymmetrize the states F and F . Such
a calculation is very intricate, so to make the
problem tractable several approximations are
made. First of all we observe that the secondary
electrons and primary electrons will often come
out in different energy ranges, so that the ex-
change effect can be neglected in a first approxi-

IV. SECONDARY ELECTRONS

The quasimode excitations that are produced in
plasmon-assisted photoemission do not have an
infinite lifetime but ultimately decay. The QM s
are absorbed by an electron whose energy lies be-
low the Fermi surface and this electron is pro-
moted to an final state which might lie above the
vacuum level. The electron can then leave the
crystal and contribute to the EDC. We shall call
such electrons secondary electrons. We note a
similarity between the decay of a QM excitation
and the direct photoemission process. In the lat-
ter case a transverse photon is absorbed while in
the former case a longitudinal "photon" is ah-

FIG. 2. (a) Feynman diagrams for secondary-elec-
tron production. (b) Feynman diagram for quasimode-
excitation decay.
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de
dt

=&a-Na&a . (4. 1)

At equilibrium the net number of quasimodes is
fixed, so

mation. Also, it is well known that the plasmons
are fairly long lived since they are observed to
have fairly narrow widths. Thus one might think
of making a semiclassical calculation in which the
production and decay mechanisms for plasmons
are treated incoherently.

The Feynman diagrams for the production of
QM excitations have already been given in Fig.
1(b). Rather than summing over the wave numbers
corresponding to the quasimodes, one would sum
over all states of the final electron, including
those electrons which are emitted into the crystal.
For high-energy electrons the number emitted in-
to the crystal is roughly equal to the number
emerging from the crystal. I et I'~ denote the
production rate for quasimode excitations char-
acterized by wave numbers k. Let D»(S) denote
the rate of decay of the QM in which electrons of
energy 8 that emerge from the crystal are pro-
duced. The total decay rate of the QM will be de-
noted by DI,. If NI, denotes the number of quasi-
modes present at a given time, then

however, that over the restricted range of ener-
gies involved in the quasimode decay spectrum,
the matrix element variation may be omitted. A
more serious objection to the above spectrum,
perhaps, stems from the fact that it ignores pos-
sible constraints imposed by momentum conserva-
tion parallel to the surface. However, it should
be noted that in realistic experiments, surface ir-
regularities probably do much to lift the momen-
turn conservation constraints. Consequently it is
felt that FAi. (4. 4) represents a plausible descrip-
tion of the decay spectrum. Thus we employ Eq.
(4. 4) and approximate the production spectrum by

P, =2 1 dgr(%, 8}, (4. 5}

where I' is given in Eq. (3.5).
The electrons produced by the decay of the QM

excitations are low-energy electrons. Their loca-
tion is independent of the frequency of the incident
radiation, unlike the case of direct photoemission
or plasmon-assisted photoemission. The elec-
trons range in energy up to the values 8 = W&+ co~.
The actual number of electrons in this spectral
range is quite large, again attesting to the fact
that the QM couplings are not weak. In fact, in
some cases, the highest features of the spectrum
are due to these secondary electrons.

N»=P»/D» . (4 2) V. RESULTS AND DISCUSSION

Hence the net rate of production of photoemitted
secondary electrons with energy 8 is

(~) ~ P»D»(8) (4. 3)

An assumption is being made that the QN excitation
does not travel too far into the crystal before it
decays. This does not weaken the argument too
much for two reasons. First of all, the QM modes
have very small group velocities, especially at
long wavelengths where the couplings are strong-
est. Second, even if the QM excitation travels a
modest distance into the crystal, the emitted elec-
trons emerge with energies below the threshold
for BQM emission, which means that they have
very long mean free paths.

A crude approximation to Dr($)/D& may be made

by assuming that half the electrons produced in
quasimode decay will leave the crystal. The spec-
trum is taken to be

D„($) 1 e(W, +o-8)-D„2 W~+ 0'

For all but very small wave numbers the full
Fermi sphere is coupled by quasimode excitation
to the vacuum states so the assumed spectrum is
consistent with energy conservation. The assump-
tion is undoubtedly an oversimplification since it
ignores matrix elements effects. One might argue,

In Secs. I-IV we have considered various pro-
cesses responsible for photoelectron emission.
They were categorized as the direct process, the
plasmon-assisted processes, and the secondary
processes. In the direct process the photon ele-
vates an electron from some place in the conduc-
tion band to a state above the vacuum level and the
electron leaves the crystal. In the plasmon-as-
sisted processes the same process occurs except
either a SQM (surface-plasmon-like) or BQM
(bulk-plasmon-like) excitation is also produced.
Finally the secondary electrons are the decay pro-
ducts of these qasimode excitations. The list of
processes we have considered is not exhaustive.
It is quite possible that multiplasmon emission oc-
curs and both the plasmon-assisted processes and
secondary electron processes assoicated with it
has been neglected.

In addition, the model chosen to describe the
surface has been rather primitive. Ideally one
would like to employ a realistic potential, such as
has been proposed by Appelbaum and Hamann, '
although it is clear that such a calculation would
entail considerable labor. It should be empha-
sized, however, that the basic approach of the
present paper is generalizeable to the case where
the above approximations are not made. The goal
of the present paper is to see how far one can go
with the simple surface model and with the lowest-
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order perturbation calculations. In particular we
would like to study the many-body effects on the
energy distribution curves.

Let us start by examining the direct photoemis-
sion process. As pointed out in Sec. II, this ef-
fect has two origins. The first is due to the mo-
mentum kick experienced by the electron at the
surface due to the potential discontinuity. The
second is due to the momentum components aris-
ing from the spatial dependence of the optical po-
tential.

Calculations were performed for potassium,
with the aim of comparing the theory with the ex-
perimental measurements of Smith and Spicer.
The photon energy was taken to be 11.2 eV. In
the present calculation the plasmon (bulk) energy
was taken to be 3.7 eV. The optical potentials
corresponding to this plasma frequency have been
given in the companion article. 4 The depth of the
potential stey is 4.4 eV and the work function is
2. 3 eV. In Fig. 3 we present the quantity
Z./(sin 8/cos8) as a function of energy h. The en-
ergy scale is in units of the hartree (27. 2 eV).
Here 4 is the number of photoelectrons per in-
cident photon. The microscopic angle of inci-
dence has been denoted by 8 and is not known for
this experiment. Thus all that we will reaQy be
able to compare are the relative shapes of the
theoretical and experimental curves. That this
should be the case can also be argued from con-
sideration of our choice of the model. If it turned
out that several atomic layers were responsible
for the momentum kick received by the photoelec-
tron prior to emission and we tried to ascribe it
to a potential rise at the surface, it is clear that

O.g
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FIG. 3. Direct photoemission energy distribution
curve. The abscissa is proportional to the number of
electrons produced per incident photon. The energy g is.
in atomic units. Curves are shown for the cases with
and without the optical parameter &.

z.o

0.5

FIG. 4. Plasmon-assisted photoemission energy
curves. The curve labeled BQM is due to bulk-quasimode
excitation and that labeled SQM is due to surface-quasi-
mode excitation.

the effective well depth Vo might differ substan-
tially from the sum of the Fermi energy and the
work function. Thus, with our crude approxima-
tion, we are in no position to pin down the validity
of the model to the point where quantitative agree-
ment can be made. However, we expect quantities
like sin~8/cos8 to be on the order of unity for the
alkali metals, so one should get order-of-mag-
nitude or better agreement between theory and

experiment.
Two curves are presented in Fig. 3 correspond-

ing to direct photoemission with or without the
bulk parameter y. It is observed that there is a
substantial change in the energy distribution curve
upon introducing the optical potential-pointing to
the sensitivity of these curves to the optical-po-
tential parameters. One can understand the de-
pression of the direct photoemission curve as re-
sulting from a renormalization of the wave func-
tions due to virtual quasimode excitation. Some
intensity is sapped from the direct spectrum and
is transferred to the quasimode-assisted spectra.

In Fig. 4 we present the EDC arising from the
plasmon-assisted processes. The curve labeled
SQM corresponds to photoemission in which a sur-
face quasimode is emitted. We note that the cou-
pling to the surface quasimode is considerably
stronger. This could be understood by remember-
ing that the surface quasimode is strongest at the
surface and the bulk quasimode vanishes there.
If the electron wave is substantially attenuated as
one progresses into the crystal, then the coupling
to the BQM excitations is expected to be weak.

A curious feature occurs in the quasimode-as-
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sisted spectra at the high-energy end of the spec-
trum. It is observed that there is a secondary
peak. The origin of this structure can be traced
back to Eq. {3.5). One sees that the rate consists
of a product of a phase-space factor and a matrix-
element part. Since the phase space is essentially
a joint density of states, it is a rapidly growing
function of energy. The Lorentzian, on the other
hand, has wings which only fall off inversely as the
square of the energy. Thus it is possible that the
joint-density-of-states factor can temporarily win

out and give rise to a secondary peak. Unfortu-

nately too much reliance cannot be put on the actual
magnitude of this peak since, in all probability,
one should employ a more rigorous line-shape
theory. The location of this peak coincides with

the location of the direct process peak and is
slightly larger than it.

The secondary spectra arising from SQM and

BQM decay have been added in Fig. 5. They ap-
pear as tall spikes at the low-energy end of the
spectrum. Since there is more area under the
SQM-assisted part of the spectrum of Fig. 4 it is
logical that more electrons should appear under
the SQM-decay spectrum.

Finally, in Fig. 6 the theoretical energy-dis-
tribution curve is presented {solid curve}. The
spectrum can be characterized as having a small
bump at high energies, a bump at intermediate en-
ergies, and a high peak at lower energies. The
highest-energy peak has its origin in two effects.
First there is the direct photoemission process.
Then there is the plasmon-assisted process in
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FIG. 5. Spectra resulting from quasimode decays.
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FIG. 6. Theoretical energy distribution curve (solid
curve) and experimental curve (dotted curve).

which a secondary peak arises from the competi-
tion of the line shape and the phase space. The
intermediate structure is due to the plasmon-as-
sisted processes. Finally the low-energy struc-
ture stems from plasmon decay.

The experimental results of Smith and Spicer~
are represented in Fig. 6 by the dotted curve. In
order to bring the two curves into coincidence, the
experimental data were multiplied by the numeri-
cal factor 2.56. Thus one can assign the surface
roughness measure a value {sin~8/cos8) = 1/2. 56.
Again we caution against too literal a meaning to
be given to this value since it assumes the effect
to be dominated by surface photoemission.

Agreement between theory and experiment is
reasonable, however, several observations must
be made. First of all, the location of the high-
energy peak seems to be displaced from the the-
oretical curve by about a volt. Presumably part
of this can be ascribed to uncertainties in the
Fermi energy and work function for the polycrys-
talline potassium.

The main discrepancy between theory and ex-
periment occurs at intermediate energies. The
experimental results are consistent with a model
in which the surface plasmons are heavily damped,
so as to wash out the structure associated with
plasmon-assisted processes. In our calculation
of the surface-plasmon lifetimes we have totally
neglected surface roughness as a factor in contrib-
uting to the plasmon decay. Since experimental
data, at present, does not provide us with a full
characterization of the surface it does not appear'
possible to make a realistic calculation of plasmon
lifetimes at this time.

In conclusion we see that even with rather crude
assumptions, one is able to go a long way in de-
scribing theEIX."sof photoemitted electrons from
simple metals. Our results point to the dominant
role played by electron correlation effects, such
as plasmons and electron-hole pairs in determin-
ing the photoyield spectrum. Future investigations
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will involve the use of a more realistic model of
the solid to obtain accurate EDC's as well as angu-

lar -resolved photoemission curves.

APPENDIX $: DECAY RATE FOR SURFACE
QUASIMODES

The decay of a surface quasimode is brought
about by the creation of an electron-hole pair. The
rate for this process is given by

O.a .

IF

xf'r(Er+rr Ez)fr fr (Al)

O.LO .

0.05.

(A2)

Here we concern ourselves with the second term
of Ezf. (3.3). As before, it is convenient to intro-
duce an auxiliary function u defined by

~u} =(Er+rr+zz) e) '-e)1-),

0.0fe .

0.&.

D=2~Zf, -
&u~u),

I
where the limit q 0 will ultimately be taken. If
we let

(As)

where g is a small real number. Then, using the
closure relation, one finds that 0.02 .

t

0.2 0.+ 0-C O.b I.O

~
I)=e'"'qrz(z),

C =e"'P(z),
~u) =e" 'X(z),

then
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FIG. 8. Decay rate for bulk quasimodes as a function
of wave vector k.
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The solution to Ezi. (A5) is

}(=(aze" ' ' '"+aze ""''"+aze ' )e(-z}

0.0IO . where
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and the real and imaginary parts of k and q are
positive. The constants are defined by

a, = (2zr)'NWZ [k' - (k, —zk,)']',

0,002, .

0.Z ac oa
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FIG. 7. Decay rate for surface quasimodes as a func-
tion of wave vector k~.

CE5 = Qg + Qp + Qg —CE4 ~

In the limit of small g it can readily be shown that
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limq&u~u& =-,'[~ap~'[2(e, +a-pk, - pk', + p'p)j'" e(e(+a-p &, --', lP+ Vp)

So finally, we obtain
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In the above expression T~ denotes the Fermi en-

ergy, i.e. , TI, = 8'~+ V.
As we shall see, the decay arising from the

above process is rather small, i.e. , D«o„,, thus

justifying a calculation in which the decay rate is
not calculated self-consistently. In Fig. 7 the de-
cay rate for surface quasimodes as a function of
wave vector parallel to the surface is presented.
We note that damping occurs for all values of the
wave vector but that it is maximum in the vicinity
of the Fermi momentum.

APPENDIX B: DECAY RATE FOR BULK QUASIMODES

The bulk quasimodes decay by producing elec-
tron-hole pairs. Allowing for the possibility that
the decay rate might be appreciable let us compute
the decay rate self-consistently. Thus we have

D=2 Z~&~~c~l) ~'f' f."d(E -E,—,),
IE (Hl)

where we employ a Lorentzian function

1 D
IP+ (Er —El - pop)

Here C is given by the first term of Eq. (3.3) cor-
responding to BQM annihilation. In the present
calculation let us ignore the presence of the sur-
face. This leads to errors at small k due to the
fact that the decay can only occur there by virtue
of the surface. However, once the quasimode has
entered the region of k space defined by electron-
hole processes the damping becomes strong and

the surface is a small perturbation.
The integrations involved in evaluating Eq. (Bl)

I

are straightforward and lead to

(2v) [M [
~pry&

D= dPP
t2(Tg-~ )]

kP -4)p+ pk

D

+ tan
kp + (0~ —2k

).
This integral is expressible in terms of simple
functions like the logarithm and, arc tangent. A
self-consistent numerical solution for D is sought.

In Figure 8 we present a graph of the decay rate
for bulk quasimodes as a function of wave vector.
The present curves exhibit a threshold behavior
corresponding to the point where energy and mo-
mentum conservation become simultaneously pos-
sible in quasimode decay. In a more realistic
calculation one would expect the decay rate to not
exhibit this threshold behavior since the presence
of the surface provides a momentum sink (or
source). The actual self-consistent calculation of
bulk-quasimode lifetimes in the presence of a ~r-
face is quite complicated and will not be discussed
here. We only note that if the penetration of the
plasmon into the solid is substantial (i.e. several
atomic layers), then we should not expect the sur-
face to have a very large effect on the decay prop-
erties and Fig. 8 is approximately correct.
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{1972).
The general equation for such a matrix element is

Msttt
———Z ff fP' P'I Bsatl N) (Nl H„iI)

N

~Eg + Eyy + Q) ~E(+ E

+ (r I e„l~ pr l a~ ( I)„(
Es' E+ -~ Et—+ &a+ Ett

Employing energy coaservation 0 = Er + coma —EI —co, and
the fae«hat Ps,-'+ /~ & = 1, leads to the equation given below
fA. (3.4)l.


