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A many-body formalism suitable for application to photoemission or other surface-related problems is

developed. It allows one to include, in a simplified way, effects of bulk plasmons, surface plasmons,

and electron-hole pairs. A set of optical potentials is obtained which describe the virtual excitation of
such modes of the solid. The optical potentials are energy dependent and vary as a function of the

distance from the surface. Deep in the crystal they tend to an asymptotic value independent of the

location. Characteristic oscillations appear as one approaches the surface region. A cusp at the surface

occurs which is followed by a rapid decay of the potential into the vacuum region.

I. INTRODUCTION

While the bulk properties of solids have been the
object of experimental and theoretical investigation
for decades, it has not been until fairly recently
that surface properties have undergone such a sim-
ilar attack. Not until the techniques for surface
preparation had been perfected, were reproducible
and accurate experimental data able to be extracted
from laboratory measurements. The fact that sev-
eral independent experimental techniques now give
consistent information relating to such a physical
property as the electronic density of states, lends
credence to the belief that the hurdle of obtaining
meaningful data has finally been surmounted. The
methods available to physicists for studying sur-
faces now include such techniques as photoemis-
sion, photoabsorption, low-energy-electron dif-
fraction, inelastic- electron- loss spectroscopy,
tunneling, field emission, ion-neutralization spec-
troscopy, and electroreflectance. All these tech-
niques share the common characteristic that the
projectile (be it photon or electron) is capable of
coupling to the electronic excitations of the solid.

In giving a first interpretation to experimental
results one is usually tempted to employ a one-
electron picture. One imagines a single electron
interacting with a background array of ion cores.
This lattice is taken to terminate in some fashion
at the surface of the crystal. Thus, for example,
in photoemission one has the following crude de-
scription of the phenomenon. The incident photon
is absorbed by an electron and the electron is pro-
moted to some higher-energy level. If the electron
were not under the influence of external forces this
process would be forbidden, since one could not
simultaneously conserve energy and momentum.
However, the lattice provides a momentum reser-
voir in which integral multiples of reciprocal-lat-
tice vectors can be supplied to the electronic mo-
mentum to allow it to be conserved. In addition,
the termination of the lattice provides a continuous
spectrum of wave vectors which could likewise

maintain the momentum- conservation constraint.
A comparison of the predictions of such a model
with experiment is likely to meet with only partial
success. While it may be possible to identify fea-
tures in the photoemission spectrum with certain
predicted features, such as peaks in the electronic
density of states, the model fails in several re-
spects. First, it does not give an accurate ac-
counting for the absolute photo yield. Thus serious
discrepancies are likely to occur in comparing the
number of electrons emitted per incident photon
calculated by such a model and measured in the
laboratory. Second, new features often appear in
the electronic spectrum which are completely un-

explainable in the one-electron picture.
The difficulties cited above are not limited to

photoemission alone but occur to a greater or less-
er extent in the other experimental techniques
which were enumerated. The origin of these prob-
lems, of course, lies in the fact that although the
electron-electron potential is relatively weak, it
is of long range, so electrons strongly scatter
from each other. Thus inadequacies of the one-
electron picture point to the necessity for solving
the many-body problem. Unfortunately this pre-
sents its own challenges. One now has to worry
about having the electron colliding with the other
electrons and producing electron-hole pairs, bulk
plasmons, and surface plasmons. Thus the num-

ber of elementary processes begins to proliferate
as does the number of integrations that one must
perform in the course of a given calculation. The
problem rapidly becomes unwieldy and it grows
clear that the solution to the many-body problem
cannot be pushed through without great effort. A
further pessimistic note is sounded by the fact that
the existence of a surface permits neither the sim-
plification of using a pl.ane-wave basis, as one
would employ in free space, nor a Bloch-wave ba-
sis, as one would use in describing bulk properties.
Thus one expects that the integrations involved in
calculating the matrix elements associated with such
elementary processes would likewise be cumber-
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some. It becomes clear that if substantial prog-
ress is to be made in incorporating many-body
effects into surface-physics-related problems,
some simplifying assumption will have to be made.

An advance in simplifying the many-body treat-
ment for an electron gas has been made by Over-
hauser. ' He showed that it was possible to de-
scribe the density fluctuations by a single quasi-
mode excitation which mould simultaneously ac-
count for bulk plasrnon and electron-hole pair pro-
duction in bulk crystals. In fact the properties of
this quasimode were shown to be determined by a
knowledge of the static bulk dielectric properties
of the medium. These properties, of course, are
given by detailed many-body calculations. One of
the objectives of the present paper will be to ex-
tend this quasimode concept to the semi-infinite
crystal. Thus we mill introduce two elementary-
excitations —bulk-quasimode-excitations (BQM) and
surface quasimode excitations (SQM). The former
excitations will be quite similar to the entities in-
troduced by Overhauser while the latter modes will
account for the surface plasmons. One might ask
if such drastic approximations are at all justified.
While the ultimate justification lies in a compari-
son of theory with experiment, one might make the
following remark. The experimentally observable
quantity, such as the photoelectron spectrum in

photoemission studies, is generally obtained after
many integrations over intermediate sets of states
associated with the Feynman diagrams correspond-
ing to specific processes. If one replaces these
intermediate states by a crude approximation to
them, such as a single quasimode, it is quite pos-
sible that the photoelectron spectrum mould not be
radically perturbed. This will especially be true
if certain key sum rules are obeyed by the quasi-
modes. As Overhauser has shown, the elemen-
tary excitations that he defines maintain the oscil-
lator-strength sum rule. Thus by a small sacrifice
in accuracy one is able to buy a large gain in com-
putational simplicity, and hopefully make the prob-
lem tractable.

A second important advance in simplifying the
surface problem has been made by Ritchie and
Marusak. ~ They showed that it was possible to ob-
tain a reasonable description of surface plasmons
in terms of the dielectric properties of the medium
by making a few simple assumptions, such as as-
suming specular reflection. In this paper the
method of approach of Ritchie and Marusak will be
extended to include the coupling of electrons to the
surface plasmons. This will then mesh, in a very
natural way, with the surface-quasimode concept.
Here again we note that some debate exists in the
literature as to the validity of the dispersion re-
lation for surface plasmons obtained by the above
authors. However, one can again invoke the line

of reasoning that says that the quantities of experi-
mental interest in surface physics are not so much
the detailed dispersion relations, but quantities
which are rather complicated functionals of them.
Thus while the fine details of the dispersion rela-
tions may vary from theory to theory, these varia-
tions are, in all likelihood, washed out by the time
one has computed an observable quantity.

Returning to our example of photoemission, it
now appears that we will be able to augment the
one-electron processes by ones in which the elec-
trons can couple to loss modes of the solid and
emit BQM or SQM excitations. The question one
would ask is: Does this change, in any way, the
original one-electron process? The answer is that
it does. One can give a formal explanation of this
alteration in terms of a renormalization of the one-
electron propagator by virtual emission and ab-
sorption of the SQM or BQM excitations. A major
goal of the present paper will be to show how this
renormalization can be carried out by introducing
appropriate optical potentials.

The present paper represents a generalization
of the work of one of the authors in several re-
spects. Previously the coupling to surface plas-
mons and bulk plasmons in the long-wavelength
limit was obtained. In order to apply those calcu-
lations to surface studies one has two problems.
First of all, one must cut off the plasmon coupling
in some manner when the plasmon dispersion curve
intersects the electron-hole-production domain.
This occurs at high wave numbers. This problem
has been considered in some detail in the litera-
ture. 5 Second, one must still incorporate electron-
hole excitations as a possible loss mechanism into
the theory. By introducing the quasimodes of the
present paper both these problems are solved si-
multaneously.

In Secs. II-VI we proceed as follows. First we
discuss the quantization of quasimode excitations
in a semi-infinite medium. Then we consider the
coupling of electrons to bulk quasimodes. Follow-
ing this is a discussion of the coupling of electrons
to surface quasimodes. Then the problem of con-
structing the optical potential is attacked. Finally
a discussion of the results of calculation is pre-
sented.

This work represents the first in a series of pa-
pers relating to photoemission studies. %e have
decided to divorce it from specific photoemission
calculations because we believe that the results
derived in this paper transcend applicability to just
photoemission. Thus we believe that the concepts
and results dealt with in this paper should be use-
ful in discussing all surface-related problems.
The treatment of specific photoemission problems
has been deferred to subsequent papers in this se-
ries.
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II. EXCITATION S IN SEMI-INFINITE DIELECTRIC
C z(r, t) = f dzk, d&u e"' ' ""A(k„&o)e"~* . (2. 6)

As long as one is willing to neglect the so-called
retardation terms, the excitations of a semi-infi-
nite crystal can be characterized by a scalar po-
tential. This approximation is valid except at very
long wavelengths. Following Nozieres and Piness
the crystals will be characterized as a semi-infi-
nite dielectric. All the electronic properties of
the crystal are to be describable in terms of the
dielectric function c(k, &u). Thus we shall think of
our elementary excitations as potential waves prop-
agating through a dielectric medium. As the mave

propagates, a cloud of induced polarization charge
undulates a5 the characteristic frequency ~ and
wave number k.

Let us make a Fourier expansion of the electro-
static potential 4 (r, t):

(2. 1)

The vacuum region will be taken to be the domain
z & 0 while the crystal occupies the space z & 0.
Since Laplace's equation must be satisfied in the
vacuum, it follows that

0 = f dk d(o e""""k'@(k, (u), (2.2)

for all z& 0. Hence U(k, ) = k 4g, ~) is an analytic
function of k, in the upper half k, plane. Inserting
this into Eq. (2. 1) and closing the contour i.n the
upper half k, plane leads to

4(r, t) = f d'k, du& e' "~' ""A(k„&u) e "*, (2. 3)

where we have let A(k„&o) —= (v/k, ) U(tk, ). One
notes that in the limit as z- ~ the electrostatic po-
tential remains well behaved. In the crystal do-
main (z&0) 1st us expand C as the sum of two
terms. The first will be chosen to vanish at the
surface. Hence it can be expanded in terms of a
Fourier sine integral:

Thus the expansion for 4(r, t) valid over all space
is

-k~ lgl ef (P7 r-ddt) (2.7)

Here e(z) is defined as zero for negative z and as
unity for positive z. From the reality of 4 it fol-
lows that B(-k, , k„—~) = B (k, , k„~) and
A(-f, , —~) =A*(k, , (g).

So far no approximation has been made. Let us
now utilize some of our knowledge of the physics
of the problem to simplify the above description.
If one examines the long-wavelength excitations one
finds that the dominant mode is the plasmon mode.
As pointed out by Overhauser, ' most of the oscil-
lator-strength sum rule is contributed by the plas-
mon mode and a negligible amount by the electron-
hole pair excitations. Thus one expects a unique
frequency ~ to correspond to a particular wave
vector k in Eq. (2.7). Then the integration over
& can be performed trivially, as B must be propor-
tional to 5(m —&u~), where w~ is the plasmon fre-
quency. At short wavelengths the situation changes.
One knows that the finite region of & —k space cor-
responding to the electron-hole pair excitations
contributes. This region is contained roughly in
a band centered on the line &u

= h7P/2m for large k.
The important thing to recognize is that for large
k the band is fairly narrow. Thus one can again
attempt to approximate B by something proportion-
al to 5(~ —~,), where ~„now is an excitation re-
sembling more a free particle than a plasmon. We
therefore make the approximation of letting

(2. 8)

4 (r, t) = f dzk, f d&u f, dk, B(ij ru)

&:sink, ze(-z) e""~' ""+f d k, f d&uA(k„&u)

4~(r, t) = f d k~ f dk, f d&o

and

A(k, , (g) = a (k, }6((g —o,,) . (2.9)

y B(k &) sink z ef(kj r a&t)- (2.4}

The range of integration on k, has been restricted
to the domain k, ~ 0 in order to avoid a double
counting of equivalent states. Since our electro-
static potential has been expressed in the form

(2. 5)

the choice of 4z(r, t) is somewhat arbitrary. How-
ever, we know that C (r, t) must be continuous
across the surface. For the sake of convenience
we choose 4 z(r, t) to be a reflection of 4(r, t) in the
vacuum, which would agree with the known behav-
ior of surface plasmons. Thus,

Since the surface properties are expected to be
considerably different from bulk properties, an ex-
tra mode 0~ has been introduced for them. Here
P and ~ are amplitudes which will be specified
shortly. Hence we find

@(&, t) = f d k, f dk, P(k) sink, z e""~'-"a"e(-z)

+ f d'k, a(k ) e '&" e""&' '&i" + c.c. (2. 10)

The modes associated with the P(F) amplitude per-
meate the volume of the crystal so will be called
BQM. The modes associated with the a(k, ) ampli-
tude are localized in the surface region so are
termed SQM. As we will see later explicitly, the
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BQM and SQM go over to bulk plasmons and sur-
face plasmons in the long-wavelength limit.

We now quantize the fields associated with the
BQM and SQM excitations. This is done by intro-
ducing creation and annihilation operators. Thus
let

and

P(k) = Mf bg

a(k, )=NI &z;

(2. 11)

(2. 12)

V, k

where bz is an annihilation operator for the BQM
and ak, is an annihilation operator for the SQM.
Here M and N are normalization coefficients to be
determined later. The SQM and BQM excitations
are treated as bosons since we expect them to have
a classical limit. Replacing the integrals by sums,
via the standard replacements

p(r, t) = q6(r -vt). (3.1)

Expand the electrostatic potential in a Fourier se-
ries

4&(r f) f dkd e&&&r(&A& 4&(g )

and similarly for the charge density

f dkd s&&f r ~z& pg

(3.2)

(3.3)

From the Poisson equation we have the relation

ing test charge two ways. First me do it classi-
cally by calculating the work done by the medium
on the charge as it moves through it. Then we
evaluate the same quantity quantum mechanically
by assuming that it radiates BQM waves as it tra-
verses the medium. For simplicity's sake let us
take the charge's location to be very deep in the
medium so the coupling to SQM excitations may be
neglected.

Thus, in the classical approach, one has essen-
tially a charge moving through an infinite medium.
Let the charge density be written as

r d n -(2"'Z
kg

4 (k, (o) =~ (@ ),4&& p(k, &d)

where

(3.4)

we obtain the operator expansion for 4(r, f},

2&z
'

4&(r, f) = Z [&Mfbfsink, z e'"z' "z '8(-z)+H. c.)
c

+ Z[Ng af e &&z'" e '" &z«kg& +H, c, ]
(2&z}'

(2. 13)
Here V, is the volume of the crystal and A is its
area.

In summary, Eq. (2.13) is a mode expansion for
the electrostatic potential. It is expressed in terms
of four unknown functions M;, Nk, ~k, and ok . In
Sec. III and IV we will determine these in terms of
the dielectric properties of the system.

III. COUPLING TO THE BULK QUASIMODES

The purpose of the present section is to deter-
mine the parameters Mf and &f of Eq. (2. 13). The
result that we will obtain will correspond to the re-
sults of Overhauser, ' but we repeat them here for
two reasons. First of all, the method employed is
quite different. It will admit a natural extension
to the case of surface quasimodes to be considered
in Sec. IV. Second, it perhaps is not obvious that
the modes employed here, which are proportional
to sink~, will produce the same coupling as the
modes employed by Overhauser, which are pro-
portional to e"~'. The present derivation mill also
display the intimate connection existing between
the analytic properties of the dielectric function
and the oscillator strength sum rule.

We start by calculating the energy loss of mov-

p(R, (y) = (q/8&z') 6 ((o —f v) (3.5)

Inserting Eqs. (3.4) and (3. 5) into (3.2) yields

@(r f) f dkd 8&&f r-&az&

&& [i&&/2&&'k'g(k, &d)] 5(&d —k v) .
The electric field is given by E =-VC:

(3.6)

(3.8)

Here we have made use of the reality condition
that e(k, ~) = c (k, —~).

The one-mode approximation is introduced at
this stage. Let

Im = A(g 5 (&d —&d») .1
e( (u)

(3.9)

E(r f) f dkd e« f.r-«z &

&& QY/[2&&'zing(k &d)]6(&d -f v) . (3.7}

The electric field that mould exist in the absence
of a dielectric Eo would be obtained by setting
e(f, ~) equal to 1. Taking the difference of E and
Eo gives the field due to the presence of the polar:-
ization charge. It is this field which does work on

the charge Q as it progresses through the medium.
Following Ritchie~ we compute the work done on
the charge,
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dW Q I ~&a

dt m'
=—~dk~Ak 5~ — ~ v . (s. io)

Thus we assume that a has a pole at (d = co» where
A(F) is related to the residue of the pole. The
quantity A(Q will be determined later. Inserting
Eq. (3.9) into Eq. (3.8) and performing the fre-
quency integration leads to

source with the quantized 4 field is

(2v)'
H„, = dr Qb(r —R —vt)

C

&&2 [M,b, sink, ze(- z)
k

xe~'fi' "~"+H. c. ] . (s. i6)

In order to obtain explicit formulas for ~, and
A(k) let us explore the analytic properties of the
dielectric function. In particular, the function

f(~) = I/z(tt, &u) —1 (3.11)

has the property that f(&u)- (~~/~)z as ~- ~ since
e(k, &u)- 1- (~~/&u) in that limit. Here ~~ is the
plasma frequency defined by ~~~ =4wne /I, where
n is the electronic density, and e and m refer to
the charge and mass of the electron, respectively.
It will be convenient to work in atomic units hence-
forth. Thus we will set 8=1, e=1, and m=1. En-
ergies will be measured in units of 27. 2 eV and
distances in units of Bohr radii, ao. We find that
f(m) obeys the Kramers-Kronig dispersion relation

1 1 "
2(d 1

Re
k,

—1 =-6' dc' 2 2 Im

(3.12)
where (P denotes the "principal part of. "

Inserting the one-pole approximation of Eq.
(3.9) into (3.12) leads to

Re [I/c(k, &u) —1]= (2/v} [~/(w', —&o'}]A(k) . (3.13)

For very large values of (d the above equation re-
duces to

C = (- 2wi/g) Qb ((g, - f, ~ v, )

& [(2w)'/ V, ] iV,*sink, R,
ag

X gg~ R~e (s.2o)

Squaring the amplitude, multiplying by the energy
of the quantum, S(d,~ and dividing by the duration
of the experiment leads to an expression for the
loss rate,

=~tkdf f Q ~(~a ki' vi)

From time-dependent perturbation theory one cal-
culates the transition amplitude for this process:

C =( t/tt-) f„"dt(H„,) (s. i9)

where (If„,) denotes a matrix element correspond-
ing to BQM emission. Thus only the term associ-
ated with the creation operator contributes. To
avoid any conceptual difficulty arising when v, wo,
let us imagine v, =0 for this calculation. (This will
guarantee that one need not worry about coupling to
SQM modes at some stage of the t integration. It
is clear that the result to be obtained won't depend
on this assumption if we are deep enough in the
crystal. ) Then

(u~z = —(2/v) (u, A(k),

while for very small frequencies we find

I/z$, ~) —1 =2A(k)/w~» .
Solving these for A(k) and &~ yields

(u, = (g, (z(f, 0)/[c(f, 0) —1]P",

(3.14)

(s. is)

(3.16)

~ [(2z)'/v, ']
I M, l

' .
Replacing the sum by an integral gives

(3.21)

dk 5 (dy- g' vy
aPO

~ [(2v)'/V, ]1 M, l' . (3.22)

A(FJ = ——,
'

w(u~([c(k, o}—I]/g(R, 0)}'~'. (3. IV)

We observe that Eq. (3.16) is the same dispersion
relation as obtained by Overhauser. ' It provides
us with an explicit formula for the BQM frequency
in terms of the static dielectric function. For
small wavelengths, e- ~, so ~,-(d~. Thus the
BQM reduces to a bulk plasmon in that limit. On

the other hand, as k- ~, e- 1+ (2&v~/k ) so m, ——,
'

k
which is just the free-electron dispersion relation.

Finally we evaluate the energy loss rate due to
BQM emission quantum mechanically. Again let
us assume the moving classical source to be deeply
embedded in the crystal so that surface effects may
be neglected. The interaction of this classical

Comparing this to the classical loss rate of Eq.
(3.10) gives us an expression for I M„lz:

t z
—KV, A(K) h(upV,

0 I 4~Bk2 8 Sk2

t c(k, 0) —1

L ~(k, o)
(3.23)

This completes our task of computing the param-
eters of the BQM field. We note that a comparison
of M~ with the coupling coefficient obtained by
Overhauser leads to agreement within a numerical
factor. This numerical factor is associated with
the choice of sink, z rather than e'~&.

In summary, we have shown that the analytic
properties of the dielectric function, coupled with
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the one-pole approximation, provide a powerful
combination which allows us to determine the BQM
field parameters in terms of the static dielectric
function. In Sec. IV we apply the same set of tech-
niques to the surface quasimodes.

IV. COUPLING TO SURFACE QUASIMODES

Let us now apply a similar approach to the study
of the surface quasimodes. We begin by calculat-
ing the energy-loss rate for a particle due to its
coupling with SQM waves. Then we study the ana-
lytic properties of the dielectric function associ-
ated with the SQM excitations. This is followed by
a discussion of the quantum-mechanical calcula-
tion of the energy-loss rate.

Suppose we place an external test charge Q on
the surface and allow it to only move on that plane.
By definition, the BQM wave vanishes there, so we
need only consider the coupling to SQM waves.
Thus the external charge density assumes the form

4w
4)(rt t) = dkd(e ~ (» )

,8((e -k, ~ v, )8~'

I(k r-out)+

the electric field by

4m
E(r, t) = dkd(e ~ (~ )

—.

x z (j((e —kd ~ vq)
8m

+
2

e

and the electric displacement vector by

D(r, t) = f d)td

(4. 8)

(4. 8)

p„(r, t) = Q5(z) 8"'(r, -v, t) . (4. I)
Ritchie and Marusak~ were able to obtain a disper-
sion relation for the surface plasn1on by solving the
following homogeneous problem. They considered
an infinite dielectric medium and imagined a sheet
of charge existing at the plane z=0. Since it was
an infinite medium, the fields to the left or right
of the z = 0 plane could be expressed by simply us-
ing z$, (4)), the infinite-medium dielectric function.
Then they argued that if the surface had the prop-
erty that it provided specular reflection for the
electrons, one could replace the region z & 0 by
appropriate vacuum fields without altering the
fields in the region z &0. We now make the same
physical assumptions and solve the inhomogeneous
problem of finding the fields induced by the charge
density of Eq. (4.1). In computing the fields to
the left of the surface we add what is in effect an
i~age charge to p„. Rather than choose it as a
point charge in the z &0 domain we treat it as a
distributed charge in the z =0 plane. Thus we
start by considering an infinite dielectric with
charge density,

X 4) 8((4) —kj. ~ Vt )
8n

i (fear-iaaf )+ (4 &)

These are accepted as the solutions for z &0. In
the z&0 region we now replace the crystal by a
vacuum field and again assume specular reflection.
Since VI@ =0 it follows that

e(r, t) =f d'k, d(g e' "~'

and

xA(fc„&u}e +',

E(r, t) = D(r, t}=f d k, e""'""

(4.8)

xA$„(g) e &*(fzJi+k,k) . (4.9)

The true external charge residing on the surface
is given by

(t) = fzdrz (z) 5)'5" r,5- v(t)

Expand the potential in a Fourier series similar to
Eq. (3.2). From Poisson's equation it follows that

4(R, (o) = [4z/k'e(k, (g)]

x [(Q/8w') 8 (w -k, ~ v, )

+ o(k„(e)/2e], (4. 3)
where

z(it., 4 )=, f4 r, dt 4 '" ' ""tt( „t) . (4. 4)

e((4 D tdt) 8( '-k . v )
4m

xd kd. d(4) .
We now impose the boundary conditions that 4 be
continuous across the boundary and that the jump
in D, be proportional to o„via Gauss's law. Thus
we obtain the following equations:

~a
A(kt, (4)) = dk, , z „-

Thus the potential is given by
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k)A(k). , {d) — dk, & s~. p- 4~k.'
kz]

s6({d -~). ' vt)+Q - (X(»„(d)
Sn' 2m

= —6((d -Q ~ v, ) .Q
7r

(4. 12)

~~1 kgpl"dk k
k i

we find that

(4. 13)

and

A$„(d) =
vk, I+e(»g& (d)

O$& (d) — X Q((d %). Vl.) &

Q 1 C(Qy (d)

4 1+& kJ, m

(4. 14)

Upon inserting the value of the following integral,

SQM waves. Let

Im, —,-=A(»).) 6((d o—, } . (4.20)

1
C(»p (d

= 1+2(d,fi(k)/v((d', —(d')

+iQ(k) 6((d —{d))) . (4. 22)

Hence we can write the surface dielectric function
in the form

Then Eq. (4. 19) becomes

dW + 2o))) Q
dt nk

x6(o,, -k, ~ v, ) A(k, ) . (4. 21)

By exploring the analytic properties of z$„{d)
we hope to obtain explicit formulas for A„, o~
and N,, In our discussion of the BQM couplings
we have developed an explicit expression for
I/s(», (d). Thus from Eqs. (3.9) and (3.13) it fol-
lows that

kJ
" 1

t(fey~ '(d) — de p (» )
~ (4. 16)

(4. 16)
where we have introduced the surface dielectric
function s$„(d}by defining

kJ "dk,
s(»(, (d) = 1+—'

r „k
2(d,A(k)

v((d, +(d)({d„-(d —i0') ' (4. 23)

The surface-plasmon dispersion relation was found
by Ritchle and Marusa»z to be given by the solution
to the equation

e(ki, (d)+1=0, (4. 17}

x 5{ay -( v ) —{)Q
2m'kJ 1+g

x —+k k (4. 18)

Here we have evaluated it at z =O'. The same an-
swer would be found if the calculation were made
at z = 0 . Using the relation a(»)., —(d) = V(»„{d),
we find the energy-loss rate to be

{fW 2(dQ(Pkj(f{d 6 ((d»{.' v{)
«p J

(4.19)

We now make the one-pole approximation for the

which yields an equation for & as a function of k, .
Having found expressions for the electric fields

throughout all space, we now compute the work
done by the medium per unit time on the test charge
as it traverses the surface. As before, we calcu-
late the difference between the electric fields in the
presence and in the absence of a dielectric:

F Ep k d +f (kg'I' (A)

2S 2
2 2 2 2 2 2

({d)) (d (+ (d2) + 4(d( (dz
(4. 24)

Assume first that ~& 40. Then for ~2 40 the inte-
gral is nonzero so Imc(»), (d) &0. Hence 1/[1+ s(»(,
(d)] has no poles in the upper half-plane. The case
where» = 0 needs to be treated separately since
Ima does vanish. However, we note that

2 2

(» ) I kj. (d, dk,
(d2+ (dy

kJ coP dk 1
(4. aS)

»n«{d~= {d& [z/(z -I)] and z &0 it follows that
It follows that

2 «l

( )) 1 (d( k). dk,
gp

(4. 26)

so & cannot be equal to —1. Thus we conclude that
S(»(, (d) is analytic in the upper half -(d -plane. This
could alternatively been deduced from the standard
causality argument which states that the response
of the system to a pulse of surface plasmons can-
not precede the arrival of that pulse.

The function

Let us explore the analytic properties of this in the
upper half-plane. Letting w = ~&+i~2, we have

2

(» )
k) {dt (fk

n k
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f(&u) = 1/[1 + e(krak ~)] —z (4. 27) 2(op (4. ss)
is analytic in the upper haU-plane. As (d- the
dielectric function c-1—~zz/mz, so it follows from
Eq. (4. 16) that c- 1+&zz/&z. Hence f falls off
quadratically with + for large . The Kramers-
Kronig relation for f(&u) yields

1 11 1

2' 1
X

& 2Im
QP (do 1 + C((td k id')

(4. 2s)
Inserting the one-pole approximation into the above
equation gives

1 1 2
1+f kd& Q)p 2 8'

A(k )
~o ~zi

(4. 2s)

and

tl —Z(k„O)~'Iz
A(kd. ) v~z z ktsl

11+~

(g, 1+a(jt„o)" ~2 1-e(f„o)

(4. so)

(4. 31)

Thus A and c depend on c(kd, 0) which, in turn, de-
pends only on c(jt, 0), through the relation

This equation is evaluated in the high-frequency
limit and in the low-frequency limit and the follow-
ing expressions for A and o are obtained:

Hence the SQM frequency goes asymptotically to

(4. ss)

This differs from the result obtained for the BQM
made in that it is not a free-electron dispersion
relation. However, we may perhaps be willing to
accept that because, in reality, the 8QM wave is
constrained to ride along the surface. In fact, a
sum over all k, is involved in generating the sur-
face dielectric function, and hence the SQM wave,
as is seen from Eil. (4.32).

Let us now calculate the loss rate due to emis-
sion of SQM excitations. The interaction with the
classical source is described by the Hamiltonian

f p(r t) C z«(r t) dr (4. sv)

x 6(z) [(2~)'/W] (4. ss)

)& jy fez
~L~gt g

&(&J'2' fyy &)

Evaluating the energy-loss rate, as before, we
find

dW» (2v)'
dt

where only the SQM part of Eq. (2. 13) contributes.
Taking matrix elements between a no-SQM state
and a one-SQM state gives

(H„,) = J dr ikis'"(r, —v, t)

6(k„o)= (k, /K) x
l Ã„ l

6 (k, ~ v, —o,,) . (4. so)

x j [dn, /n'e(k, O)]. (4. 32) Finally, comparing this with the classical expres-
sion, Eil. (4.21) gives

It is instructive to examine the limiting cases of
Eil. (4.32). For small k, we note that A(n, ) . (4. 4o)

so

1
lim —'

z
y~-P m' Pj +

(4. 33) Thus the task of expressing the various parameters
in terms of the static dielectric function has been
completed.

lim c(kk, , 0) = dk, S(k,)
p ~a

"n o='. (4. 34)
c k„o

Hence, from Eq. (4.31), it follows that oz —a&~/v 2
in this limit, which i.s just the long-wavelength
limit of the surface-plasmon dispersion formula
(excluding retardation effects). For large k, we
have

)
k f dk,
7T ~go

V. OPTICAL POTENTIAL

In nuclear physics it is customary to describe
the scattering of nucleons from nuclei by means of
a complex energy-dependent space-dependent (and
sometimes even nonlocal) optical potential. The
imaginary part of the potential takes into account
the inelasti. c processes that can occur, such as
absorption of nucleons by the nucleus. The concept
of the optical potential can be adopted for use in
solids without much change. We start by examin-
ing the Schrodinger equation in the presence of such
a potential:
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The particle density is given by n = 4*4' and the
particle current density by J= —', i(0—V'1« —OVAL' ).
Then one der1ves the continuity equation

an=V ~ J+—= —2' .
eg

(5. 2)

p = —8(z —&) 8"'(r, -v, t) .
Thus the interaction Hamiltonian is

H„,=f pe~„dr.

(s. s)

(5 4)

The square of the transition amplitude is propor-
tional to the transition rate R, so we find

5.

Thus we interpret 2U as the loss rate, or alterna-
tively as the transition rate. In the present sec-
tion, for the sake of simplicity, we will treat Uas
being a local potential. This assumption is usu-
ally quite valid as long as resonances are absent.

The loss rate of a particle moving parallel to the
surface will be calculated by treating it as a clas-
sical source coupled to a quantized field. By com-
paring the loss rate thus obtained with Eq. (5. 2)
we will find explicit formulas for the optir. al poten-
tial. We note that there are several complicating
factors that arise in deducing the optical potentials.
First of all the optical potential can be expected to
depend on the orientation of the velocity vector rel-
ative to the normal to the surface. %'e will neglect
this variation in the present treatment. Prelimi-
nary estimates of the optical potential have shown
this variation to be rather insignificant. Second,
since we are working with a classical source that
moves at fixed speed through space, the optical
potentials are going to depend on the speed rather
than on the energy. Thus one expects the optical
potential to be dependent, to some extent, on the
crystalline potential V. This dependence will us-
ually be quite small, however.

The eases of motion in the vacuum and motion
within the crystal will be treated separately. In
the vacuum region (z & 0) there is only coupling tn
the SQM waves. The test charge is of the form

where U&, the contribution from the SQMs, is
given by

U dzk
~
~

~

e+2a«1 xs(g& —k« ' )
4n'3

k1

(s.5}

The BQM contribution U~ is obtained by evaluating
the matrix elements to

ff...= fp4, o„dr.

The transition amplitude is

C=t M, sink, $
.(2 )'

C

xs(~, -k ~ v),

(s.9)

(5.10)

Proceeding with the evaluation of the transition
rate, we find

2V, =ft=[(2~)'/&, Jf d'k, f dk, ~kf, ~'

xsinzk, )8(&o, -k, v) . (5.11)

Hence the final expression for the optical potential
is

4 oo

U=
&

d'k, dk,
~
kf, ~'sin'k, z

C

xs(, -tt, v)e(-z)
4m'

A I

x8(o, -k, ~ v) . (s.12)

The azimuthal integrations may be performed by
noting that

j d&8(&o —kv cosP)
Jg

e(kv —(o)
(kzp 2)1/2 (s. is}

j dk«. k«. f dk, ~ ~ ~

0 0

In the first integral a further reduction can be made
by noticing that k = (k«+ k,)'/z, so

(s. s)
Equating this with 2U gives us an expression for
the optical potential for $ & 0:

U= dk~ NI e & 5eq —k~ v

(s.s)
Next let us analyze the case where the probing

charge is inside the crystal, so both BQM and
SQM modes have to be considered. The optical
potential is expressed as the sum of two contribu-
tions:

U=U, +U, ,

= f dkkf dk, ~ ~ ~

U= U3+ Ug,

where

(s. ls)

and

r ein'k, z 1/e(kv —(o,)
I (kz 2 2)1/2 4v

»~I(» -«, I2» a'-(~)
(5.14)

Express the potential as the sum of a bulk part U~

and a surface part U~:
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Q)p 2 dk
2v p k(op

face. In the most general case we idealize U in
the form

U=y(E)e(-z)+ P(E) 6(z) . (5. 21)

and

x 1 —J, 2z —~ 8-z,
(5. 16)

~(d g dk~
S 4v ~ g~

We can obtain analytic formulas for y(E) and P(E)
by matching the Fourier components of Eq. (5.21)
with the Fourier components of the more exact Eq.
(5.15) at low and high wave vectors. Thus

~&kg I g l

[k,'- (o, /v)']'Iz
(5. 17)

j Ue'~'dz = p +y f"dz6(-z)e'~' . (5. 22)

Here k, and k2 refer to the lower and higher roots
of the equation ~, =kv, and k, and k are the cor-

1 4'2

responding roots to 0,,=k,v. The present results
represent a significant generalization of previous
calculations4 in that the spatial dependence of the
optical potentials is nom explicitly displayed.
Equations (5. 16) and (5. 17) are one-dimensional
integrals describing the optical potentials and can
be generated without much difficulty.

The limiting cases for the optical potentials are
of some interest. For z -—~, i.e. , deep in the
crystal, we can neglect the Bessel function and find

For p=0 both sides diverge. The coefficients of
the divergent terms must match so we find that

y = (g'2v) 'dk/k~, .
1

(5.28)

Now 1st us look at Eq. (5. 22) for high-p values:
r0 ~2

U jPg d d )Pg P dk
WV ~) k(dy

~ )2 1/2
x]1-Z, 2z k'

v]
(5. 24)

Us = (~~z/2v) I 'dk/k&u, . (5. 18)

Thus U~ approaches a constant value deep in the
crystal. Near the surface there is some small
oscillatory behavior associated with the Bessel
function of Eq. (5. 16).

An approximate formula for U~ can be found for
large z which explicitly shows that the surface con-
tribution falls off rapidly as one goes away from
the surface region. Since the exponential is a rap-
idly decreasing function of k, in Eq. (5. 17), it fol-
lows that the major contribution to the integral
arises from the region k, =k, . Thus

1

2 1
4v o,,(2k, )'"

J
~&kglgl

X J.
(k k )1/2 r

Ag L Lg
(5. 19)

where the upper limit has been extended to infinity.
Thus we obtain the asymptotic formula:

~2 ~l /2 ~&&g(lgl

Us
I ~svk ]z (5.20)

Lg

In model calculations it will be convenient to ideal-
ize the optical potential and wash over the smaQ-
scale oscillations that appear in U(z). The poten-
tial can be treated as being more or less constant
within the crystal. Superimposed on this bulk con-
tribution is a rather intense spike located in the
vicinity of the surface. This spike originates
mainly from the coupling to surface plasmons,
which are highly localized in the vicinity of the sur-

g 00

U e"'dz= ' dze'~'
S

4g2 ~J dk g '4k+ lg lx~
4 ., o; [k,'-(o„/ )']'"'

(5. 25)

Imagine integrating each term by parts to develop
an asymptotic expansion in powers of 1/p. Then
only the function and its derivatives in the neigh-
borhood of z =0 mill matter. Notice that U~ is
more discontinuous than U~ in this vicinity. The
U~ function has a discontinuous first derivative
while the U~ function has a discontinuous second.
derivative. Thus one expects U~ to dominate the
high-P behavior of the Fourier transforms. The
effect of U~ will be neglected and we find

"~ip dk
P= I U, e'~'dz= —'

4v ~q 0'P
1

1 4k~
kz —(o~ /v) p'+4k, ' (5.26)

In actually evaluating p we will take p =v.
In some instances the effect of the surface-plas-

mon contribution is found to compensate for the
depression of the bulk-plasmon contribution near
the surface. Then it is clear that a model in
which P=0 is adequate. However, below th, e
threshold for BQM emission, the P term cannot
be neglected.

In the present treatment of the dptical potential
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FIG. 1. Bulk dielectric function e(k, 0) plotted as a
function of wave number k for potassium. All quantities
are expressed in terms of atomic units.

FIG. 3. Bulk quasimode dispersion curve giving the
angular frequency +z as a function of the wave number k.
The dashed curves represent the boundaries of the do-
main of electron-hole-loss excitations. The curve is
for potassium.

we have neglected any real optical potential which
might be present and considered only an imaginary
term. In principle such a term does exist, al-
though one expects that it would be small com-
pared to the crystalline potential.

VI. RESULTS AND DISCUSSION

In Secs. I-V formulas were obtained for the dis-
persion relations, coupling parameters, and opti-

e(k.Q)
1.2

cal potentials associated with bulk and surface ex-
citations in the crystal. Let us now compute these
for a specific material. Since in subsequent papers
we will be interested in studying photoemission in
the alkali metals, we do the computation for potas-
sium. We have found that all the parameters of
interest cap be calculated if the static dielectric
function is specified. Overhauser' has formulated
an expression for the dielectric function which takes
into account exchange and correlation effects and
which agrees with the detailed many-body calcula-
tions of the ground-state energy of metals. We
adopt this dielectric function in the present section.

1.0

0.8 OP

0.6 0.4

0.4 0.$

0.2 0.7.

0.2 0.4 0.6 Q8 1.0 1.2 1.4
O.X O.~ 0.6 O.d

FIG. 2. Surface dielectric function 7(k&, 0) plotted
as a function of transverse wave numbers k& for potas-
sluX11 ~

FIG. 4. Surface-quasimode-dispersion curve giving
the angular frequency Oz as a function of the transverse
wave number k&. The curve is for potassium.
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Thus we let

& (q, 0) = I+ q(x)/[I - G(x) Q(x)I, (6. 1)

where x = q/2k+, kz being the Fermi wave-number.
Here

(6.2)

and

1.1x
(1+ 10x + l. 5x )' (6.5)

The parameters which were employed in the pres-
ent calculation are g~ =2. 1 eV and Std, = 3. 7 eV.

In Fig. 1 we present the dielectric function e(k,0)
for potassium. As expected, it gets to be large and
positive for small wave numbers and approaches
unity at large wave numbers, the approach being a
monotomic one. In Fig. 2 the surface dielectric
function of Eq. (4. 16) is presented for potassium.
In doing the integral it was convenient to let k,
= k, tan8 and to do the integration over the 8 vari-
able. At low wave number, & goes to zero linearly
with k, . At high wave numbers, & approaches the
free-space value of unity.

The dispersion formula for the BQM excitations
is presented in Fig. 3. For small k it lies close
to the bulk-plasmon curve but is not identical to it
for finite k. At large k it approaches the free-par-
ticle dispersion curve. The dashed lines illustrate
the boundaries of the domain of electron-hole pair
excitation. In Fig. 4 the corresponding dispersion
curve for the SQM waves is presented. ' Here again
we note a transition from surface-plasmon-like be-
havior at small transverse wave numbers to some-
thing quite different at large k.

In Fig. 5 the bulk optical potential as computed
from Eq. (5. 16) is presented for several values of
the speed e. We notice that, as expected, the bulk
optical potential vanishes at s =0. The size of the

FIG. 6. Surface optical potential U& plotted as a
function of distance perpendicular to the surface z.
Curves are presented for potassium for two values of the
speed v.

characteristic oscillations are indeed observed to
be small, thereby justifying their neglect in model
calculations. Figure 6 displays the surface opti-
cal potential U~ for a couple of speeds. One notes
that the spike is rather sharp indeed. Again, this
points to the fact that the main coupling to the sur-
face plasmons occurs as the particle crosses the
surface. The explanation for this phenomenon has
been given elsewhere. As long as the charged
particle is outside of the surface region the sur-
face t:ries to remain an equipotential. Hence the
field lines are normal to the surface and the cou-
pling between the charge and the surface fluctua-
tions is weak. When the particle is on the surface,
however, its field lines radiate through the plane
of the surface and the coupling gets to be anoma-
lously large. Of course dynamic screening effects
modify this static picture somewhat, but Fig. 6

U

Q.u O.lZ.
O.I6 . O.l &

0.0$

0.04

0.05

O.Ot

0-f2. -

O.OS-

O.OI i

P.t2.

0.08

Q.Ot

-IO -6
-6 -X 0 2

FIG. 5. Bulk optical potential Uz plotted as a function
of distance into the crystal z for potassium. Curves
are given for several particle speeds v.

FIG. 7. Total optical potential U as a function of dis-
tance for a speed of v=0. 6 for potassium.
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FIG. 8. Coefficient &(E), associated with the bulk
optical potential, as a function of energy E for potassium.

shows that essentially this argument is valid. In
Fig. '7 the total optical potential is given for a par-
ticular value of v. We notice that the effect of U~
is to fill in the depression of U~ near the surface,
to a large extent.

The function y(E) of Eq. (5.23) is plotted as a
function of energy E= av in Fig. 8. The existence
of the threshold may be understood by remember-
ing the definition of k, and kz of Eq. (5.23). For e
sufficiently small, the line kv does not intersect
the (d, curve for any value of k, so no absorption
occurs. Physically this means that it is energet-
ically impossible for the particle to emit a BQM
excitation. In reality we would expect the thresh-
old to lie at the Fermi surface and not at a higher
energy. For small energies one always has the

possibility of exciting low momentum electron hole
pairs. The oscillator strength associated with such
excitation, however are very small, because at
these momenta the bulk plasmons are saturating
the sum rule. Hence it is quite reasonable to ne-
glect such losses altogether until it is energetically
possible for either a BQM or bulk plasmon to be
emitted. It should be noted that the variation of
y(E) with energy is practically constant once one
has passed the threshold region. It does fall off
rather slowly at higher energies. This behavior
is consistent with other studies made of hot-elec-
tron lifetimes in metals.

In summary the goal of this paper has been to
show how a one-electron Hamiltonian such as

Ho
———

2 V + V+H, ~ (5.4)

can be generalized to include some many-body ef-
fects. This is accomplished by adding to Hp some
additional terms:

H = Ho —jU C' +—Z &o~ (b» b ~+ g )
k

,Po, (a',,a, +-,'). (5. 5)
l

Here U represents the optical potential and is given
by Eqs. (5. 15)-(5.1'1), 4 is the coupling to the
quasUnode excitations and is given by Eq. (2. 13),
and the other terms correspond to the free BQM
and SQM fields. One then proceeds to include
many-body effects by working to various orders in
perturbation theory. This will be done for photo-
emission in the following paper.
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